DATA SHEET

E19/8/5
E cores and accessories

E cores and accessories

CORE SETS

Effective core parameters

SYMBOL	PARAMETER	VALUE	UNIT
$\Sigma(\mathrm{I} / \mathrm{A})$	core factor $(\mathrm{C} 1)$	1.77	$\mathrm{~mm}^{-1}$
$\mathrm{~V}_{\mathrm{e}}$	effective volume	900	$\mathrm{~mm}^{3}$
I_{e}	effective length	39.9	$\mathrm{~mm}^{2}$
$\mathrm{~A}_{\mathrm{e}}$	effective area	22.6	$\mathrm{~mm}^{2}$
$\mathrm{~A}_{\text {min }}$	minimum area	22.1	$\mathrm{~mm}^{2}$
m	mass of core half	≈ 2.3	g

Fig. 1 E19/8/5 core half.

Core halves

A_{L} measured in combination with a non-gapped core half, clamping force for A_{L} measurements, $20 \pm 10 \mathrm{~N}$.

GRADE	$\begin{gathered} \mathbf{A}_{\mathrm{L}} \\ (\mathrm{nH}) \end{gathered}$	$\mu_{\text {e }}$	$\begin{aligned} & \text { AIR GAP } \\ & (\mu \mathrm{m}) \end{aligned}$	TYPE NUMBER
3C81	$63 \pm 5 \%$	≈ 88	≈ 650	E19/8/5-3C81-A63
	$100 \pm 8 \%$	≈ 140	≈ 350	E19/8/5-3C81-A100
	$160 \pm 8 \%$	≈ 225	≈ 200	E19/8/5-3C81-A160
	$250 \pm 15 \%$	≈ 350	≈ 110	E19/8/5-3C81-A250
	$315 \pm 15 \%$	≈ 440	≈ 80	E19/8/5-3C81-A315
	$1500 \pm 25 \%$	≈ 2110	≈ 0	E19/8/5-3C81
3C90	$63 \pm 5 \%$	≈ 88	≈ 640	E19/8/5-3C90-A63
	$100 \pm 8 \%$	≈ 140	≈ 350	E19/8/5-3C90-A100
	$160 \pm 8 \%$	≈ 225	≈ 190	E19/8/5-3C90-A160
	$250 \pm 15 \%$	≈ 350	≈ 110	E19/8/5-3C90-A250
	$315 \pm 15 \%$	≈ 440	≈ 80	E19/8/5-3C90-A315
	$1170 \pm 25 \%$	≈ 1650	≈ 0	E19/8/5-3C90
3C91 des	$1500 \pm 25 \%$	≈ 2110	≈ 0	E19/8/5-3C91
3C92 des	$900 \pm 25 \%$	≈ 1260	≈ 0	E19/8/5-3C92
3C94	$1170 \pm 25 \%$	≈ 1650	≈ 0	E19/8/5-3C94
3C96 des	$1000 \pm 25 \%$	≈ 1400	≈ 0	E19/8/5-3C96

E cores and accessories

E19/8/5
(813E187)

GRADE	$\begin{gathered} \mathbf{A}_{\mathrm{L}} \\ (\mathrm{nH}) \end{gathered}$	$\mu_{\text {e }}$	AIR GAP ($\mu \mathrm{m}$)	TYPE NUMBER
3F3	$63 \pm 5 \%$	≈ 88	≈ 640	E19/8/5-3F3-A63
	$100 \pm 8 \%$	≈ 140	≈ 330	E19/8/5-3F3-A100
	$160 \pm 8 \%$	≈ 225	≈ 190	E19/8/5-3F3-A160
	$250 \pm 15 \%$	≈ 350	≈ 110	E19/8/5-3F3-A250
	$315 \pm 15 \%$	≈ 440	≈ 80	E19/8/5-3F3-A315
	$1000 \pm 25 \%$	≈ 1400	≈ 0	E19/8/5-3F3
3F35 des	$810 \pm 25 \%$	≈ 1140	≈ 0	E19/8/5-3F35

Core halves of high permeability grades

Clamping force for A_{L} measurements, $20 \pm 10 \mathrm{~N}$.

GRADE	$\mathbf{A}_{\mathbf{L}}$ $\mathbf{(n H})$	$\mu_{\mathbf{e}}$	AIR GAP $(\mu \mathbf{m})$	TYPE NUMBER
$3 E 27$	$2300 \pm 25 \%$	≈ 3230	≈ 0	E19/8/5-3E27

Properties of core sets under power conditions

GRADE	B (mT) at	CORE LOSS (W) at			
	$\begin{aligned} \mathrm{H} & =250 \mathrm{~A} / \mathrm{m} ; \\ \mathrm{f} & =25 \mathrm{kHz} ; \\ \mathrm{T} & =100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} \mathrm{f} & =25 \mathrm{kHz} \\ \hat{\mathrm{~B}} & =200 \mathrm{mT} ; \\ \mathrm{T} & =100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} ; \\ & \hat{\mathrm{B}}=100 \mathrm{mT} ; \\ & \mathrm{T}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} ; \\ & \hat{\mathrm{B}}=200 \mathrm{mT} ; \\ & \mathrm{T}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{f}=400 \mathrm{kHz} ; \\ \hat{\mathrm{B}}=50 \mathrm{mT} ; \\ \mathrm{T}=100^{\circ} \mathrm{C} \end{gathered}$
3C81	≥ 320	≤ 0.2	-	-	-
3C90	≥ 320	≤ 0.09	≤ 0.1	-	-
3C91	≥ 320	-	$\leq 0.064{ }^{(1)}$	$\leq 0.37{ }^{(1)}$	-
3C92	≥ 370	-	≤ 0.08	≤ 0.45	-
3C94	≥ 320	-	≤ 0.08	≤ 0.45	-
3C96	≥ 340	-	≤ 0.064	≤ 0.37	-
3F3	≥ 320	-	≤ 0.1	-	≤ 0.17
3F35	≥ 300	-	-	-	-

Properties of core sets under power conditions (continued)

GRADE	B (mT) at	CORE LOSS (W) at			
	$\begin{gathered} \mathrm{H}=250 \mathrm{~A} / \mathrm{m} ; \\ \mathrm{f}=25 \mathrm{kHz} ; \\ \mathrm{T}=100^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{f}=500 \mathrm{kHz} ; \\ \hat{\mathrm{B}}=50 \mathrm{mT} ; \\ \mathrm{T}=100^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{f}=500 \mathrm{kHz} ; \\ & \hat{\mathrm{B}}=100 \mathrm{mT} ; \\ & \mathrm{T}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} ; \\ & \hat{\mathrm{B}}=30 \mathrm{mT} ; \\ & \mathrm{T}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{f}=3 \mathrm{MHz} ; \\ & \hat{\mathrm{B}}=10 \mathrm{mT} ; \\ & \mathrm{T}=100^{\circ} \mathrm{C} \end{aligned}$
3C96	≥ 340	≤ 0.32	-	-	-
3F3	≥ 315	-	-	-	-
3F35	≥ 300	≤ 0.12	≤ 0.95	-	-

Note

1. Measured at $60^{\circ} \mathrm{C}$.

E cores and accessories

COIL FORMERS

General data for E19/8/5 coil former without pins

PARAMETER	SPECIFICATION
Coil former material	polyamide (PA6.6), glass reinforced, flame retardant in accordance with "UL 94V-2"; UL file number E41938(M)
Maximum operating temperature	$130^{\circ} \mathrm{C}$, "IEC 60085", class B

Dimensions in mm.
Fig. 2 E19/8/5 coil former.

Winding data and area product for E19/8/5 coil forme without pins

| NUMBER OF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SECTIONS | | MINIMUM |
| :---: |
| WINDING |
| AREA |
| $\left(\mathbf{m m}^{2}\right)$ | | NOMINAL |
| :---: |
| WINDING |
| WIDTH |
| (mm) | | AVERAGE |
| :---: |
| LENGTH OF |
| TURN |
| (mm) | | AREA |
| :---: |
| PRODUCT |
| Ae x Aw |
| $\left(\mathrm{mm}^{4}\right)$ |\quad TYPE NUMBER

E cores and accessories

General data for 8-pins E19/8/5 coil former

PARAMETER	SPECIFICATION
Coil former material	polyamide (PA6.6), glass reinforced, flame retardant in accordance with UL 94V-0; UL file number E41938(M)
Pin material	copper-zinc alloy (CuZn), tin (Sn) plated
Maximum operating temperature	$130^{\circ} \mathrm{C}$, "IEC 60085", class B
Resistance to soldering heat	"IEC 60068-2-20", Part 2, Test Tb, method 1B, $350^{\circ} \mathrm{C}, 3.5 \mathrm{~s}$
Solderability	"IEC $60068-2-20^{\prime \prime}$, Part 2, Test Ta, method $1,235^{\circ} \mathrm{C}, 2 \mathrm{~s}$

(1) one place only

Dimensions in mm.
Fig. 3 E19/8/5 coil former; 8-pins.

Winding data and area product for 8-pins E19/8/5 coil former

NUMBER OF SECTIONS	MINIMUM WNDING AREA (mm^{2})	NOMINAL WINDING WIDTH (mm)	AVERAGE LENGTH OF TURN (mm)	AREA PRODUCT Ae x Aw (mm ${ }^{4}$)	TYPE NUMBER
1	32.3	9.4	40.9	730	CPH-E19/8/5-1S-8PD-Z

E cores and accessories

DATA SHEET STATUS DEFINITIONS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS
Preliminary specification	Development	This data sheet contains preliminary data. Ferroxcube reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Ferroxcube reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

DISCLAIMER

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Ferroxcube customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Ferroxcube for any damages resulting from such application.

PRODUCT STATUS DEFINITIONS

STATUS	INDICATION	DEFINITION
Prototype	orot	These are products that have been made as development samples for the purposes of technical evaluation only. The data for these types is provisional and is subject to change.
Design-in	des	These products are recommended for new designs.
Preferred		These products are recommended for use in current designs and are available via our sales channels.
Support	sup	These products are not recommended for new designs and may not be available through all of our sales channels. Customers are advised to check for availability.

