
AN1218 Rev. 2

Order this document
by AN1218/D Rev. 2

AN1218

HC05 to HC08 Optimization
By Mark Glenewinkel

CSIC Applications
Austin, Texas

Introduction

Freescale's HC05 Family of microcontrollers contains the world's most
popular 8-bit microcontroller units (MCUs). In keeping pace with
technology and the changing needs of the customer, Freescale has
designed the HC08 Family of MCUs. The HC08 Family CPU is a
performance extension to the HC05 Family of low cost MCUs. This
application note will describe the differences and advantages of the
HC08 Family CPU: the CPU08.

CPU08 is fully opcode and object code compatible with the HC05 CPU.
Any HC05 code will execute directly on the HC08 without instruction set
differences. As this application note will show, there are many
improvements to the speed and capability in the CPU08.

CPU08 is a faster processor. The basic execution speed of the CPU08
has been increased with advanced high performance CMOS
technology. Execution cycles of most instructions have been improved
with an advanced computer architecture.

CPU08 has more programming capability. It has more addressing
modes, better math support, and much improved data manipulation,
accessing, and moving capabilities. Looping and branching instructions
have also been optimized.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

2

This application note will help inform and educate the reader concerning
the differences between the HC05 and HC08 CPUs. Detailed examples
illustrating the added features found with the CPU08 are given to help
optimize software design with the CPU08.

Scope of this Application Note

This note assumes the reader has a background in MCU software and
hardware design and is also familiar with the HC05. It was written for the
engineering manager and the design engineer. As a reference, the
application note overviews the basic differences between the two CPUs
so that one can fit the right CPU for a specific application. As a tutorial,
the application note gives the designer the means to understand and
utilize the HC08 enhancements. Software is given to illustrate and
compare the performance of the CPUs.

HC08 Features

The following is a list of major features of the HC08 CPU (CPU08) that
differentiate it from the HC05 CPU (CPU05).

• Fully upward object code compatible with the MC6805,
MC146805, and the MC68HC05 Family

• 64 KByte program/data memory space

• Enhanced HC05 programming model

• 8 MHz CPU bus frequency

• 16 addressing modes, 5 more than the HC05

• Expandable internal bus definition for addressing range extension
beyond 64 KBytes

• 16-bit index register with manipulation instructions

• 16-bit stack pointer with manipulation instructions

• Memory to memory data moves without using the accumulator

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
CPU05/CPU08 Programmer's Model Comparison

AN1218 Rev. 2

3

• Fast 8-bit multiply and integer/fractional divide instructions

• Binary coded decimal (BCD) instruction enhancements

• Internal bus flexibility to accommodate CPU enhancing
peripherals such as a DMA controller

• Fully static low voltage/low power design

CPU05/CPU08 Programmer's Model Comparison

The CPU05 and the CPU08 programmer's model differences are
illustrated in Figure 1 .

H Index Register The index register of the CPU08 has been extended to 16 bits, allowing
the user to index or address a 64 KByte memory space without any
offset. The upper byte of the index register is called the H index register.
The concatenated 16-bit register is called the H:X register. Source code
written for CPU05 will not affect the H register and it will remain in its
reset state of $00. There are seven new instructions that allow the user
to manipulate the H:X index register. These instructions are covered in
detail later.

Stack Pointer The stack pointer (SP) has been extended from its 6-bit CPU05 version
to a full 16-bit SP on the CPU08. SPH:SPL refers to the 16-bit stack
pointer by naming the high byte, SPH, and the low byte, SPL. To
maintain HC05 compatibility, the reset state is $00FF.

New instructions and new addressing modes greatly increase the utility
of the CPU08 stack pointer over the CPU05 stack pointer. Nine new
CPU08 instructions allow the user to easily manipulate the SP and the
stack.

CPU08 also has relative addressing modes that allow the SP to be used
as an index register to access temporary variables on the stack. These
addressing modes and new instructions are discussed later in this
application note.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

4

Figure 1. CPU05 and CPU08 Comparison

Program Counter
Expanded

The CPU08 program counter (PC) has been expanded to 16 bits which
allows the CPU08 to address 64 KBytes of memory. Not all HC05
devices have a 16-bit program counter.

New Addressing
Modes,
Comparison

CPU08 has 16 addressing modes, 8 more than the HC05. Table 1 lists
these addressing modes and the CPUs that use them. A brief
discussion of these modes is given below.

A7 0

X

7 0

H I N Z C

CCR

1 1 SP

7 0

PC

12 0

ACCUMULATOR

INDEX REGISTER

PROGRAM COUNTER

STACK POINTER

CONDITION CODE REGISTER

0000 0

12

ACCUMULATOR (A)

INDEX REGISTER (H:X)

STACK POINTER (SP)

PROGRAM COUNTER (PC)

CONDITION CODE REGISTER (CCR)V 1 1 H I N Z C

H X

0

0

0

0

7

15

15

15

7 0

(a) CPU05

(b) CPU08

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
CPU05/CPU08 Programmer's Model Comparison

AN1218 Rev. 2

5

HC05 and HC08
Addressing Modes

Inherent instructions such as reset stack pointer (RSP) and multiply
(MUL) have no operand. Inherent instructions require no memory
address and are one byte long.

Immediate instructions contain a value that is used in an operation with
the index register or accumulator. Immediate instructions require no
memory address and are two bytes long. The operand is found in the
byte immediately following the opcode.

Direct instructions can access any of the first 256 memory addresses
with only two bytes. The first byte contains the opcode followed by the
low byte of the operand address. The CPU automatically uses $00 for
the high byte of the operand address. Most direct instructions are two
bytes long.

Table 1. Addressing Mode Comparison Table

Addressing Mode HC05 HC08

Inherent X X

Immediate X X

Direct X X

Extended X X

Indexed, no offset X X

Indexed, 8-bit offset X X

Indexed, 16-bit offset X X

Relative X X

Stack Pointer, 8-bit offset X

Stack Pointer, 16-bit offset X

Memory to memory (4 modes) X

Indexed w/post increment X

Indexed, 8-bit offset, w/post increment X

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

6

Extended instructions can access any address in the memory map.
Extended instructions are three bytes long and contain the opcode and
the two-byte operand address.

Indexed instructions with no offset are one-byte instructions that utilize
the index register of the CPU. CPU08 also uses the H:X register
containing the high byte of the address operand.

Indexed, 8-bit offset instructions are two-byte instructions that utilize the
index register of the CPU to access data at any location in memory. The
8-bit unsigned offset following the opcode is added to the 16-bit
unsigned index register (H:X). The sum is the address used to access
data.

Indexed, 16-bit offset instructions are like the 8-bit offset instructions
except that they are three bytes long and add a 16-bit unsigned number
to the 16-bit index register (H:X).

Relative addressing is only used for branch instructions. If the branching
condition is true, the CPU finds the branch destination by adding the
offset operand to the PC counter. The offset is a two's complement byte
that gives a branching range of –128 to +127 bytes. This instruction is
two bytes long.

New HC08
Addressing Modes

Stack pointer, 8-bit offset instructions operate like indexed, 8-bit offset
instructions except that they add the offset to the 16-bit SP. This mode
is available only on the CPU08. If interrupts are disabled, this
addressing mode allows the SP to be used as a second index register.
This instruction is three bytes long.

Stack pointer, 16-bit offset instructions are only available on the CPU08.
They are like the stack pointer, 8-bit offset instructions except that they
add a 16-bit value to the SP. This instruction is four bytes long.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
CPU05/CPU08 Programmer's Model Comparison

AN1218 Rev. 2

7

Memory to memory instructions utilize four different modes available
only to the CPU08.

1. The move, immediate to direct, is a three-byte mode generally
used to initialize RAM and register values in page 0 of the memory
map. The operand in the second byte is immediately stored to the
direct page location found in the third byte.

2. The move, direct to direct, is a three-byte instruction. The operand
following the opcode is the direct page location that is stored to the
second operand direct page location.

3. The move, indexed to direct, post increment, is a two-byte
instruction. The operand addressed by the 16-bit index register
(H:X) is stored to direct page location address by the byte
following the opcode. The index register is then incremented.

4. The move, direct to indexed, post increment, is a two-byte
instruction. The operand in the direct page location addressed by
the byte following the opcode is stored in the location addressed
by the 16-bit index register (H:X). The index register is then
incremented.

In the CPU08, four instructions address operands with the index register
and then increment the index register afterwards. This is called indexed
with post increment mode. These instructions include CBEQ indexed,
CBEQ indexed with offset, MOV IX+Dir, and MOV DirIx+.

Table 2 gives examples to illustrate these different addressing modes.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

8

Condition Code
Register with
Overflow Bit V

A summary of the condition code register (CCR) is given below. Unless
otherwise stated, all bits correspond to both CPUs.

Overflow Bit V

This bit is set when a two's-complement overflow has occurred as the
result of an operation. The V bit has been added to the CPU08
condition code register to support two's-complement arithmetic.

Half-Carry Bit H

The half-carry bit is set when a carry has occurred between bits 3 and
4 of the accumulator because of the last ADD or ADC operation. This
bit is required for BCD operations.

Table 2. Addressing Mode Examples

Addressing Mode Example

Inherent RSP

Immediate LDA #$FF

Direct LDA $50

Extended LDA $1000

Indexed, no offset LDA ,X

Indexed, 8-bit offset LDA $50,X

Indexed, 16-bit offset LDA $0150,X

Relative BRA $20

Stack Pointer, 8-bit offset* LDA $50,SP

Stack Pointer, 16-bit offset* LDA $0150,SP

Memory to memory
ImmDir*
DirDir*
Ix+Dir*
DirIx+*

MOV
MOV
MOV
MOV

#$30,$80
$80,$90
X+,$90
$80,X+

Indexed w/post increment* CBEQ X+,LOOP

Indexed, 8-bit offset, w/post increment* CBEQ $20,X+,LOOP

* New CPU08 addressing modes

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Description of the Clock

AN1218 Rev. 2

9

Interrupt Mask Bit I

All timer and external interrupts are disabled when this bit is set.
Interrupts are enabled when the bit is cleared. This bit is
automatically set after any CPU reset.

Negative Bit N

This bit is set after any arithmetic, logical, or data manipulation
operation was negative. In other words, bit 7 of the result of the
operation was a logical one.

Zero Bit Z

The zero bit is set after any arithmetic, logical, or data manipulation
operation was zero.

Carry/Borrow Bit C

The carry/borrow bit is set when a carry out of bit 7 of the accumulator
occurred during the last arithmetic, logical, or data manipulation
operation. The bit is also set or cleared during bit test and branch
instructions and shifts and rotates.

Description of the Clock

In the CPU08, the CPU clock rate is twice that of the address/data bus
rates. The internal CPU08 clock rate is 16 MHz for an 8 MHz HC08. To
maintain a 50% duty cycle CPU clock, the oscillator clock, OSC CLK,
must run twice the rate of the CPU clock. Therefore a 32 MHz OSC
clock is needed to drive an 8 MHz HC08.

The flagship member of the CPU08 family has a phase locked loop
(PLL) synthesizer to generate the 32 MHz signal. It is derived from a
suggested crystal frequency of 4.9152 MHz.

Address/Data Rate = Z = 8 MHz

CPU Clock Rate = 2Z = 16 MHz

OSC Clock Rate = 4Z = 32 MHz

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

10

Index Registers

CPU08 has the additional H index register which is the high byte
extension to the X index register. Together, the two index registers
formulate the concatenated 16-bit H:X index register. Five new
instructions are introduced on the CPU08 to allow manipulation of the
H:X index register. Source code written for the HC05 will not effect the
H register and it will remain in its reset state of $00.

The TSX and the TXS instructions also utilize the H:X index register.
These instructions are covered in more detail in the stack pointer
section.

Five New Indexing
Instructions, Detail

The new CPU08 instructions that affect the index registers are listed
below. Examples for these instructions are given in Appendi x A — New
CPU08 Indexing Instruction Examples .

AIX Add Immediate to Index Register

Operation: X ← (H:X) + (M)

Description: AIX adds an immediate value to the 16-bit
index register formed by the concatenation
of the H and X registers. The immediate
operand is an 8-bit two's complement
signed offset. Prior to addition to H:X, the
offset is sign extended to 16 bits.

CLRH Clear Index High

Operation: H ← $00

Description: The contents of H are replaced with zeros.

CPHX Compare 16-bit Index Register

Operation: (H:X) – (M:M+1)

Description: CPHX compares the 16-bit index register
H:X with the 16-bit value in memory and
sets the condition code register accordingly.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Index Registers

AN1218 Rev. 2

11

LDHX Load 16-bit Index Register

Operation: H:X ← (M:M+1)

Description: Loads the contents of the speci ed memory
location into the 16-bit index register H:X.
The condition codes are set according to the
data.

STHX Store 16-bit Index Register

Operation: (M:M+1) ← (H:X)

Description: Stores the 16-bit index register H:X to the
speci ed memor y location. The condition
codes are set according to the data.

Software
Techniques Using
Indexed
Addressing, Tables

The CPU08 index register has some distinct advantages over the
CPU05 index register. Even though the CPU05 has 16-bit index offset,
the 8-bit index register restricts indexing to a maximum of 256 bytes.
CPU08 with its H register extension allows full 16-bit index addressing
equaling 65,536 bytes of memory access. Proper 16-bit pointers allow
efficient compiling of C code and other higher level languages.
Maximum table lengths in the CPU08 which can be accessed in a single
instruction are therefore 64 KByte. An optional address extension
module can extend the data space beyond 64 KBytes, but the maximum
offset remains 64 KBytes. Index addressing modes include 8- and 16-
bit offsets.

Many programmers like to use calculated addressing. CPU08 has a
new instruction, AIX, that allows the addition of a two's complement
number. Table access is easier and more flexible.

The H:X index register can also be used as an auxiliary 16-bit
accumulator. Sixteen-bit data comparisons are easier with the CPHX
instruction.

The following section illustrates the advantage of using a 16-bit index
register.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

12

Code Example We will now illustrate the added benefit of the CPU08 16-bit index
register. The index will be used to address a 512 byte table. In the
CPU05, the table must be broken up into sections of memory consisting
of 256 bytes per section. Our table has 512 bytes, so we will be using
two sections, section 0 and section 1, for the CPU05. The address to
look up on the table will be found in RAM. Notice that the CPU05 code
is longer. If your table was larger, you would require more sections of
memory to handle your table. A subroutine might be written to make the
job more modular. In the HC08 example, the 512 byte table can be
handled directly. A comparison between CPU05 and CPU08 code is
shown in Appendix B — CPU05 and CPU08 512-Byte Table Indexing
Code .

Stack Pointer

CPU08 has a full 16-bit stack pointer. To maintain compatibility with the
CPU05, it is initialized to $00FF out of reset.

Stack manipulation is from high to low memory. The SP is decremented
each time data is pushed on the stack and incremented each time data
is pulled from the stack. The SP points to the next available stack
address rather than the latest stack entry address.

Nine new instructions have been added for the user to manipulate the
stack. These instructions allow the direct push and pull of any register
to the stack. The SP can be changed with a transfer of the H:X register
to the SP or the SP can be augmented by the add immediate instruction.

Stack manipulation can be a very powerful programming technique.
With the CPU08, the assembly programmer can pass parameters and
store local or temporary variables when using subroutines and/or
interrupts.

New addressing modes were added to address these variables on the
stack. Using the stack pointer as an index register with 8- or 16-bit
offsets, the user may access variables on the stack. These instructions
greatly cut cycle count by not having to load/store the variable. RAM

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Stack Pointer

AN1218 Rev. 2

13

requirements are also reduced. Significant C code efficiency can be
gained when utilizing these new stack pointer addressing modes.

If interrupts are disabled, the stack pointer can be used as a second
16-bit index register with 8- or 16-bit offsets.

Nine New Stack
Manipulation
Instructions, Detail

All the new CPU08 instructions that affect the stack pointer are listed
below. Examples for these instructions are given in Appendi x C — New
CPU08 Stack Pointer Instructions .

AIS Add Immediate to Stack Pointer

Operation: SP ← (SP) + (M)

Description: Adds the immediate operand to the stack
pointer SP. The immediate value is an 8-bit
two's complement signed operand. Prior to
addition to the SP, the operand is sign
extended to 16 bits. This instruction can be
used to create and remove a stack frame
buffer which is used to store temporary
variables.

PSHA Push Accumulator onto Stack

Operation: ⇓ (A); SP ← (SP-$01)

Description: The contents of the accumulator are pushed
onto the stack at the address contained in
the stack pointer. The stack pointer is then
decremented to point at the next available
location in the stack. The contents of the
accumulator remain unchanged.

PSHH Push Index Register H onto Stack

Operation: ⇓ (H); SP ← (SP-$01)

Description: The contents of the 8-bit high order index
register H are pushed onto the stack at the
address contained in the stack pointer. The
stack pointer is then decremented to point at
the next available location in the stack. The
contents of the H register remain
unchanged.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

14

PSHX Push Index Register X onto Stack

Operation: ⇓ (X); SP ← (SP-$01)

Description: The contents of the 8-bit low order index
register X are pushed onto the stack at the
address contained in the stack pointer. The
stack pointer is then decremented to point at
the next available location in the stack. The
contents of the X register remain
unchanged.

PULA Pull Accumulator from Stack

Operation: SP ← (SP+$01); ⇑ (A)

Description: The stack pointer is incremented to address
the last operand on the stack. The
accumulator is then loaded with the
contents of the address pointed to by SP.

PULH Pull Index Register H from Stack

Operation: SP ← (SP+$01); ⇑ (H)

Description: The stack pointer is incremented to address
the last operand on the stack. The 8-bit
index register H is then loaded with the
contents of the address pointed to by SP.

PULX Pull Index Register X from Stack

Operation: SP ← (SP+$01); ⇑ (X)

Description: The stack pointer is incremented to address
the last operand on the stack. The 8-bit
index register X is then loaded with the
contents of the address pointed to by SP.

TSX Transfer Stack Pointer to Index Register

Operation: H:X ← (SP) + $0001

Description: Loads the index register H:X with one plus
the contents of the 16-bit stack pointer SP.
The contents of the stack pointer remain
unchanged. After a TSX instruction, the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Stack Pointer

AN1218 Rev. 2

15

index register H:X points to the last value
that was stored on the stack.

TXS Transfer Index Register to Stack Pointer

Operation: SP ← (H:X) - $0001

Description: Loads the stack pointer SP with the
contents of the index register H:X minus
one. The contents of the index register H:X
remain unchanged.

Software
Techniques Using
the SP

The CPU05 and the CPU08 use the stack for two primary purposes.
First, every time the CPU executes an interrupt service routine, the
register contents are saved on the stack. After the execution of a return
from interrupt (RTI) instruction, the register contents on the stack are
restored to the CPU. Second, every time a jump to subroutine (JSR) or
a branch to subroutine (BSR) occurs, the return address is saved on the
stack. The address is restored to the program counter after a return from
subroutine (RTS) instruction is executed.

The CPU08 with its new stack manipulation instructions allows the user
to pass parameters to the subroutine and store local or temporary values
within the subroutine. Two major benefits are derived from using the
stack for parameters and temporary values:

1. A subroutine will allocate RAM storage for its variables and
release this memory when the subroutine is finished. Therefore,
global variables are not needed for these routines. This saves
RAM memory space.

2. The allocation of new local variables for each subroutine makes
the subroutine recursive and reentrant. This allows the
programmer to easily modularize his code.

Let's look at the stacking operation of the CPU05 and the CPU08. The
stack is located in RAM. Since stacking occurs from high memory to low
memory, the SP usually points to the highest RAM memory address.
Both the CPU05 and the CPU08 reset the SP at $00FF. The CPU08
instruction set allows the programmer to move the stack out of Page 0
memory if needed.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

16

When an interrupt occurs, the contents of all the CPU registers are
pushed onto the stack, the interrupt vector is fetched, and the program
begins execution at the start of the interrupt routine. The stack contents
before and after an interrupt are shown in Figure 2 . For the CPU08 to
remain upward compatible with the CPU05, the H index register is not
pushed onto the stack.

NOTE: If the H register is used in the interrupt service routine or if indexed
addressing modes are used, the H register must be pushed onto the
stack.

This is accomplished by using the PSHH instruction. Before returning
from the interrupt, the PULH instruction must be used to extract the H
index register off the stack.

STACK BEFORE AN INTERRUPT CALL

STACK POINTER → ?? $00FE

?? $00FF

STACK AFTER AN INTERRUPT CALL

STACK POINTER → $00FA

CONDITION CODE REGISTER $00FB

ACCUMULATOR A $00FC

INDEX REGISTER X $00FD

PROGRAM COUNTER HIGH $00FE

PROGRAM COUNTER LOW $00FF

Figure 2. Stack Before and After an Interrupt Call

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Stack Pointer

AN1218 Rev. 2

17

Figure 3 illustrates the stack before and after a subroutine is called
when the stack pointer is at $00FF. When a subroutine is called, the 16-
bit program counter is pushed onto the stack and the execution of code
begins at the start of the subroutine. The program counter is split into its
8-bit high and low bytes.

If the values in the X register and the accumulator are needed within a
subroutine, they will need to be saved somehow before the subroutine
uses them. If using the CPU05, you would have to allocate global RAM
space for saving these CPU registers. Your code would look something
like that in Figure 4 .

STACK BEFORE A SUBROUTINE CALL

?? $00FE

STACK POINTER → ?? $00FF

STACK AFTER A SUBROUTINE CALL

STACK POINTER →

INDEX REGISTER X $00FD

PROGRAM COUNTER HIGH $00FE

PROGRAM COUNTER LOW $00FF

Figure 3. Stack Before and After a Subroutine Call

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

18

* Subroutine XX for CPU05 *

START STX $50 ;4 store X away to RAM
STA $51 ;4 store A away to RAM

XX XX ;actual subroutine code
XX XX

LDX $50 ;3 load X from RAM
LDA $51 ;3 load A from RAM

Figure 4. CPU05 Subroutine Code

The CPU05 code will use 14 cycles to store and load registers. Also, two
bytes of global RAM space are allocated for this subroutine. If we were
to use the CPU08, the code could utilize the stack. Global RAM space
and six cycles would be saved. Refer to Figure 5 .

* Subroutine XX for CPU08 *

START PSHX ;2 push X onto stack
PSHH ;2 push H onto stack
PSHA ;2 push A onto stack

XX XX ;actual subroutine code
XX XX

PULA ;2 pull A off of stack
PULH ;2 pull H off of stack
PULX ;2 pull X off of stack

Figure 5. CPU08 Subroutine Code

The stack helps in efficiently utilizing parameters, local variables, and
subroutine return values. Parameters are variables that are passed to
the subroutine. Local variables are variables that are only used within
the scope of the subroutine. A subroutine return value is the output of
the subroutine. An example of a subroutine and its variables are given
below in equation form:

Y = (X)3

If we were to write a subroutine that calculates the cube of the value X,
X would be the parameter passed to the subroutine. Y would be the
subroutine return value, and any variable used to calculate Y would be

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Stack Pointer

AN1218 Rev. 2

19

a local variable. The stack of these complex subroutines follow the
generalized structure shown in Figure 6 . Figure 6 shows the stack
before the subroutine initialization, before entering the subroutine, and
during the subroutine. The actual cube subroutine is written in the
following section of code. A diagram of the stack during its execution is
given within the code listing.

Code Example Refer to Appendix D — Using the Stack in a Subroutine to Compute
a Cube for an example of modular subroutine code that efficiently
computes the cube of an 8-bit positive number.

STACK

SP DURING SUBROUTINE → $00f7

LOCAL VARIABLE 1 $00F8

LOCAL VARIABLE 2 $00F9

ACCUMULATOR A $00FA

INDEX REGISTER X $00FB

PROGRAM COUNTER HIGH $00FC

SP DURING SUBROUTINE → PROGRAM COUNTER LOW $00FD

SP BEFORE
SUBROUTINE INITIALIZATION

RETURN VALUE $00FE

→ PASSED PARAMETER $00FF

Figure 6. Stack Structure of a Complex Subroutine

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

20

Data Movement

Why Improve the
Movement of Data
in the CPU05?

The most common CPU function is the transfer of data. Most
microcontroller-based systems spend the majority of their time moving
data from one location to the other. Many different addressing modes
are used to access and transfer bytes of data. If there was a way to
decrease the time it takes to transfer data, then the overall performance
of the system would be improved.

CPU05 moves data from one location to the next by first loading the
accumulator with the byte from the transfer source. Next, CPU05 stores
the byte from the accumulator to the transfer's destination. In this
manner all data must pass through the accumulator, thus making the
accumulator a bottleneck in data movement. The movement of the
contents of location $40 to location $60 with the CPU05 is illustrated in
Figure 7 .

CPU08 provides the new MOV instruction which bypasses the
accumulator. Using the MOV instruction, the CPU is instructed to take
the contents of the source location and directly place the data in the
destination. This is illustrated in Figure 8 . There are four different
addressing modes special to the MOV instruction. Details of this
instruction are given below. .

LDA $40 # $40 → → # ACCA

STA $60 # $60 ← ←

Figure 7. Accumulator as a Bottleneck

MOV $40,$60 # $40

↓
↓

$60

Figure 8. No Accumulator Bottleneck

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Data Movement

AN1218 Rev. 2

21

New MOVE
Instruction, Detail

The new CPU08 Move instruction is detailed below. Examples for this
instruction and all four of its addressing modes are given in
Appendix E — New CPU08 MOV Instruction Examples . The
examples in Appendix E — New CPU08 MOV Instruction Examples
also compare the CPU05 and the CPU08 bus cycles and memory
requirements for the algorithm to execute the movement of data.

MOV Move

Operation: (M)destination ← (M)source

Description: Moves a byte of data from a source address
to a destination address. Data is examined
as it is moved, and condition codes are set.
Source data is not changed. Internal
registers (other than CCR) are not affected.
There are four addressing modes for the
MOV instruction. A discussion of these
modes was given in an earlier section.

Software
Techniques

The MOV command will cut cycle time and code space when moving
data. The most obvious advantage of the MOV instruction is when the
configuration registers are being initialized along with other RAM
variables at the start of the program.

Code Example A user wants to start his application one of two different ways. The user
initializes the application on the MCU based on the logic level of port D
bit 4. Once the part is out of reset, it reads port D and moves data from
ROM into the RAM configuration registers according to the logic level of
bit 4. Refer to Appendix F — CPU05 and CPU08 Data Movement
Code for code comparing the CPU05 and the CPU08.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

22

New Branch Instructions

Description Six new unsigned branch instructions were added to the instruction set
of the CPU08 to improve looping and table searching capabilities.
These instructions are CBEQ, CBEQA, CBEQX, DBNZ, DBNZA, and
DBNZX. The CBEQ instructions combine the compare (CMP and CPX)
instructions and the branch if equal (BEQ) instruction . The DBNZ
instructions combine the decrement (DEC, DECA, and DECX)
instructions and the branch if not equal (BNE) instruction. These new
instructions improve cycle time and decrease code space. More detail
is given below on each instruction.

Six New Branch
Instructions, Detail

All the new CPU08 instructions that affect branching are listed below.
Examples for these instructions are given in Appendix G — New
Branch Instruction Examples . The examples in Appendix G — New
Branch Instruction Examples also compare the CPU05 and the
CPU08 bus cycles and memory requirements for the algorithm to
execute the branch.

CBEQ Compare and Branch if Equal

Operation: A) - (M); PC ← (PC) + $0003 + Rel if result
is $00

For IX+ mode: (A) - (M);

PC ← (PC) + $0002 + Rel, if result is $00

Description: CBEQ compares the operand from memory
with the accumulator and causes a branch if
the result is zero. This function combines
CMP and BEQ for faster table look-up
routines.

The addressing mode CBEQ_IX+ compares
the operand addressed by the 16-bit index
register H:X to the accumulator and causes
a branch if the result is zero. The 16-bit
index register is then incremented
regardless of whether a branch is taken.
CBEQ_IX1+ operates the same way except

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
New Branch Instructions

AN1218 Rev. 2

23

an 8-bit offset is added to the effective
address of the operand.

CBEQA Compare and Branch if Equal

Operation: (A) - (M); PC ← (PC) + $0003 + Rel if result
is $00

Description: CBEQA compares an immediate operand in
memory with the accumulator and causes a
branch if the result is zero. This instruction
combines CMP and BEQ for faster table
look-up routines.

CBEQX Compare and Branch if Equal

Operation: (IX) - (M); PC ← (PC) + $0003 + Rel if result
is $00

Description: CBEQX compares an immediate operand in
memory with the lower order index register
X and causes a branch if the result is zero.
This instruction combines CPX and BEQ for
faster loop counter control.

DBNZ Decrement and Branch if Not Zero

Operation: M ← (M) - $01;

PC ← (PC) + $0003 + Rel, if result _ $00 for Direct, IX1,
and SP1

PC ← (PC) + $0002 + Rel, if result _ $00 for IX

Description: DBNZ subtracts one from the operand M in
memory and causes a branch if the result is
not zero. This instruction combines DEC
and BNE for faster loop counter control.

DBNZA Decrement and Branch if Not Zero

Operation: A ← (A) - $01; PC ← (PC) + $0002 + Rel, if
result _ $00

Description: DBNZA subtracts one from the accumulator
and causes a branch if the result is not zero.
This instruction combines DECA and BNE
for faster loop counter control.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

24

DBNZX Decrement and Branch if Not Zero

Operation: X ← (X) - $01; PC ← (PC) + $0002 + Rel, if
result _ $00

Description: DBNZX subtracts one from the lower index
register and causes a branch if the result is
not zero. This instruction combines DECX
and BNE for faster loop counter control.

Code Example The use of these new instructions can cut cycle time in looping or
counting routines. Compare and branch routines can be used to search
for specific values in tables or variable locations. Decrement and branch
routines can be used for keeping count in loops.

The following piece of code shows how the compare and branch
instruction searches a table for a match. As an example, let's say that
you recently read in a table of 80 A/D data bytes. You would like to know
if the signal was saturated above the rails of the A/D converter. You
would then search the table for the value $FF. If found, your code would
branch out and execute some control algorithm to attenuate the analog
signal. Refer to Appendix H — CPU05 and CPU08 Search Code for a
comparison of CPU05 and CPU08 code.

Mathematical Operations

V Bit, DIV, DAA,
and the NSA
Instruction

New features and instructions added to the CPU08 have made some
mathematical computations easier. The V bit is added to the CCR to
support signed arithmetic. CPU08 has the capability of 16-bit division.
The DIV instruction will divide a 16-bit dividend by an 8-bit divisor. For
binary coded decimal operations, the CPU08 has a decimal adjust
accumulator, DAA, instruction and a nibble swap accumulator, NSA,
instruction.

Signed Math and
Signed Branches

The V bit in the CCR adds greater programming flexibility to the user.
The addition of two's complement comparisons can aid in the branching

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Four New Signed Branch Instructions, Detail

AN1218 Rev. 2

25

operations of high level languages such as C. Also, the representation
of signed numbers and their operations can easily be computed. This
can be especially helpful with digital signal processing algorithms and
the proper storage of signed analog to digital readings.

Four New Signed Branch Instructions, Detail

All the new CPU08 instructions that affect signed branching are listed
below. Examples for these instructions are given in Appendix I — New
CPU08 Signed Branch Instruction Examples .

BGE Branch if Greater Than or Equal (signed operands)

Operation: PC ← (PC) + $0002 + Rel, if (N⊕V)=0,
i.e., if (A) _ (M), ("signed" numbers)

Description: If the BGE instruction is executed
immediately after execution of any of the
compare or subtract instructions, the branch
will occur if and only if the two's complement
number represented by the appropriate
internal register (A, X, or H:X) was greater
than or equal to the two's complement
number represented by M.

BGT Branch if Greater Than (signed operands)

Operation: PC ← (PC) + $0002 + Rel, if Z+(N⊕V)=0,
i.e., if (A) > (M), ("signed" numbers)

Description: If the BGT instruction is executed
immediately after execution of any of the
compare or subtract instructions, the branch
will occur if and only if the two's complement
number represented by the appropriate
internal register (A, X, or H:X) was greater
than the two's complement number
represented by M.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

26

BLE Branch if Less Than or Equal (signed operands)

Operation: PC ← (PC) + $0002 + Rel, if Z+(N⊕V)=1
i.e., if (A) _ (M), ("signed" numbers)

Description: If the BLE instruction is executed
immediately after execution of any of the
compare or subtract instructions, the branch
will occur if and only if the two's complement
number represented by the appropriate
internal register (A, X, or H:X) was less than
or equal to the two's complement number
represented by M.

BLT Branch if Less Than (signed operands)

Operation: PC ← (PC) + $0002 + Rel, if (N⊕V)=1
i.e., if (A) < (M), ("signed" numbers)

Description: If the BLT instruction is executed
immediately after execution of any of the
compare or subtract instructions, the branch
will occur if and only if the two's complement
number represented by the appropriate
internal register (A, X, or H:X) was less than
the two's complement number represented
by M.

New DIV
Instruction

The Divide instruction on the CPU08 does not require the lengthy code
needed to divide numbers on the CPU05. A description of the Divide
instruction is given below. Appendix J — Five Miscellaneous CPU08
Instructions Including BCD, Divide, and CCR Operations shows a
short example of using the new Divide instruction. Appendix K —
CPU08 Averaging Code illustrates an averaging routine implementing
the Divide instruction.

DIV Divide

Operation: (H:A) / X → A; Remainder → H

Description: Divides a 16-bit unsigned dividend
contained in the concatenated registers H
and A by an 8-bit divisor contained in index

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Four New Signed Branch Instructions, Detail

AN1218 Rev. 2

27

register X. The quotient is placed in the
accumulator A, and the remainder is placed
in the high order index register H. The
divisor is left unchanged.

New DAA and the
NSA instruction

The decimal adjust accumulator, DAA, and the nibble swap
accumulator, NSA, are new instructions to help with binary coded
decimal (BCD) operations. The DAA instruction allows the user to adjust
the accumulator so that the number represents a BCD number.
Swapping nibbles is needed for packing BCD numbers into memory.
One use of BCD is data instrumentation. It is easier to store and
manipulate these numbers in BCD rather than convert or decode
numbers from hexadecimal. Packing is used to store decimal numbers
into memory. Instead of one byte storing one decimal, the NSA
instruction easily swaps nibbles in the accumulator so that two decimal
numbers can be stored in one byte. Appendix J — Five Miscellaneous
CPU08 Instructions Including BCD, Divide, and CCR Operations
gives examples using the DAA instruction and the NSA instruction.
Refer to Appendi x L — CPU08 BCD Example Code for an example of
BCD code.

DAA Decimal Adjust Accumulator

Operation: (A)10

Description: Adjusts the contents of the accumulator and
the state of the CCR carry bit after binary
coded decimal operations so that there is a
correct BCD sum and an accurate carry
indication. The state of the CCR half carry
bit affects operation.

NSA Nibble Swap Accumulator

Operation: A ← (A[3:0]:A[7:4])

Description: Swaps upper and lower nibbles (4 bits) of
the accumulator. This is used for more
ef cient stor age and use of binary coded
operands.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

28

New TAP and TPA
instructions

The transfer accumulator to the condition code register, TAP, and the
transfer condition code register to accumulator, TPA, are new
instructions to modify or manipulate the condition code register, CCR.
These instructions are detailed below. Code examples can be found in
Appendix J — Five Miscellaneous CPU08 Instructions Including
BCD, Divide, and CCR Operations .

TAP Transfer Accumulator to Condition Code Register

Operation: CCR ← (A)

Description: Transfers the contents of the Accumulator to
the Condition Code Register.

TPA Transfer Condition Code Register to Accumulator

Operation: A ← (CCR)

Description: Transfers the contents of the Condition
Code Register to the Accumulator.

Instruction Cycle Improvements

The CPU08 instruction set not only has new instructions but many of the
old instructions are faster. The CPU08 gathers data in a pipeline
fashion. Instead of waiting for the instruction to be finished to gather the
next opcode or operand, the CPU will fetch the next address byte during
the execution of the current instruction. This pipelining overlaps
execution of most instructions and thus increases the performance of the
CPU08. A list of instructions that were improved is given in Table 3 .
Please refer to the CPU08 opcode map for further details.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Instruction Cycle Improvements

AN1218 Rev. 2

29

Table 3. Instruction List (Sheet 1 of 4)

Opcode Mnemonic Address Mode HC05 Cycles HC08 Cycles

ADC IX 3 2

ADC IX1 4 3

ADC IX2 5 4

ADD IX 3 2

ADD IX1 4 3

ADD IX2 5 4

AND IX 3 2

AND IX1 4 3

AND IX2 5 4

ASR DIR 5 4

ASR IX 5 3

ASR IX1 6 4

ASRA INH 3 1

ASRX INH 3 1

BCLR0 DIR 5 4

BCLR1 DIR 5 4

BCLR2 DIR 5 4

BCLR3 DIR 5 4

BCLR4 DIR 5 4

BCLR5 DIR 5 4

BCLR6 DIR 5 4

BCLR7 DIR 5 4

BIT IX 3 2

BIT IX1 4 3

BIT IX2 5 4

BSET0 DIR 5 4

BSET1 DIR 5 4

BSET2 DIR 5 4

BSET3 DIR 5 4

BSET4 DIR 5 4

BSET5 DIR 5 4

BSET6 DIR 5 4

BSET7 DIR 5 4

BSR REL 6 4

CLC INH 2 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

30

CLR DIR 5 3

CLR IX 5 2

CLR IX1 6 3

CLRA INH 3 1

CLRX INH 3 1

CMP IX 3 2

CMP IX1 4 3

CMP IX2 5 4

COM DIR 5 4

COM IX 5 3

COM IX1 6 4

COMA INH 3 1

COMX INH 3 1

CPX IX 3 2

CPX IX1 4 3

CPX IX2 5 4

DEC DIR 5 4

DEC IX 5 3

DEC IX1 6 4

DECA INH 3 1

DECX INH 3 1

EOR IX 3 2

EOR IX1 4 3

EOR IX2 5 4

INC DIR 5 4

INC IX 5 3

INC IX1 6 4

INCA INH 3 1

INCX INH 3 1

JSR DIR 5 4

JSR EXT 6 5

JSR IX 5 4

JSR IX1 6 5

JSR IX2 7 6

LDA IX 3 2

Table 3. Instruction List (Sheet 2 of 4)

Opcode Mnemonic Address Mode HC05 Cycles HC08 Cycles

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Instruction Cycle Improvements

AN1218 Rev. 2

31

LDA IX1 4 3

LDA IX2 5 4

LDX IX 3 2

LDX IX1 4 3

LDX IX2 5 4

LSL DIR 5 4

LSL IX 5 3

LSL IX1 6 4

LSLA INH 3 1

LSLX INH 3 1

LSR DIR 5 4

LSR IX 5 3

LSR IX1 6 4

LSRA INH 3 1

LSRX INH 3 1

MUL INH 11 5

NEG DIR 5 4

NEG IX 5 3

NEG IX1 6 4

NEGA INH 3 1

NEGX INH 3 1

NOP INH 2 1

ORA IX 3 2

ORA IX1 4 3

ORA IX2 5 4

ROL DIR 5 4

ROL IX 5 3

ROL IX1 6 4

ROLA INH 3 1

ROLX INH 3 1

ROR DIR 5 4

ROR IX 5 3

ROR IX1 6 4

RORA INH 3 1

RORX INH 3 1

Table 3. Instruction List (Sheet 3 of 4)

Opcode Mnemonic Address Mode HC05 Cycles HC08 Cycles

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

32

RSP INH 2 1

RTI INH 9 7

RTS INH 6 4

SBC IX 3 2

SBC IX1 4 3

SBC IX2 5 4

SEC INH 2 1

STA DIR 4 3

STA EXT 5 4

STA IX 4 2

STA IX1 5 3

STA IX2 6 4

STOP INH 2 1

STX DIR 4 3

STX EXT 5 4

STX IX 4 2

STX IX1 5 3

STX IX2 6 4

SUB IX 3 2

SUB IX1 4 3

SUB IX2 5 4

SWI INH 10 9

TAX INH 2 1

TST DIR 4 3

TST IX 4 2

TST IX1 5 3

TSTA INH 3 1

TSTX INH 3 1

TXA INH 2 1

WAIT INH 2 1

Table 3. Instruction List (Sheet 4 of 4)

Opcode Mnemonic Address Mode HC05 Cycles HC08 Cycles

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Conclusion

AN1218 Rev. 2

33

Conclusion

This application note has covered the differences between the HC05
and the HC08 CPU architecture. Please refer to the M68HC05
Applications Guide for further study of the CPU05. The CPU08
Reference Manual is a valuable resource for studying the CPU08 in
more detail.

Please consult your local Freescale sales office or your authorized
Freescale distributor for applications support, literature, and specific part
information.

The MCU BBS is also available with free software for use with HC05 and
HC08 MCUs. The BBS number is (512) 891-3733. The code examples
used in this application note can be found on the BBS. The file name is
HC08OPT.ARC.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

34

Appendix A — New CPU08 Indexing Instruction Examples

**
*
* File : INDEX.ASM
* Description :
* Shows examples for new CPU08 indexing
* instructions - AIX, CLRH, CPHX, LDHX, STHX
* Not all addressing modes are shown.
* Note : Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

 ORG $200

***** AIX - add immediate to index register

START LDHX #$1010 ; H:X ← $1010
 AIX #-10 ; H:X = $1010 + (-$10)
 ; = $1000

***** CLRH - clear index high

 LDHX #$1290 ; H:X ← $1290
 CLRH ; H:X ← $0090

***** CPHX - compare 16-bit index register

 LDHX #$1290 ; H:X ← $1290
 ; CCR = %0110,1000
 ; CCR before CPHX, Z=0
 CPHX #$1290 ; H:X ← $1290
 ; CCR = %0110,1010
 ; CCR after CPHX, Z=1

***** LDHX - load 16-bit index register

 LDHX #$1290 ; H:X ← $1290

***** STHX - store 16-bit index register

 LDHX #$1290 ; H:X ← $1290
 STHX $50 ; ($50) ← (H:X)
 ; ($50) ← $12
 ; ($51) ← $90

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW START

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix B — CPU05 and CPU08 512-Byte Table Indexing Code

AN1218 Rev. 2

35

Appendix B — CPU05 and CPU08 512-Byte Table Indexing Code

**
*
* File : INDEXX.ASM
* Description :
* The following code illustrates the
* different instructions used to address
* a 512 byte table in memory. HC05 and HC08
* code is compared.
* Notes: Comments to the right of some instructions
* give numbers.
* CPU05 - 1st # is CPU05 cycle count
* 2nd # is instruction byte count
* CPU08 - 1st # is CPU08 cycle count
* 2nd # is instruction byte count
* Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

* For the purpose of this example, the table address
* will be predefined in RAM.
* TBL_A = $120

TBL_ST0 EQU $400 ; start of table, section 0
TBL_ST1 EQU TBL_ST0+256T ; start of table, section 1

 ORG $50 ; start of RAM variables
TBL_A RMB 2 ; address for table to be
 ; accessed by the code

 ORG $200

***** Address a 512 byte table with the index register
***** The table starts at $400 and ends at $5FF

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

36

* HC05 code *
* CPU05 has to address the table in a section-like
* fashion. Section 0 is between $400 and $4FF.
* Section 1 is between $500 and $5FF.
* The 16-bit address is stored in RAM location TBL_A.
* This is the offset to the table starting
* at $400, TBL_ST0.
* Example: Address is $520 = $400 + $120
* TBL_A = $01
* TBL_A+1 = $20

START LDX TBL_A+1 ;3,2 X ← (TBL_A+1)
 LDA TBL_A ;3,2 A ← (TBL_A)
 BEQ TBL0 ;3,2 branch to section 0 if 0
 LDA TBL_ST1,X ;5,3 A ← (X+TBL_ST1)
 BRA NEXT ;3,2 branch when done to
 ; the CPU08 example

TBL0 LDA TBL_ST0,X ;5,3 A ← (X+TBL_ST0)

* Total # CPU05 cycles = 17 (max)
* Total # bytes = 11 (max)

* HC08 code *
* CPU08 has full 16-bit indexed addressing so the
* table address is loaded from TBL_A in RAM. No
* memory table sectioning is needed.

NEXT LDHX TBL_A ;4,2 H:X ← (TBL_A)
 LDA TBL_ST0,X ;4,3 A ← (X+TBL_ST0)

* Total # CPU08 cycles = 8
* Total # bytes = 5

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW START

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix C — New CPU08 Stack Pointer Instructions

AN1218 Rev. 2

37

Appendix C — New CPU08 Stack Pointer Instructions

**
*
* File : SP.ASM
* Description :
* Shows examples for new CPU08 stack pointer
* instructions - AIS, PSHA, PSHH, PSHX
* PULA, PULH, PULX, TSX, TXS
* Not all addressing modes are shown.
* Note : Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

 ORG $200

***** AIS - add immediate to stack pointer
* SP is predefined at $0FE0

START AIS #$1F ; SP ← $0FE0 + $1F
 ; SP = $0FFF

***** PSHA - push accumulator onto stack
* SP is predefined at $0FFF
* A = $80

 PSHA ; ($0FFF) ← $80
 ; SP ← SP-$01
 ; SP = $0FFE

***** PSHH - push index register H onto stack
* SP is predefined at $0FFE
* H:X = $2050

 PSHH ; ($0FFE) ← $20
 ; SP ← SP-$01
 ; SP = $0FFD

***** PSHX - push index register X onto stack
* SP is predefined at $0FFD
* H:X = $2050

 PSHX ; ($0FFD) = $50
 ; SP ← SP-$01
 ; SP = $0FFC

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

38

***** PULX - pull index register X from stack
* SP is predefined at $0FFC
* $0FFD = $50
* H:X = $0000

 PULX ; SP ← SP+$01
 ; SP = $0FFD
 ; X ← ($0FFD)
 ; H:X = $0050

***** PULH - pull index register H from stack
* SP is predefined at $0FFD
* $0FFE = $20
* H:X = $0050

 PULH ; SP ← SP+$01
 ; SP = $0FFE
 ; H ← ($0FFE)
 ; H:X = $2050

***** PULA - pull accumulator from stack
* SP is predefined at $0FFE
* $0FFF = $80
* A = $00

 PULA ; SP ← SP+$01
 ; SP = $0FFF
 ; A ← ($0FFF)
 ; A = $80

***** TSX - transfer stack pointer to index register
* SP is predefined at $0FF5
* H:X = $1290

 TSX ; H:X ← SP+$01
 ; H:X = $0FF6

***** TXS - transfer index register to stack pointer
* SP is predefined at $0FF5
* H:X = $1290

 TXS ; SP ← H:X-$01
 ; SP = $128F

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW START

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix D — Using the Stack in a Subroutine to Compute a Cube

AN1218 Rev. 2

39

Appendix D — Using the Stack in a Subroutine to Compute a Cube

**
*
* File : CUBE.ASM
* Description :
* This program takes an 8-bit positive
* number, X_IN, and cubes it. The answer,
* Y_IN, is in a 24-bit format.
* This program also illustrates the
* value of using the stack for complex
* subroutines that use parameter passing,
* local variables, and return values.
* Stack Description:
* Given below is a diagram of the stack
* during the subroutine
* The numbers on the right specify the
* number of bytes above the stack pointer
*
* -------------------------
* SP → ??
* VAR1 1
* VAR2 2
* A 3
* H 4
* X 5
* PC_HIGH 6
* PC_LOW 7
* Y_HIGH 8
* Y_MED 9
* Y_LOW 10
* X_IN 11
* -------------------------
*
* Note : Please consult the CPU08 Reference Manual
* for further HC08 instruction details
* Code is written for educational
* purposes only
*
**

 ORG $80

X_IN RMB 1 ;8-bit number to be cubed

 ORG $200

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

40

***** Load up stack before entering the subroutine
* Stack is given the 8-bit number to be cubed, X_IN
* Next, 3 bytes must be made available to the stack
* for the 24 bit output of the routine
* 3 pushes are made to illustrate this point

START LDA X_IN ;A ← (X_IN)
 PSHA ;push parameter X_IN onto stack
 CLRA ;zero must be pushed on stack
 ; allocation for return answer
 PSHA ;push Y_Low byte onto stack
 PSHA ;push Y_Med byte onto stack
 PSHA ;push Y_High byte onto stack

***** Jump to the cube subroutine
 JSR CUBE ;jump sub to CUBE, Y = X_IN^3

***** When subroutine is over, reset stack pointer to original
* location. Pull the answers off the stack when needed.

 AIS #$04 ;SP ← (SP) + $04

 BRA DONE ;branch to the end of this
 ;example

***** CUBE subroutine
***** Given X_IN, find Y = X^3

* Save X,H, and A on stack
* Decrement stack for 2 bytes
CUBE PSHX ;push X onto stack
 PSHH ;push H onto stack
 PSHA ;push A onto stack
 AIS #-2 ;decrement stack for local var

* Run the math routine
* Square X_IN, answer is X:A
 LDA 11T,SP ;A = X_IN
 LDX 11T,SP ;X = X_IN
 MUL ;X:A = (X)*(A)

* Store away the high byte answer, X, to var1
 STX 1,SP ;store high answ to var1

* Multiply 16 bit result by X_IN
* Multiply X_IN by low byte of 16-bit square
 LDX 11T,SP ;X = X_IN
 MUL ;X:A = (X)*(A)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix D — Using the Stack in a Subroutine to Compute a Cube

AN1218 Rev. 2

41

* Store away low byte of 16-bit result
* to Y_LOW
* Store high byte of 16-bit result to var2
 STA 10T,SP ;store low answ to Y_LOW
 STX 2,SP ;store high answ to var2

* Multiply high byte of 16-bit result by X_IN
 LDA 11T,SP ;A ← X_IN
 LDX 1,SP ;load X with var1
 MUL ;X:A = X_IN * var1

* Store high byte of answer to Y_HIGH
 STX 8T,SP ;store high byte to Y_HIGH

* ADD var2 to the low byte answer to get Y_MED
* If there is a carry, add one bit to Y_HIGH
 ADD 2T,SP ;A = var2 + A
 BCS CS ;branch if C bit set in CCR
 BRA FIN ;C bit is 0, branch to FIN

CS INC 8T,SP ;add 1 to Y_HIGH

FIN STA 9T,SP ;store A to Y_MED

* Save X,H, and A on stack
* Increment stack for 2 bytes
* Restore X,H, and A
* Return from the subroutine
 AIS #$02
 PULA
 PULH
 PULX
 RTS

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW START

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

42

Appendix E — New CPU08 MOV Instruction Examples

**
*
* File : MOVE.ASM
* Description :
* Shows examples for the MOV instruction
* All four addressing modes are illustrated
* 05 and 08 code is compared
* Notes: Comments to the right of some instructions
* give numbers.
* CPU05 - 1st # is CPU05 cycle count
* 2nd # is instruction byte count
* CPU08 - 1st # is CPU08 cycle count
* 2nd # is instruction byte count
* Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

 ORG $200

***** Move Immediate value to Direct memory location

* HC05 *
START LDA #$30 ;2,2 A ← $30
 STA $80 ;4,2 ($80) ← (A)

* HC08 *
 MOV #$30,$80 ;4,3 ($80) ← $30

* Total CPU05 cycles, bytes = 6,4
* Total CPU08 cycles, bytes = 4,3

***** Move Direct mem value to Direct mem location

* HC05 *
 LDA $80 ;3,2 A ← ($80)
 STA $90 ;4,2 ($90) ← (A)

* HC08 *
 MOV $80,$90 ;5,3 ($90) ← ($80)

* Total CPU05 cycles, bytes = 7,4
* Total CPU08 cycles, bytes = 5,3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix E — New CPU08 MOV Instruction Examples

AN1218 Rev. 2

43

***** Move contents of Indexed to Direct mem location, post inc
Xreg

* HC05 *
 LDX #$80 ; X ← $80
 LDA ,X ;3,1 A ← (X)
 STA $90 ;4,2 ($90) ← (A)
 INCX ;3,1 X ← X + 1

* HC08 *
 LDX #$80 ; X ← $80
 MOV X+,$90 ;4,2 ($90) ← (X)
 ; X ← X + 1

* Total CPU05 cycles, bytes = 10,4
* Total CPU08 cycles, bytes = 4,2

***** Move Direct mem contents to Indexed location, post inc
Xreg

* HC05 *
 LDX #$90 ; X ← $90
 LDA $80 ;3,2 A ← ($80)
 STA ,X ;4,1 (X) ← (A)
 INCX ;3,1 X ← X + 1

* HC08 *
 LDX #$90 ; X ← $90
 MOV $80,X+ ;4,2 (X) ← ($80)
 ; X ← X + 1

* Total CPU05 cycles, bytes = 10,4
* Total CPU08 cycles, bytes = 4,2

***** Initialize the reset vector
 ORG $FFFE
 DW START

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

44

Appendix F — CPU05 and CPU08 Data Movement Code

**
*
* File : MOVEX.ASM
* Description :
* A user wants to start an application one of
* two different ways. The user sets the
* application on the MCU by the logic level
* of Port D, bit 3. Once out of reset, the
* MCU reads Port D and moves data from ROM
* into the RAM configuration registers
* according to the logic level of bit 3.
* Notes: Comments to the right of some instructions
* give numbers.
* CPU05 - 1st # is CPU05 cycle count
* 2nd # is instruction byte count
* CPU08 - 1st # is CPU08 cycle count
* 2nd # is instruction byte count
* Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

* For the purpose of this example, we will be using
* random ctrl registers for the code. They are listed
* below in an equate table

TBL EQU $1000 ; start of table
PORTD EQU $03 ; port D data register
PORTADR EQU $04 ; port A data direction register
PORTBDR EQU $05 ; port B data direction register
SPICTRL EQU $0A ; SPI control register
SCICTRL EQU $0E ; SCI control register
TIMCTRL EQU $12 ; Timer control register

 ORG $200

***** If bit 3 = 0 when read, then the table
* starts at $1000
* If bit 3 = 1 when read, then the table
* starts at $1008

* HC05 code *

START05 LDA PORTD ;3,2 A ← (PORTD)
 AND #$08 ;2,2 clear A except bit 3
 ; A = 0 or 8
 TAX ;2,1 X ← (A)
 ; set the offset of X

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix F — CPU05 and CPU08 Data Movement Code

AN1218 Rev. 2

45

 LDA TBL,X ;5,3 A ← (TBL+X)
 STA PORTADR ;4,2 (PORTADR) ← (A)
 INCX ;3,1 X ← X + 1
 LDA TBL,X ;5,3 A ← (TBL+X)
 STA PORTBDR ;4,2 (PORTBDR) ← (A)
 INCX ;3,1 X ← X + 1
 LDA TBL,X ;5,3 A ← (TBL+X)
 STA SPICTRL ;4,2 (SPICTRL) ← (A)
 INCX ;3,1 X ← X + 1
 LDA TBL,X ;5,3 A ← (TBL+X)
 STA SCICTRL ;4,2 (SCICTRL) ← (A)
 INCX ;3,1 X ← X + 1
 LDA TBL,X ;5,3 A ← (TBL+X)
 STA TIMCTRL ;4,2 (TIMCTRL) ← (A)

* Total # CPU05 cycles = 64
* Total # bytes = 34

* HC08 code *

START08 LDHX #TBL ;3,3 H:X ← TBL
 LDA PORTD ;3,2 A ← (PORTD)
 AND #$08 ;2,2 clear A except bit 3
 ; A = 0 or 8
 TAX ;1,1 X ← (A)
 ; set the offset of X

 MOV X+,PORTADR ;4,2 (PORTADR) ← (H:X)
 ; X ← X + 1
 MOV X+,PORTBDR ;4,2 (PORTBDR) ← (H:X)
 ; X ← X + 1
 MOV X+,SPICTRL ;4,2 (SPICTRL) ← (H:X)
 ; X ← X + 1
 MOV X+,SCICTRL ;4,2 (SCICTRL) ← (H:X)
 ; X ← X + 1
 MOV X+,TIMCTRL ;4,2 (TIMCTRL) ← (H:X)
 ; X ← X + 1

* Total # CPU08 cycles = 29
* Total # bytes = 18

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW START05

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

46

Appendix G — New Branch Instruction Examples

**
*
* File : BRANCH.ASM
* Description :
* Shows examples for new CPU08 branch
* instructions - CBEQ, CBEQA, CBEQX
* DBNZ, DBNZA, DBNZX
* Notes: Comments to the right of some instructions
* give numbers.
* CPU05 - 1st # is CPU05 cycle count
* 2nd # is instruction byte count
* CPU08 - 1st # is CPU08 cycle count
* 2nd # is instruction byte count
* Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

 ORG $200

***** CBEQ - compare and branch if equal, direct
* A is predefined at $40
* Memory location $80 contains $40

* HC05 code *
LPA CMP $80 ;3,2 (A) - ($80)
 BEQ LP1 ;3,2 if (A) = ($80) then
 ; branch to LP1
 BRA LPA ; go to LPA, try again!

* HC08 code *
LP1 CBEQ $80,LPB ;5,3 if (A)-($80)=0,
 ; then branch to LPB
 BRA LP1 ; go to LP1

* Total CPU05 cycles, bytes = 6,4
* Total CPU08 cycles, bytes = 5,3

***** CBEQA - compare and branch if equal, immediate
* A is predefined at $50

* HC05 code *
LPB CMP #$50 ;2,2 (A) - $50
 BEQ LP2 ;3,2 if (A) = $50, then LP2
 BRA LPB ; go to LPB

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix G — New Branch Instruction Examples

AN1218 Rev. 2

47

* HC08 code *
LP2 CBEQA #$50,LPC ;4,3 if #$50 = (A), then LPC
 BRA LP2 ; go to LP2

* Total CPU05 cycles, bytes = 5,4
* Total CPU08 cycles, bytes = 4,3

***** CBEQX - compare and branch if equal, index
* Index register X is predefined at $60

* HC05 code *
LPC CPX #$60 ;2,2 X - $60
 BEQ LP3 ;3,2 if X = $60, then LP3
 BRA LPC ; go to LPC

* HC08 code *
LP3 CBEQX #$60,LPD ;4,3 if X = $60, then LPD
 BRA LP3 ; go to LP3

* Total CPU05 cycles, bytes = 5,4
* Total CPU08 cycles, bytes = 4,3

***** DBNZ - decrement and branch if not zero

* HC05 code *
* Memory location $A0 is predefined at $08
LPD NOP ; used here to represent any
 ; number of instructions
 DEC $A0 ;5,2 decrement ($A0)

BNE LPD ;3,2 if ($A0) not zero, then LPD

* HC08 code *
* Memory location $A0 is predefined at $08
LP4 NOP ; used here to represent any
 ; number of instructions
 DBNZ $A0,LP4 ;5,3 ($A0) = ($A0) - 1

; if ($A0) not zero, then LP4

* Total CPU05 cycles, bytes = 8,4
* Total CPU08 cycles, bytes = 5,3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

48

***** DBNZA - decrement acca and branch if not zero

* HC05 code *
* A is predefined at $06
LPE NOP ; used here to represent any
 ; number of instructions
 DECA ;3,1 (A) = (A) - 1
 BNE LPE ;3,2 if (A) not zero, then LPE

* HC08 code *
* A is predefined at $06
LP5 NOP ; used here to represent any
 ; number of instructions
 DBNZA LP5 ;3,2 (A) = (A) - 1
 ; if (A) not zero, then LP5

* Total CPU05 cycles, bytes = 6,3
* Total CPU08 cycles, bytes = 3,2

***** DBNZX - decrement x and branch if not zero

* HC05 code *
* Index register X is predefined at $04
LPF NOP ; used here to represent any
 ; number of instructions
 DECX ;3,1 (X) = (X) - 1
 BNE LPF ;3,2 if (X) not zero, then LPF

* HC08 code *
* Index register X is predefined at $04
LP6 NOP ; used here to represent any
 ; number of instructions
 DBNZX LP6 ;3,2 (X) = (X) - 1
 ; if (X) not zero, then LP6

* Total CPU05 cycles, bytes = 6,3
* Total CPU08 cycles, bytes = 3,2

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW LPA

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix H — CPU05 and CPU08 Search Code

AN1218 Rev. 2

49

Appendix H — CPU05 and CPU08 Search Code

**
*
* File : BRANCHX.ASM
* Description :
* This code shows an example of using branch
* algorithms to search for a number in a
* table. The code will search for $FF in
* a table. This would signify that in a
* table of A/D values, an A/D reading
* was saturated.
* Notes: Comments to the right of some instructions
* give numbers.
* CPU05 - 1st # is CPU05 cycle count
* 2nd # is instruction byte count
* CPU08 - 1st # is CPU08 cycle count
* 2nd # is instruction byte count
* Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

TABLE EQU $400 ; starting address of the
 ; A/D table

 ORG $50
TBL_LEN RMB 1 ; memory value containing
 ; the number of values in
 ; a the A/D table

 ORG $200

***** Search for $FF (saturation) in a table of A/D values
* TBL_LEN is predefined at $08 for this example
* Therefore the table is defined from $400 to $407
* The values given for the total # of cycles and bytes
* reflect an absolute count with no looping involved
* An accurate account of the cycle count would involve
* the table length and whether or not a comparison
* was made.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

50

* HC05 code *
SRCH LDX TBL_LEN ;3,2 X ← (TBL_LEN)
LOOP3 LDA TABLE-1,X ;5,3 A ← (TABLE-1+X)
 CMP #$FF ;2,2 (A) - $FF
 BEQ NEXT ;3,2 if Z=1, then goto NEXT
 ; this signifies that a
 ; saturation value has been
 ; found in the table
 DECX ;3,1 X ← X -1
 BNE LOOP3 ;3,2 if Z=0, then goto LOOP3
 ; go look at another value
 ; in the table

* Total # CPU05 cycles = 19
* Total # bytes = 12

* HC08 code *
NEXT LDX TBL_LEN ;3,2 X ← (TBL_LEN)
LOOP4 LDA TABLE-1,X ;4,3 A ← (TABLE-1+X)
 CBEQA #$FF,DONE ;4,3 (A) - $FF
 ; if Z=1, then goto DONE
 ; this signifies that a
 ; saturation value has been
 ; found in the table
 DBNZX LOOP4 ;3,2 X ← X -1
 ; if Z=0, then goto LOOP4
 ; go look at another value
 ; in the table

* Total # CPU08 cycles = 14
* Total # bytes = 10

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW SRCH

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix I — New CPU08 Signed Branch Instruction Examples

AN1218 Rev. 2

51

Appendix I — New CPU08 Signed Branch Instruction Examples

**
*
* File : SIGNBRA.ASM
* Description :
* Shows examples for new CPU08 signed branch
* instructions - BGE, BGT, BLE, BLT
* The examples demonstrate two's complement
* math with branching.
* Note : Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

 ORG $200

***** BGE - branch if greater than or equal
* A is predefined at $FF

LP_BGE CMP #$FF ; (A) - $FF, [-1 - (-1)]
 BGE LP_BGT ; if A >= $FF, then
 ; branch to LP_BGT
 BRA LP_BGE ; go to LP_BGE

***** BGT - branch if greater than
* A is predefined at $07

LP_BGT CMP #$FF ; (A) - $FF, [7 - (-1)]
 BGT LP_BLE ; if A > $FF, then
 ; branch to LP_BLE
 BRA LP_BGT ; go to LP_BGT

***** BLE - branch if less than or equal
* A is predefined at $FF

LP_BLE CMP #$FF ; (A) - $FF, [-1 - (-1)]
 BLE LP_BLT ; if A <= $FF, then
 ; branch to LP_BLT
 BRA LP_BLE ; go to LP_BLE

***** BLT - branch if less than
* A is predefined at $FF

LP_BLT CMP #$07 ; $FF - $07, [-1 - (7)]
 BLT DONE ; if A < $FF, then
 ; branch to DONE
 BRA LP_BLT ; go to LP_BLT

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW LP_BGE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

52

Appendix J — Five Miscellaneous CPU08 Instructions Including BCD, Divide,
and CCR Operations

**
*
* File : MISCINST.ASM
* Description :
* Shows examples for 5 misc CPU08 instructions
* that include BCD, Divide, and CCR operations
* They are DAA, NSA, DIV, TAP, TPA
* Notes: Comments to the right of some instructions
* give numbers.
* CPU05 - 1st # is CPU05 cycle count
* 2nd # is instruction byte count
* CPU08 - 1st # is CPU08 cycle count
* 2nd # is instruction byte count
* Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

 ORG $200

***** DAA - decimal adjust accumulator

START LDA #$26 ; A ← $26, a BCD #
 ADD #$37 ; A ← $37 + (A)
 ; A = $5D, a hex #
 DAA ; (A) = 63 = (26 + 37)
 ; the hex #, 5D, has been
 ; adjusted to the BCD #, 63

***** NSA - nibble swap accumulator
* A is predefined at $37
* When finished A will be at $73

* HC05 code *
 TAX ;2,1 X ← (A)
 ROLX ;3,1 rotate left X
 ROLA ;3,1 rotate left A
 ROLX ;3,1 rotate left X
 ROLA ;3,1 rotate left A
 ROLX ;3,1 rotate left X
 ROLA ;3,1 rotate left A
 ROLX ;3,1 rotate left X
 ROLA ;3,1 rotate left A

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix J — Five Miscellaneous CPU08 Instructions Including BCD, Divide, and CCR Operations

AN1218 Rev. 2

53

* HC08 code *
 NSA ;3,1 swap the nibbles of A

* Total CPU05 cycles, bytes = 26,9
* Total CPU08 cycles, bytes = 3,1

***** DIV - divide 16 bit by 8 bit
* The immediate addressing mode is used to load the registers
* to illustrate the components needed to execute
* a DIV instruction.

 LDHX #$0200 ; H ← $02
 LDX #$80 ; X ← $80
 LDA #$00 ; A ← $00
 DIV ; H:A / X = A rem H
 ; Answer is $04 rem 0

***** TAP - transfer accumulator to ccr
* A is predefined at $E2
* CCR = %0110,0000

 TAP ; CCR ← (A)
 ; CCR = %1110,0010

***** TPA - transfer ccr to accumulator
* A is predefined at $00
* CCR = %1110,0010

 TPA ; A ← (CCR)
 ; A = $E2

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW START

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note

AN1218 Rev. 2

54

Appendix K — CPU08 Averaging Code

**
* File : AVERAGE.ASM
* Description :
* This code demonstrates an average routine
* showing the use of the CPU08's DIV inst.
* 8-bit values are read from a table in
* memory and the average of those numbers
* is computed.
* Notes: Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
**

TBL_STR EQU $400 ; starting address of
 ; table in memory

 ORG $50
LENGTH RMB 1 ; length of table
TOT_H RMB 1 ; high byte of total
TOT_L RMB 1 ; low byte of total

 ORG $200

* The length of this table is predefined as 3 for
* this example
* The values in the table start at $401
* $401 = 50
* $402 = 60
* $403 = 70

START CLR TOT_H ; clear TOT_H in mem
 CLR TOT_L ; clear TOT_L in mem
 LDX LENGTH ; X ← length of table
NEXT LDA TBL_STR,X ; A ←(X+TBL_STR)
 ADD TOT_L ; A ← (A)+(TOT_L)
 STA TOT_L ; TOT_L ← (A)
 BCS CS ; if carry bit is set,
 ; branch to CS
 BRA NEXT2 ; branch to next table entry

CS INC TOT_H ; inc the high byte of total

NEXT2 DBNZX NEXT ; dec X, if X not 0, then
 ; branch to next table entry
 LDHX TOT_H ; H ← high byte of dividend
 TXA ; A ← low byte of dividend
 LDX LENGTH ; X ← load divisor
 DIV ; H:A / X
 ; answer in A with H rem

* Answer can be found in A, remainder in H
* Answer is equal to $60 with no remainder

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW START

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note
Appendix L — CPU08 BCD Example Code

AN1218 Rev. 2

55

Appendix L — CPU08 BCD Example Code

**
*
* File : BCD.ASM
* Description :
* This code demonstrates a BCD routine to
* be used on the CPU08.
* Two 16-bit BCD numbers are added together
* and the result is 16-bit BCD number
* BCD1 + BCD2 = BCDT
* Notes: Please consult the CPU08 Reference Manual
* for further details on these instructions
* Code is written for educational
* purposes only
*
**

 ORG $50
BCD1_H RMB 1 ; high byte of bcd #1
BCD1_L RMB 1 ; low byte of bcd #1
BCD2_H RMB 1 ; high byte of bcd #2
BCD2_L RMB 1 ; low byte of bcd #2
BCDT_H RMB 1 ; high byte of bcd total
BCDT_L RMB 1 ; low byte of bcd total

 ORG $200

* Predefine values for the example
* BCD1 = 150, BCD1_H = 01 & BCD1_L = 50
* BCD2 = 250, BCD2_H = 02 & BCD2_L = 50

* First, add the low bytes of the 16-bit BCD #s
START LDA BCD1_L ; A ← (bcd #1 low byte)
 ADD BCD2_L ; A ← (A)+(bcd #2
 ; low byte)
 DAA ; decimal adjust accumulator

STA BCDT_L ; store away result to total low

* Second, add the high bytes of the 16-bit BCD #s
* Add the carry bit from the previous addition
 LDA BCD1_H ; A ← (bcd #1 high byte)
 ADC BCD2_H ; A ← (A)+(bcd #2
 ; high byte)+C
 DAA ; decimal adjust accumulator

STA BCDT_H ; store away result to total high

* Answer is in BCDT_H and BCDT_L
* BCDT_H = 04
* BCDT_L = 00

DONE NOP
 BRA DONE

***** Initialize the reset vector
 ORG $FFFE
 DW START

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

