‘ SGS-THOMSON
Y. cROELECTRONIGS APPLICATION NOTE

USING THE I°C-bus PROTOCOL WITH THE ST9

Myriam Chabaud and Alan Dunworth

INTRODUCTION

The Serial Peripheral Interface (SPI) in the ST9 hasbeen designed to handle a wide variety of serial bus
protocols, including SBUS, IMBUS, and I’C-bus. Certain standard PC-bus features have not been directly
implemented in hardware, but may be realized with simple software routines, based on the SPI,contained
in the standard ST9 core. This Application note gives an example of such routines, suitable for interfacing
the ST9 with a serial memory device.

CHARACTERISTICS OF THE 1°C-bus

The 1C-bus comprises two bidirectional lines, one for data signals (SDA) and one for clock signals (SCK).
Both the SDA and the SCK lines must be connected to the positive supply via pull-up resistors (Figure 1).

Figure 1. Connection of ST24C02 and ST9in| 2C-bus

= Vpp
24ﬁ"'2 2.7K0 [] [] 2.7K0
| 1 I 22pF 22pF I
J; 10nF J; J;
Vgp 0SCOUT OSCIN
spo Vop
[] 4.7xa
SO SDA AO
Rst,/Vpp ST9 ST 24C02 Al
AZ 10nF
|_r_-|J 10uF -
SCK ScL Vgg(GND)
Vss
77 J7 777 77
VRO 543

Note: Although the ST24C02 2K bit EPROM is shown, this circuit will work with serial EEPROMS up to 16 K bit capacity (ST24C16) and all
others in the ST24Cxx and ST25Cxx families.

AN415 /1092 1/34

USING THE I°C-bus PROTOCOL WITH THE ST9

The following basic definitions are applied:
* MASTER:

The device which initiates the transfer, generates the clock signals, and terminates the transfer is referred
to as the Master. In our present application the ST9 always acts as the Master.

* SLAVE:
This is the device addressed by the Master (always the serial memory).
* TRANSMITTER:

This is the device which sends data to the bus. In our application the ST9 acts as Transmitter when it is
writing data in the serial memory. Conversely, the serial memory serves as Transmitter when the ST9 is
reading data from memory.

* RECEIVER:

This is the device which receives data from the bus. In our application this will be the ST9 whenreading
data, or the serial memory when the ST9 commands a write operation.

The following protocol has been defined:

* DATATRANSFER

A data transfer may be initiated only when the bus is not busy.
* DATALINE STABLE:

During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the
data line while the clock is HIGH will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Figure 2. Data Transfer Sequence of the Serial Bus

HIGH
SIS N X N/ LOW
— | [y =
START CONDITION| ICHANGE OF STOP CONDITION
! IDATA ALLOWED

\ﬂ_l
DATA LINE STABLE
DATA VALID
VROD1576

* START DATATRANSFER:

A change in the state of the data line from HIGH to LOW, while the clock is HIGH, defines the START
condition.

* STOP DATA TRANSFER:

A change in the state of the data line from LOW to HIGH, while the clock is HIGH, defines the STOP
condition.

234 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

* DATAVALID:

The state of the data line representsvalid data when, after a START condition, the data line is stable for
the duration of the HIGH period of the clock signal. The data on SDA may be changed during the LOW
period of the clock signal. There is one clock pulse for each bit of data.

* DATATRANSFER:

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number
of data bytes, transferred between the START and STOP conditions, is limited to eight bytesin the ST24C02
Memory device ERASE + WRITE mode, and is not limited in the READ mode.

* ACKNOWLEDGE:

Each byte of eight bits is followed by an acknowledge bit. This acknowledge bit is a low level put on the
SDA line by the Receiver. At the same time the Transmitter releases the SDA line to the High impedance
state, and the MASTER device generates an additional 9th acknowledge-related clock pulse.

The receiving device acknowledges the receipt of the 8-bit byte by pulling the SDA down so that is stable
LOW during the 9th clock pulse. Of course, set-up and hold-times must be respected.

The ST9when acting as a Master Receive device, i.e. during serial memory READ operations, must signal
an end of data by not generating an acknowledge on the last byte that has been clocked out of the slave.
In this case the serial memory must leave the SDA line high to enable the Master to generate a STOP
condition.

Figure 3. Acknowledgement and the 9th Clock Pulse

CLOCK PULSE FOR
START CONDITION ACKNOWLEDGEMENT

SCLK FROM f 1

wsTER TN/ TN/ 2\ N\ 0\ o

|

i
|
|
|
|

DATA QUTPUT

BY TRANSMITTER \ / DATA 1 X DATA ZX] 0

I
|
1
I
|
:
: DATA 8

DATA QUTPUT

BY REGEIVER L/_
VROO1577
Nz 56S-THOMSON 3/34
7’[MICREELECTRONICS

USING THE I°C-bus PROTOCOL WITH THE ST9

BASIC SOFTWARE OPERATIONS

The following aspects of the 1>C-bus protocol have not been directly implemented but must be simulated
in software.

* Generation of START Conditions,

* Generation of STOP Conditions,

* Generation of the Acknowledge pulse (9th clock signal),

* Generation of the Acknowledge , when the ST9 acts as a Receiver, i.e. in READ mode.

* Test of the Acknowledge from the receiver, when the ST9 acts as a Transmitter, i.e. in WRITE mode.
In order to implement these features it is necessary to drive SDA and/or SCK HIGH or LOW in the correct
timing sequence.

The SDO and SCK signals are defined as Alternate Functions. These pins are configured with Ogen-Drain
outputs and TTL inputs. The SDI signal is defined as an INPUT.

The SPI unitis enabled or disabled using the flag SPEN, bit 7 in SPICR, the SPI Control Register.

When the SPI is disabled, both SCK and SDO are released to the Highimpedance state. The presence of
Pull-up resistors, as shown in Figure 1, effectively defines both SCK and SDA as HIGH, whenever the SPI
is disabled. Note however that SDA may be driven low either by the actions of peripherals connected to
the SDAline, or by appropriate action of the ST9 on the SDO line when itis defined as a normal output.

When the SPlis enabled (SPEN = “1"), it may be in either an active or passive state. The active state is
entered by loading a byte of data into the SPI Data register. This automatically causes the SPI to generate
a sequence of 8 clock pulses, during which data is shifted out on the SDO line, and input Data on the SDI
input is clocked into the Serial input register. On completing this sequence the SPI will revert to its passive
(Rest) mode.

When the SPI is in its Rest mode, the SCK clock output is in a state selected by CPOL, bit 3 of SPICR.
Thus with CPOL set to a value of “1” the SCK output will be LOW. The value of SDO will be LOW
(non-programmable) when the SPI is enabled but inactive.

If the SPIis enabled and in the Rest (passive) state SDO and hence SDAwill be LOW.

If the SPIis disabled SDO will be released to HIGH impedance, and hence to the HIGH level by the presence
of the Pull-up resistor. It may be pulled LOW by loading a Zero into the Port 2 Pin 1 output buffer and then
specifying this pin as a normal Port output pin.

Having establishedthese basic preliminaries we can proceed to discuss the provision, by software, of basic
12C-bus operations.

4134 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

SIMULATION OF BASIC | °C-bus OPERATIONS

Using the basic operations described in the above Sections the various I>’C-bus Protocol features may be
implemented as follows.

Generation of START Conditions
The generation of a START condition is implemented in ProcedurelNIT_START _12C (Appendix A).
a) Disable the SPI unit putting SDAand SCK in the High-impedance state.

b With the SPI disabled and SCK HIGH, pull the SDO line LOW by respecifying SDI as a hormal
output.

¢) Hold the above condition for a period of ~5us by calling the DELAI Macro (see Appendix A).
d) Enable the SPI, specifying SCK to the rest clock state (LOW).
e) Respecify the SDO output as an Alternate Function.

Generation of STOP Conditions

The generation of a STOP condition is implemented in ProcedureGEN_STORsee Appendix A).
a) Pullthe SDAline LOW by respecifying SDO as a normal Port output.

b) Release SCKto HIGH by disabling the SPI. Note that SDA will remain LOW.

¢) Hold thiscondition for ~5us using DELAI Macro (see Appendix A) so as to meet the set-up
Time specification

d) Respecify SDO as an Alternate Function and hence allow SDAto be pulled HIGH by the Pull-up
resistor.

Generation of 9th Clock Pulse with Acknowledge Test

After the transmission of 8 Data bits a 9th Clock Pulse may be generated and the Acknowledge tested as
implemented in Procedure TEST_ACK (see Appendix A).

a) Release SCK and SDAto the HIGH impedance state by disabling the SPI.
b) Wait until the SCK line goes HIGH.

c) Testfor LOW on the SDA line placed by the Receiver (Slave).

d) Hold the SCK line HIGH for 5 us using DELAI Macro.

e) Force SCK and SDAto LOW by enabling the SPI.

Generation of 9th Clock and Acknowledge

After the reception of 8 Data bits a 9th Clock Pulse may be generated and an Acknowledge asserted as
implemented in Procedure GEN_ACK (see Appendix A).

a) Pullthe SDAline LOW by respecifying SDO as a normal Port output.

b) Release SCKto HIGH by disablingthe SPI. Note that SDAwill remain LOW.
¢) Hold the SCK line HIGH for 5 ps using DELAI Macro.

d) Force SCKto LOW by enabling the SPI.

e) Finally respecify the SDO Port pin as an Alternate Function.

Nz 56S-THOMSON 5/34
7lz MIERSELEECTRONIES

USING THE I°C-bus PROTOCOL WITH THE ST9

TYPES OF TRANSFER OPERATION SUPPORTED

The ST9 supports the following three types of transfer with an electrically erasable serial memory
(EEPROM) which features an I°C-bus protocol, e.g. ST24C02.

* Random Write (1 to 8 bytes),
* Random Read (1 to N bytes),
* Current Address Read (or Verify), (1 to N bytes.)

Random Write Mode

The serial I°C-bus protocol for Random Write Operations is shown in Figure 4 (single byte) or Figure 5 (for
up to 8 bytes).

Figure 4. | 2C-pbus Protocol for Random Write Mode (1 byte)

s
T S
A gLAVE T
BUS ACTIVITY: ? ADDRESS WORD ADDRESS DATA 0
MASTER — & - " ~ P
LI L L LU
Ll 1 | I T T T I | | I T T T T |
A A A
BUS ACTIVITY: c c c
K K K
VROQ1578
Figure 5. | 2C-bus Protocol for Random Write Mode (N bytes)
5
T S
A gLAVE T
BUS ACTIMTY: T ADDRESS WORD ADDRESS(n) DATA n DATA n+1 DATA n+7 ©
- .y N N ~ PN N A s N ‘P
MASTER ‘
T L L L L LU UL
one H]] 1
Ll 1 | N T T A | | T T I A | | T T I I | | T T |
A A A A
BUS ACTIMTY: C C c c
K K K K
VYROD1579

To Write a single byte the Master ST9 has to transmit a sequence of 3 bytes representing successively:
a) Slave Address: 7 bits + 8th bit =“0” signifying Transmit operation.

b) Word Address: 8 bits.

c) Data value: 8 bits.

The ST9Master generates the START condition andthen transmits the sequence of 3 bytes by successively
loading them into the SPI Data Register. Each such Data load generates a sequence of 8 clocks and 8

6/34 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Data bits, after which the ST9 generates a 9th clock pulse and tests for an Acknowledge from the Slave.
After the data pulse has been received and Adknowledged by the Slave the Master terminates the transfer
by generatinga STOP condition.

To Write a page of N bytes (1< N> 8) the Master ST9 has to transmitthe above sequence of 3 bytesfollowed
by the remaining N - 1 data bytes. The Slave Device contains an 8-bit address pointer, the 3 low order bits
of which are incremented by 1 after each Read/Write operation with the 5 high order bits remaning constant.
Thus a page of up to N = 8 bytes may be written in this way.

The Transfer sequence proceeds as described above exceptthatthe Slave continues to accept data words
for writing to sequential locations until such time as the Master signals end of Transmission by sending a
STOP condition.

Random Read Mode

The serial I°C-bus protocol for Random Read Operations is shown in Figure 6.

To Read a single byte the Master ST9 has to transmita sequence of 3 bytes representing successively:
a) Slave Address: 7 bits + 8th bit = “0” signifying Transmit operation.

b) Word Address: 8 bits.

c) Slave Address: 7 bits + 8th bit = “1” signifying Receive operation.

Figure 6. | 2C-bus Protocol for Random Read Mode (N bytes)

5 S
T T
Q SLAVE 2 SLAVE
BUS ACTIMTY: T ADDRESS WORD ADDRESS{n); ADDRESS DATA n DATA n+1
MASTER - AII"IIIAIIII‘ - AII\’III‘I\III"III‘I\III‘
SDA LINE Eﬂ_ﬂ |s| | | | cee
A A A A A
BUS ACTIMTY: c o C o o
K K K K K
5
T
DATAn+x ©
— " P
. e e H
L1 1 1 111
VROQ1580
Nz 56S-THOMSON /34
7lz MIEREELECTRONIES

USING THE I°C-bus PROTOCOL WITH THE ST9

The ST9 Master generates the START condition and then transmits a dummy Write operation comprising
the Slave Address byte, followed by the Word Address. Both these byte operations are followed by a 9th
clock pulse and a concurrenttest for Slave Acknowledge.

At this pointthe Master Transmitter must become the Master Receiver. This is achieved by sending another
START condition, followed by the retransmission of the Slave Address with the 8th bit set now to “1” to
indicate that the subsequent data transfers are from the slave to the ST9 Master.

From this point on the Slave will provide words addressed in sequence as long as the Master continues to
Acknowledge receipt of data. Note that the address counter for Read operations increments over all 8
address bits, thus enabling the entire memory to be Read in one operation. The Master can terminate the
transfer at any time by generating a STOP condition instead of an Acknowledgement.

Current Address Read Mode

In this alternative Read mode the Master reads from memory at the last location referencedin either Read
or Write mode.

The serial I°C-bus protocol for Current Address Read Operations is shown in Figure 7.
To Read any number of bytes the Master ST9 has to transmit a single byte.
Device Address: 7 bits + 8th bit = “1” signifying Receive operation.

The ST9 Master generates the START condition and then transmits the Slave Address byte. At this point
the Master now issues an Acknowledge indicating that it requires additional data.

From this point on the Slave will provide words addressed in sequence as long as the Master continues to
Acknowledgereceipt of data. The Master canterminate the transfer at any time by issuing a STOP condition
instead of an Acknowledgement.

Figure 7. 1 2C-bus Protocol for Current Address Read mode (N bytes)

s
T S
A SLAVE T
BUS ACTIVITY: R ADDRESS DATA n DATA n+1 DATA nt+x O
MASTER T N ~ . ~ — P
LI LI N B N B I | LI I I B N B | LI I B BN BN I |
SDA UINE Eﬂ_ﬂ |_ .. |E
Ll I T T T | I T N T T T N I I I
A A A
BUS ACTIVITY: c c c
K K K
VROO1581
8/34 Lyy S36S-THOMSON
Y/ WicrasleerRonics

USING THE I°C-bus PROTOCOL WITH THE ST9

EEP_MAN: AN |2C-bus PROTOCOL EEPROM MANAGER

Appendix A contains a detailed Assembler listing of a representative example of an EEPROM manager for
a devicerespecting the PC-bus serial protocol. This example is not intended to be definitive but should be
taken as illustrative example of the use of the ST9 in such applications. Modifications and extensions,
depending on the particular application, will readily occur to the Application Engineer, e.g. the use of the
ST9 stacks as an alternative mechanism for transferring data and parameters between the Manager and
the calling program. Note that Appendix A makes use of a number of Macros which are separately listed
and defined in Appendix C.

The EEP_MANCalling Program Interface

A calling program interfaces to EEP_MANIsing four registers for calling parameters and a register-file for
data.

Parameter/ Transfer-Status Registers

AcalltoEEP_MANS initialized byloading parameter values intothree registers, viz. EEP_FUNCJEEP_ADD
and NB_BYTES. The status of a current transfer can be monitored by reading a fourth register,
STAT_EEP, in which EEP_MANecords a value giving the status of the EEPROM device.

EEP_FUNCRegister, R3.

This register is loaded with one of the following values to specify the mode of data transfer required:
1: READ _FUNCT Random READ mode.

2: WRITE_FUNCT Random WRITE mode.

3: VERIFY_FUNCT Current Address (Verify) mode.

EEP_ADDRegister, RO.

This register should be loaded with the value of the EEPROM byte starting address for Random
READ/WRITE operations. For a current address (Verify) operation the contents of this register is a
Don't-Care value.

NB_BYTESRegister, R6.

This register should be loaded with the number of bytes, #N, which should be transferred in the operation.
This value may have a value from 1 to 8 for Write operations, or 1 to 256 for READ operations.

STAT_EEPReqgister, R4.
EEP_MANoads this register with one of the following values to specify the current EEPROM Status.

0: EEP_OK The EEPROMis OK.

1. LECT_ON The EEPROM is reading a byte (random address mode).

2: VERIF_ON The EEPROM is reading the current byte.

3: ECR_ON The EEPROM is programming a byte (random address mode).

4: NO_ACK The EEPROM has not Acknowledged a byte transferred from the ST9

80h: EEP_FREE_MASK he EEPROM is available for a new operation.

Nz 56S-THOMSON 9/34
7lz MIERSELEECTRONIES

USING THE I°C-bus PROTOCOL WITH THE ST9

Transfer of Data Values
DATA TABLE Register File

Aregister-file, starting at R32 and of size #N should be reserved for READ/VERIFY operations, or loaded
with data to be transferred to the EEPROM for a WRITE operation. The first byte to be transferred should
be loaded into register R31+#N, and the last byte should be loaded into register R32.

EEP_MANData Transfer Initialization Routines
After loading the Parameter registers and setting up and, if appropriate,loading the Data table, the calling
routine tests STAT_EEPto check that the EEPROM is free, and then calls Procedure EEP_MAN

This procedure first saves the byte address counter value, NB_BYTE specifies the Port 2 pins SDO and
SCK as Alternate Functions, and SDI as an input, and then calls one of the three maininitializing routines
READ_EEP, VERIF_EEP, or WRITE_EER depending on the value transferred in register EEP_FUNCT

These three procedures essentially carry out identical functions. After verifying that the EEPROM is not
busy, they enable the SPIinterrupt, generate a START condition, and transfer the EEPROM device address
by loading this value into the SPI Data Register, SPIDR.

Note thatthe EEPROM Device Address is 7 bits long together with an eight bit which is set to “0” for READ
or WRITE operations, and setto "1” for VERIFY operations. In addition, a value of “1” is loaded into the
Transaction Status Register, STAT_TRANS_SPIto indicate that the Device Address has been transferred.
This register is loaded with an appropriate identifying value each time the SPI Data Register is loaded.

STAT_TRANS_SPI Register, R 5.

This register serves as an internal Status register, used by EEP_MANand its associated routines, to
maintain a record of the nature of the current ST9 to EEPROM transfer.

1 T _ADD_SLAVE The EEPROM device address has been transferred.
2: T _ADD_EEP The EEPROM byte address has been transferred.
3: TRANS_WR_DATA WRITE byte has been transferred.

4: TRANS_RD_DATA\ READ byte has been transferred.

After initiating a byte transfer by loading the SPI Data Register, SPIDR, a return is made to the calling
routine. At the completion of the byte transfer (8 SCK clock pulses) the SPI raises an interrupt on channel
BO (associated to external interrupt INT2).

10/34 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

The SPI Interrupt Service Routine

This routine is called at the termination of the transmission of each byte representing a Device Address,
Word Address, READ data, or Write data. The action effected by this routine (ProcedurelT_END_TRANS,
see Appendix A) depends upon the values contained in the bllowing registers:

1: STAT_TRANS_SPIRegister, R5.
2: STAT_EEPRegister, R4.

3: NB_BYTESRegister, R6.

4: EEP_FUNCTRegister, R3.

The required action depends on the nature of the previously transferred byte, indicated by the value
containedin STAT_TRANS_SPI. Inthe case of data byte transfersthe next action also depends onwhether
the required number of bytes has been transferred, as indicated by the value ofNB_BYTES.

The organization of IT_END_TRANS:Is illustrated by the flow diagram of Figure 8. This will be described
by considering in detail the logical flow of events associated with each of the three modes of data transfer.

Random Write Mode

Figure 5 illustrates the sequence of byte transfers involved in writing N bytes in Random Write Mode,
observing the I°C-bus protocol.

(i) Transmission of Slave Device Address.

This operation is initiated by ProcedureWRITE_EEPwhich generatesa STARTcondition, loads the Device
address (with the 8th bit set to 0) in SPIDR, thus initiating the transfer, and then returns to the calling
program.

In addition, this routine loads the following values into the Status Registers:
STAT_TRANS_SPI <-1 (#T_ADD_SLAVE)

STAT_EEP <-3 (#ECR_ON)

(ii) Transmission of Word Address.

After transmission of the 8 bits of the Device Address, an Interrupt is raised and entry made to Interrupt
ProcedureIT_END_TRANS Thelogical flow then follows the path Al (refer to Figure 8), as aresult of which
the required random Word address is loaded into SPIDR, so effecting the required byte transfer.

In addition, this routine loads (or retains) the following values in the Status Registers:
STAT_TRANS_SPI <-2 (#T_ADD_EEP)

STAT_EEP <-3 (#ECR_ON)

(i) Transmission of 1st Data Byte

After transmission of the 8 bits of the Word Address, an Interrupt is raised and entry made to Interrupt
Procedure IT_END_TRANS The logical flow then follows the path ACG (refer to Figures 8, 8b), as a result
of which the 1st Data Byte is loaded into SPIDR, so effecting the required byte transfer.

In addition, this routine loads (or retains) the following values in the Status Registers:

STAT_TRANS_SPI <-3 (#TRANS_WR_DATA).

STAT_EEP <-3 (#ECR_ON)
LNa SGS-THOMSON 11/34
7lz RIEREELECTRONICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Figure 8. Flow Diagram of the IT_END_TRANS Interrupt Routine

® STAT_TRANS_SPI
=TRANS_WR_DATA

E3

3C

53

STAT_TRANG _SPI

=T_ADD_EEP

52

SPI end of tronsmisson

SPI interrupt service
rautine

Mask SPl Interrupt.

STAT_TRANS_SPI

=TRANS_RD_DATA

ACK PULSE GENERATION

ACKNOWLEDGE
from EEPROM
QK

i

STOP canditlon generation

TAT_TRANS_SPI

=T_ADD_SLAVE

i

Set EEPROM free bit
in STAT_EEP

STAT_EEP
=VERIF_ON

TRANS_RD_DATA
—> STAT_TRANS_SPI

!

SDA lina n HZ (SPIOR = FF)

E1

8a

31

Engble SPI interrupt

T_ADD_EEP
—> STAT_TRANS_SPI

i

READ or WRITE ADDRESS
—> SPIDR

!

Enoble SPI interrupk

End af interrupt
rautine

VYROO1 544

12/34

Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Figure 8a. Flow Diagram of the IT_END_TRANS Interrupt Routine (continued)

Save SPI data register
in o ram taoble

©®©

Lost data

ACK PULSE GENERATION

STOP condition generotion

) ACKNOWLEDGE
Set EEPROM free it from EEPROM

in STAT_EEP @ QKY @

TRANS_RD_DATA STOP condition generation
—>» STAT_TRANS_SPI

I !

Set EEFROM free bit
SDA line in HZ {SPIDR = FF) in STAT_EEP

!

Enable SPI interrupt

!

S1 VRAOD1545

Nz 56S-THOMSON 13/34
7lz MIERSELEECTRONIES

USING THE I°C-bus PROTOCOL WITH THE ST9

Figure 8b. Flow Diagram of the IT_END_TRANS Interrupt Routine (continued)

©®

READ_FUNCTION

TRANS_WR_DATA
—> STAT_TRANS_SPI

{

DATA TO PROGRAM
—-> SPIDR

i

Enable SP interrupi

v ®

Inilialize SPI
and START generation

!

T_ADD_SLAVE
—> STAT_TRANS_SPI

!

Read address —> SPIDR

!

VERIFY_ON —> STAT_EEP

y

®

VRDO1546

Figure 8c. Flow Diagram of the IT_END_TRANS Interrupt Routine (continued)

®

©

NB_BYTE-1

Last byte

!

Inltiallza Watchdog timer
Lo genarate pragrammation
deloy

The EEPROM free bit will be set
at the end of the programmation
delay {in the Watehdog timer EOGC
interrupt routina)

!

ACK pulse genergtlon

!

STOP conditlon ganeration

transmitted

DATA te pragram
—> SPIDR

!

Engble SPI interrupt

&

VROOQ1547

14/34

Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

(iv) Transmission of Subsequent Data Bytes

After transmission of Byte #M (1 <M < N), an Interrupt is raised and entry made to Interrupt Procedure
IT_END_TRANS. The logical flow then follows the path ACFO (referto Figures 8, 8c) as a result of which
Data Byte #M + 1 is loaded into SPIDR, so effecting the required byte transfer.

The following values are retained in the Status Registers:
STAT_TRANS_SPI <-3 (#TRANS_WR_DATA).
STAT_EEP <-3 (#ECR_ON)

(v) Transmission of the final Data Byte.

After transmission of Byte #N, an Interrupt is raised and entry made to Interrupt Procedure
IT_END_TRANS. The logical flow then follows the path ACFN (refer to Figures 8, 8c). On this occasion
the Watch-Dog Timer routine, PROG_DELAY gee Appendix A) is entered to generate a delay equal toN
x 5 milliseconds to enable the EEPROM to be programmed with the new data values.

For this purpose the Watch_Dog Timer isinitialized in Single Operation, Count-down Mode, and a constant
value is loaded into the counter appropriate to the required delay. An interrupt is enabled on Channel AO
for the Timer EOC event, and a return is made to the calling program.

When the Timer times out, entry is made to interrupt routine TEMPO (see Appendix A). This routine clears
the AO interrupt pending bit, sets the EEP_FREE_MASKit to 1, and returns to the calling program. At this
point the EEPROM is available again for further data transfers.

Random READ Mode

Figure 6 illustrates the sequence of byte transfers involved in reading N bytes in Random Read Mode,
observing the 1>C-bus protocol.

(i) Transmission of Slave Device Address.

This operation is initiated by ProcedureREAD_EEPwhich generatesa START condition, loads the Device
address in SPIDR (with the 8th bit set to “0"), thus initiating the transfer, and then returns to the calling
program.

In addition, this routine loads the following values into the Status Registers:
STAT_TRANS_SPI <-1 (#T_ADD_SLAVE)

STAT_EEP <-1 (#LECT_ON)

(i) Transmission of Word Address.

After transmission of the 8 bits of the Device Address, an Interrupt is raised and entry made to Interrupt
ProcedureIT_END_TRANS Thelogical flowthen follows the path Al (referto Figure 8), as aresult of which
the required random Word address is loaded into SPIDR, so effecting the required byte transfer.

In addition, this routine loads (or retains) the following values in the Status Registers:

STAT_TRANS_SPI <-2 (#T_ADD_EEP)

STAT_EEP <-1 (#LECT_ON)
Ly SGS-THOMSON 15/34
Y wizRenLseTAGHIGS

USING THE I°C-bus PROTOCOL WITH THE ST9

(i) Retransmission of Slave Device Address.

After transmission of the 8 bits of the Word Address, an Interrupt is raised and entry made to Interrupt
Procedure IT_END_TRANS The logical flow then follows the path ACH (refer to Figure 8), as a result of
which the Device address (with the 8th bit setto “1”), loaded into SPIDR, so effecting the required byte
transfer.

In addition, this routine loads the following values in the Status Registers:
STAT_TRANS_SPI <-1 (#T_ADD_SLAVE)

STAT_EEP <-2 (#VERIF_ON)

(iv) Read of 1st Data Byte.

After the retransmission of the 8 bits of the Device Address, an Interruptis raised and entry made to Interrupt
Procedure IT_END_TRANS. The logical flow then follows the path AJ (refer to Figure 8), as a result of
which avalue of OFFh is loaded into SPIDR, so effecting the required byte transfer from the Slave Memory.

In addition, this routine loads (or retains) the following values in the Status Registers:
STAT_TRANS_SPI <-4 (#TRANS_RD_DATA).

STAT_EEP <-2 (#VERIF_ON)

(v) Read of Subsequent Data Bytes.

After transmission of Byte #M (1 <M < N), an Interrupt is raised and entry made to Interrupt Procedure
IT_END_TRANS The logical flow then follows the path BEL (refer to Figure 8), as a result of which Data
Byte #M + 1 is loaded into SPIDR, so effecting the required byte transfer.

The following values are retained in the Status Registers:
STAT_TRANS_SPI <-4 (#TRANS_RD_DATA).
STAT_EEP <-2 (#VERIF_ON)

(vi) Read of the final Data Byte.

Aftertransmission of Byte #N, an Interruptisraised and entry made to Interrupt ProcedurelT_END_TRANS
The logical flow then follows the path BK (refer to Figure 8), as a result of which the STOP condition is
generated and the EEPROM free bit setin STAT_EEP

16/34 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Current Address READ (Verify) Mode

Figure 7 illustrates the sequence of byte transfers involved in reading N bytes in Random Write Mode,
observing the IC-bus protocol.

(i) Transmission of Slave Device Address.

This operationis initiated by ProcedureVERIF_EEPwhich generates a START condition, loads the Device
address (with the 8th bit set to “1”) in SPIDR, thus initiating the transfer, and then returns to the calling
program.

In addition, this routine loads the following values into the Status Registers:
STAT_TRANS_SPI <-1 (#T_ADD_SLAVE)

STAT_EEP <-2 (#VERIF_ON)

(i) Read of 1st Data Byte.

Afterthe retransmission ofthe 8 bits of the Device Address, an Interruptis raised and entry made to Interrupt
Procedure IT_END_TRANS The logical flow then follows the path AJ (refer to Figure 8), as a result of which
a value of OFFh is loaded into SPIDR, so effecting the required byte transfer from the Slave Memory.

In addition, this routine loads (or retains) the following values in the Status Registers:
STAT_TRANS_SPI <-4 (#TRANS_RD_DATA).

STAT_EEP <-2 (#VERIF_ON)

(iif) Read of Subsequent Data Bytes.

After transmission of Byte #M (1 M N), an Interrupt is raised and entry made to Interrupt Procedure
IT_END_TRANS. The logical flow then follows the path BEL (refer to Figure 8), as a result of which Data
Byte #M + 1 is loaded into SPIDR, so effecting the required byte transfer.

The following values are retained in the Status Registers:
STAT_TRANS_SPI <-4 (#TRANS_RD_DATA).
STAT_EEP <-2 (#VERIF_ON)

(iv) Read of the final Data Byte.

After transmission of Byte #N, an Interrupt is raised and entry made to Interrupt Procedure
IT_END_TRANS. The logical flow then follows the path BK (refer to Figure 8), as a result of which the
STOP condition is generated and the EEPROM free bit set in STAT_EEP

Nz 56S-THOMSON 17/34
7lz MIERSELEECTRONIES

USING THE I°C-bus PROTOCOL WITH THE ST9

ILLUSTRATIVE CALLING ROUTINES

Appendix B contains listing of suitable calling routines to WRITE 4 bytes to the Serial EEPROM or to READ
6 bytes. Included also in Appendix B are the appropriate ST9 Core System and Peripheral initialization
routines (see also Reference 1).

These programs make use of the File of ST9 Standard Register and Register Bit Definitions listed in
Application Note AN411,SYMBOLS.INC.

It will be noted that the calling routines, after initiating the data transfers, wait in test and branch loops until
the EEPROM is free. In a practical real-time application this waiting time (>N.5 mS for an N byte WRITE
transfer) could be used for useful processing.

REFERENCES

(1) Application Note 413, “Initialization of the ST9”, Pierre Guillemin and Alan Dunworth,
SGS-THOMSON Microelectronics.

(2) The“ST9 Technical Manual”, SGS-THOMSON Microelectronics.

18/34 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | 2C-bus Manager Routine

titk* ST9 SPI use with |
.shtt* EEPROM manager

list bex

.global
.extern

;* Module Macro Definitions *

rkk *
’

library

.mcal ifbit, attbit

IT_END_TRANS, TEMPO, EEP_MAN
RESET_START

“c:\st9\inc\bitmacro.inc”

’c protocol. January 24 1990 "

version 2.0 "

; change as required

.macroDELAI ?loop_var

Id COUNTER #03h
loop_var:

dec COUNTER
jrnz loop_var

.endm

; 10 Tey.

; 6 Tey.
; 12 Tcy: A loop = 1.5 fs
; with a 12 MHz system clock.

.macroDIS_SPI_IT
and EIPR,#ipbOm
and EIMR,#-ibOm
.endm

; Disable SPI interupt.
; Reset the BO (SPI interrupt) pending bit.
; Disable SPI channel (BO).

.macroEN_SPI_IT
and EIPR,#ipbOm
nop
or EIMR,#b0m
.endm

; Enable SPI interrupt.
; Clear request on SPI channel (BO).

; Enable SPI channel (BO).

.macroINIT_TRANS_READ

spp #0

.endm

Id STAT_TRANS_SPI#TRANS RD_DATA

Id SPI_TAMP,#0FFH

; Initialize SPI register and intemrupt
; for read operation.

; Initialisation for read operation.

; To read the data from the EEPROM.

19/34

‘y_l SGS-THOMSON

o MICREELECTRONIGS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | 2C-bus Manager Routine (Continued)

wkkkkkkkkkdckkkdkdokkkdkkk

; Register declarations.

kkkdkkkdkdokkkdkkdckkkxkdk
’

EEP_ADD =
WRITE_DATA =
write_data =
READ_DATA =
read_data =
EEP_FUNCT =
STAT_EEP =
STAT_TRANS_SPI =
NB_BYTE =

nb_byte =
SPI_TAMP =
MEMO_NB_BYTE =
COUNTER =
DATA_TABLE =

wkkkkkkkdkdkkkdkdkkkikhk

; Constant declarations.

skkkkkkkdkdkkkdkdkkhkrkdk
’

ADD_EEP_W ==
ADD_EEP_R ==

SDI_MASK =
SCK_MASK =
SDO_MASK =

RO ; Operation address in the EEPROM.
R1 ; Data to be programmed in the EEPROM.
rl
R2 ; Data which has been read from the EEPROM.
r2
R3
R4
R5
R6 ; Number of bytes to be written
; (maximum 8) or to read.
ré
R7
R14
R15
31 ; The rea beginning of the table
(1Fh) ; to store data is R20h.
0AOh ; Address the extemal EEPROM slave
; for WRITE operation.
0Alh ; Address the extemal EEPROM slave
; for READ operation.
02h ; SDI = bit 1 of port 2.
04h ; SCK = bit 2 of port 2.
08h ; SDO = bit 3 of port 2.

Status of EEP_FUNCT register.

This register is used to indicate the EEPROM manager the
function to be executed.

READ_FUNCT == 1 ; Read mode: read after transferring the
; address pointer.
; ie: Read from the cument address.
WRITE_FUNCT == 2 ; Write mode.
VERIF_FUNCT == 3 . Altemate read mode:
;Read operation without programming
;the address pointer.
20/34

Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | ’C-bus Manager Routine (Continued)

Status of STAT_TRANS_SPI register.
This register permits the EEPROM manager (in the SPI interrupt routine) ...
... to know the type of the byte which has just been transmitted.

T_ADD_SLAVE == 1 ; The eeprom address has been transferred.
T_ADD_EEP == 2 ; The operation address has been transferred.
TRANS _WR_DATA == 3 ; The data to be writen has been transferred.
TRANS RD DATA == 4 ; The data to be read has been received.

; Status of STAT_EEP register.
; This register permits the caller to know the status of the EEPROM.

EEP_OK == 0 ; EEPROM is OK.
LECT_ON == 1 ; EEPROM is reading a byte.
VERIF_ON == 2 ; EEPROM is reading the curent byte.
ECR_ON == 3 ; EEPROM is programming a byte.
NO_ACK == 4 ; EEPROM has not acknowledged.
EEP_FREE_MASK == 80h ; EEPROM is ready for a new operation...
; ... If this bit is equal to 1.

text
; EEP_MANAGER: EEPROM MANAGER.
proc EEP_MAN [PPR] { ; Save page pointer.

spp #0

DIS_SPL_IT

Id MEMO_NB_BYTE,NB _BYTE ; Save NB_BYTE Before decrement for
; programmation tempo.

switch [EEP_FUNCT] {
case #READ_FUNCT:

call READ_EEP
case #VERIF_FUNCT:

cal VERIF_EEP
case #WRITE_FUNCT:

cal WRITE_EEP

} ;— End of switch.
} ;— End of proc.

‘y_l S$GS-THOMSON 21/34

o MICREELECTRONIGS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | 2C-bus Manager Routine (Continued)

rkk * * Kk Fk ok * * *

; READ_EEP: Normal read mode.
Read of some bytes after setting the slave address.

proc READ_EEP [PPR] {

ifbit STAT_EEP,#EEP_FREE_MASK ; Test if EEPROM free.
; {
call INIT_START_I 2c ; SPI and related interrupt initialization..
; ... to support | ’c protocol...
;... Generate a start condition.
Id STAT_TRANS_SPI#T_ADD_SLAVE; Slave address will be transferred.
Id STAT_EEP#LECT_ON ; A read condiion is started.
; EEPROM is not FREE = EEP_FREE BIT = 0.
Id SPIDR#ADD_EEP W : EEPROM address in write mode to transfer
; pointer.

} — End of if.
} ;—- end of proc.

; VERIF_EEP: Alternate read mode.
Read of some bytes without setting the address pointer.

proc VERIF_EEP [PPR] {

ifbit STAT_EEP #EEP_FREE_MASK ; Test if EEPROM free.
; {
call INIT_START_I 2c ; SPI and related interrupt initialization..
; ... to support | 2c protocol...
; .. Generate a start condition.
Id STAT_TRANS_SPI#T ADD_SLAVE; Slave address will be transfered.
Id STAT_EEP,#VERIF_ON ; A verif condition is started.
; EEPROM is not FREE = EEP_FREE BIT = 0.
Id SPIDR#ADD_EEP_R ; EEPROM address in read mode.
} — End of if.
} ;—- end of proc.

22/34 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | 2C-bus Manager Routine (Continued)

; WRITE_EEP: Write of some bytes.

proc WRITE_EEP [PPR] {

: INIT_START | °C:
; Iniialize SPI to support | 2c protocol.
; Generation of a start condition.

proc INIT_START | 2c [PPR] {
—- SPI initialization.
spp #0 ; SPI and ext interrupts registers in page O.
Id SPICR#042h ; SPI is Disabled = SDA and SCK in HZ (1).
| °C bus mode is selected.
; SCK frequency # 100 kHz.
;— START condition generation.
and P2DR#SDO_MASK; Prepare “0” on output buffer of SDO.
spp #P2C_PG

and P2COR#~SDO_MASK ; SDO line in output - SDA line = “0".
DELAI ; Wait for start condition hold time.

spp #0

or SPICR#spen ; Enable SPI.

EN_SPLIT ; Enable SPI interrupt.

spp #P2C_PG
or P2COR#SDO_MASK; SDO line in AF.
} ;— End

ifbit STAT_EEP,#EEP_FREE_MASK ; Test if EEPROM free.
; {
call INIT_START_I c ; SPI and related interrupt intialization..
; .. to support | c protocol...
; .. Generate a start condition.
Id STAT_TRANS_SPI#T_ADD_SLAVE; Slave address will be transferred.
Id STAT_EEP#ECR_ON ;A write condition is started.
; EEPROM is not FREE = EEP_FREE BIT = 0.
Id SPIDR#ADD_EEP_W ; EEPROM address in write mode.
} ;/— End of if.
} ;—- end of proc.

‘y_l SGS-THOMSON

23/34

o MICREELECTRONIGS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | 2C-bus Manager Routine (Continued)

; GEN_STOP: Generation of a stop condiion.

proc GEN_STOP [PPR] {
spp #0
DIS_SPL_IT ; Disable SPI interrupt.
and P2DR#SDO_MASK; Prepare “0” on output buffer of SDO.
spp #P2C_PG

and P2COR#~SDO_MASK ; SDO line in output - SDA line = “0".

spp #0

and SPICR#~spen ; Disable SPI - Release SCK line - SCK = “1".
DELAI ; Wait for stop condition setup.

spp #P2C_PG
or P2COR#SDO_MASK; SDO in AF - Release SDA line - SDA = “1"
} 7— End

; GEN_ACK: ACK pulse generation,
and force the SDA line to O for Acknowledgement.

proc GEN_ACK [PPR] {
and P2DR#SDO_MASK; Prepare “0” on output buffer of SDO.
spp #P2C_PG

and P2COR#~SDO_MASK ; SDO line in output - SDA line = “0".

spp #0

and SPICR#~spen ; Disable SPI - Release SCK line - SCK = “1".
DELAI ; Wait for ACK hold time.

or SPICR#spen ; Enable SPI - Force SDA and SCK low.

spp #P2C_PG
or P2COR#SDO_MASK; SDO line in AF.
} ;— End of proc.

24/34 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | 2C-bus Manager Routine (Continued)

; TEST_ACK: ACK pulse generation,
; and check the slave acknowledgment

kK * * Kk ok * *
’

proc TEST_ACK [PPR] {

and SPICR#~spen ; Release SPI lines in disabling it.
attbit P2DR#SCK_MASK ; Wait for SCK going high.
ifbit P2DR, #SDI_MASK ; Check if receiver has acknowledged.
(SDA = 0).
; { ; If no ACK.
Id STAT_EEP#NO_ACK
} else { ; If ACK ok.
DELAI ; Wait for high period of the clock.
} — End of if.
or SPICR#spen ; Enable SPI - Force SDA low.
} ;— End of proc.
IT_END_TRANS: SPI end of transmission interrupt service routine.

This interrupt is connected to channel BO in the STO9.

IT_END_TRANS::
pushu PPR
pushuw RPP
srp #0
spp #0

if [STAT_TRANS_SPl == #TRANS_RD_DATA] {

—- A data to be read has been received from EEPROM.

Id read_data,SPIDR; For the next instruction addressing mode.
Id DATA_TABLE(nb_byte),read_data ; Save the received data.
dec nb_byte ; Number of bytes to be read.
if [SETZ] { ; If the last byte has been read.
call GEN_STOP ; G nrate STOP condition in 12C protocal.
Id STAT_EEP#EEP_FREE_MASK ; Indicates to the caller than
;EEPROM is OK and FREE.
} else {
call GEN_ACK ; ACK pulse generation and force SDA line
; to 0.
INIT_TRANS_READ
} — End of else.
} else {
cal TEST_ACK ; ACK pulse generation and test EEPROM
;response..
Kyg S5 ToNEON ==

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | ’C-bus Manager Routine (Continued)

if [STAT_EEP == #NO_ACK] { ; If no acknowledge from EEPROM.
call GEN_STOP ; Stop generation.
or STAT_EEP#EEP_FREE_MASK ; Indicates to the caller than

; EEPROM is free.

’

switch [STAT_TRANS_SPI] {
case #T_ADD_SLAVE:
;—- The slave address has been transferred.
if [STAT_EEP == #VERIF_ON] {
;—- The slave address has been transmitted for a verif operation.
} else {
;—- The slave address has been transmitted for a write or a random read operation.
Id STAT_TRANS_SPI#T_ADD_EEP

; Transfer of the address of
; the EEPROM operation.

spp #0

Id SPI_TAMP,EEP_ADD ; To transfer the read
;or write address.

case #T_ADD_EEP:
;—- The write or random read address has been transmitted.

1{
;—- The random read addresss has been transmited.
call INIT_START_I2C ; A start condition is
; necessary here.
Id STAT TRANS SPI#T_ADD_SLAVE
; The slave address must
; be transmitted again.
Id SPI TAMP#ADD EEP_R ; EEPROM address in read
; mode.
Id STAT_EEP#VERIF_ON ; The next sequence is
; the same than verif
; sequence.
;—- The write address has been transmitted.
} else {
spp #0
Id STAT_TRANS_SPI#TRANS_WR_DATA
; Initialisation for transfer
; of data to be written.
Id write_data,DATA_TABLE(nb_byte)
; The first data to programm.
Id SPI_TAMP,write_data
} ;— End of else.
case #TRANS_WR_DATA:
—- The data to be written has been transmitted.
26/34 Ly SGS-THOMSON
’Iz MICROELECTRBMICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | 2C-bus Manager Routine (Continued)

spp #0
dec nb_byte ; Number of bytes to write.
if [CLz] { ; If the last byte has not yet
; been written.
Id write_data,DATA_TABLE(nb_byte)
Id SPI_TAMP,write_data
} else { ; If all data have been programmed.
; Write sequence is finished.
call PROG_DELAY ; Inifialise watch dog timer
;to generate a 5 ms delay.
call GEN_STOP ; STOP condition generation.
} i— End of else.
} ;— End of switch.
} .— End of else.
} — End of else.
popuw RPP
Id SPIDR,SPI_TAMP ; Data to transmit via SPI.
popu PPR

iret

; PROG_DELAY Initidize the watchdog-timer to generate the delay
; necessary for programmation.

proc PROG_DELAY [PPR] {

pushuw RPP

spp #WDT_PG

srp # (15 * 2) ; To access in paged registers with r.

Id wer, #wden ; watch dog mode disabled, no wait states.

clr wdtpr ; To have 333 ns (with system clock = 12 MHz)
; in minimum count,
; prescaler = 0.

[dw wdtr,#15015 ; 15015 * 333 ns = 5 ms.

whie [CLZ] {

addw wdtr,#15015 ; 5 ms delay is multiplied by
; the number of bytes to programm.

dec MEMO_NB BYTE

or wdtcr#(stsp | sc) ; Timer starts down counting.
; Single mode.

; Watch Dog disabled.

Nz 56S-THOMSON 27134
7lz MIERSELEECTRONIES

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix A. EEPROM | ’C-bus Manager Routine (Continued)

; Input section disabled.
; Output disabled.
; Interrupt AO on Timer EOC.
; Top Level Interrupt on SW TRAP.
popuw RPP
}
TEMPO: Interrupt service routine of the watchdog timer end of count.
; This interupt is connected to the AO channel in the STO.
lI'EMPO:
pushu PPR
spp #0
and EIPR,#ipaOm ; Reset of WD/Timer EOC interrupt pending
; bit.
or STAT_EEP#EEP_FREE_MASK ; Write sequence is finished.
popu PPR
iret
== Kyy SESTHONSON

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix B. Examples of Calling Programs

titk* Main example for EEPPROM manager call

.extern IT_END_TRANS, EEP_MAN, TEMPO
.global RESET_START

: Module Macro Definitions.

Jibrary “c:\st9\inc\bitmacro.inc” ; change if required
.mcall attbit

kkkkkkkdkdckkkdkdckkkdkdk
’

; Register declarations.
skkkkkkkdkdhkkdkdkhkikhk

wkkkkkkkdkdkkkhkdkkk
’

; STACK Dedaration.

skkkkkkkkkickkkkkikkk
’

SSTACK
USTACK

January 24 1990 ”

EEP_ADD = RO ; Operation address in the EEPROM.

WRITE_DATA = R1 ; Data to be programmed in the EEPROM.

write_data = rl

READ DATA = R2 ; Data which has been read in the EEPROM.

read_data = r2

EEP

FUNCT = R3

STAT_EEP = R4

STAT_TRANS_SPI = R5

NB_BYTE = R6

nb_byte = ré

CPT_DELAY = RR8

DATA _TABLE = 31 ; The rea beginning of the table to store
; data is R20h.

; 01Fh

; INTERRUPT VECTOR ADDRESSES.

ORE_IT_VECT = 00h ; Core interrupt vectors

EXT_IT_VECT = 20h ; Externa interrupt vectors

wkkkkkkkdkdkkkhkdkk

; START of PROGRAM.

wkkkkkkkdkdkkkhkdkk

START_PROG = 100h ; start address program

(14 * 16) - 1; System stack address group D C
(12 * 16) - 1; User stack address group B

‘y_l SGS-THOMSON

29/34

o MICREELECTRONIGS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix B. Examples of Calling Programs (Continued)

rkk * * *
’

; Declaration of the interrupt vectors table.

;— SPI and related 1/O initialization.
#P2C_PG

Id P2COR#00001110b

Id P2C1R#11111101b

Id P2C2R #00001110b

#0

spp #0

srp
clr

#(15 * 2)
eipr

nop
Id eivr,#EXT _IT_VECT

Id eiplr#0FBh

text ; start of program
.org CORE_IT_VECT ; Core intemrupt vector
= kkkkkdkkokkkdkdokkkdkhk
.word RESET_START ; power on interrupt vector
.org EXT_IT_VECT ; External interrupt vector
.word TEMPO ; Channel AO for Watchdog Timer.
.word 0000 ; Channel Al not used/
.word IT_END_TRANS ; Channel BO for SPI.
wkkkkkkkkkikkkkkickkkkkk
; Start of main module.
shkkdkkkdkdkkkdkdkkkdkk
.org START_PROG ; start of code
RESET_START:
spp #0

Id MODER#(sspm | uspm| div2m); CLOCK MODE REGISTER

; internal stack
; no precaling
; external clock divided by 2

; P21 = SDI: IN/TRI/TTL.
; P22 = SCK: AF/OD/TTL.
; P23 = SDO: AF/OD/TTL.
; Others = OUT/PP/TTL.

Id CICR,#(gcenm | iamm | cpim); CENTRAL INTERRUPT CONTROL REGISTER

; priority level = 7

; Nested Arbitration mode
; disable interrupt

; enable counters

; To access page O registers
; Disable all the external interrupt
; pending bits.
; See WARNING (Technical Manual - Chapter 8)
; External interrupt vector.
; IAOS - TLIS = 00 = ..
; Priority level for group INTAO
; INTAL = 6, 7.

30/34

"_I SGS-THOMSON

MICRGELECTRONICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix B. Examples of Calling Programs (Continued)

;Exemple of call to the EEPROM manager to programm 4 bytes from the address 010h.

begin_write::
Id EEP_FUNCT #WRITE_FUNCT ; Function to be executed by the
; EEPROM manager.
Id EEP_ADD #010h ; 1st address to be programmed.
Id NB_BYTE #4 ; Number of bytes to program.

Id R#(DATA_TABLE+4)#78h ; 1st data to programm.

Id R#(DATA_TABLE+3)#49h ; 2nd data to programm.
Id R#(DATA_TABLE+2)#10h ; 3rd data to programm.
Id R#(DATA_TABLE+1) #94h ; 4th data to programm.

call EEP_MAN

atthit STAT_EEP,#EEP_FREE_MASK ; Wait for end of WRITE procedure
; (programming delay also).
; by the ST9.

nop ; To replace by a JR instruction
; under SDBST9 for DEBUG.

nop

;Example of call to the EEPROM manager to read 6 bytes from the address Ofh.
;This can be a verffication of the last programmation.

begin read:
Id EEP_FUNCT #READ_FUNCT ; Function to be executed by the
; EEPROM manager.

Id EEP_ADD #0fh ; Read address in EEPROM.

Id NB_BYTE #6 ; Number of data to be read.
call EEP_MAN

atthit STAT_EEP,#EEP_FREE_MASK ; Wait for end of read procedure.

; Here some instructions
; could be executed by the STO.

end_read:
ir end_read

Id eimr,#01 ; Unmask Interupt AO channel
; (WDT End Of Count).
; (SPI EOT).
; bit is active.
clr FLAGR ; init flag
Id SSPLR#SSTACK + 1 ; load system stack pointer
Id USPLR#USTACK + 1 ; load user stack pointer
Id STAT_EEP#EEP_FREE_MASK : EEPROM is free, no function in service.
ei

‘y_l SGS-THOMSON

31/34

o MICREELECTRONIGS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix C. Module Macro Definitions

example

library “c:\st\inc\bitmacro.inc”
;.-mcall ifbt, ifnobit, and so on

;—- macro-instruction IFBIT: test if a bit is 1.

; Parameters: - destination: All addressing mode allowed by

; the’tm*instruction.

; - mask selecting the bit to be tested.
; ex: 00000010b for bit 1 test.

; 1 DO not forget the “}" after instructions executed when the condition
; TRUE.

; application example

; ifbit dest mask

}

.macroifbit dest,mask

tm dest,mask

if [CLz] { ; The bit is set to 1.
.endm

; macro-nstruction WHILEBIT: DO WHILE bit is 1.

; - mask selecting the bit to be tested.
; ex: 00000010b to test bit 1.

; application example

tite* BITMACRO.INC 05 December 1989 ”

; BITMACRO: Macro file allowing bit test like PSEUDO_MACROS programmation,
; User must declare the macro used in his ST9 source file like the following

; Parameters: - destination: All addressing mode used for “tm” instrction.

do {

whilehit dest,mask
.macrowhilebit destmask

tm dest,mask

} while [CLZ] ; The bit is set to 1.
.endm
32/34 Ly SGS-THOMSON

’Iz MICROELECTRBMICS

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix C. Module Macro Definitions (Continued)

rkk * * * Fk ok * *
’

;—- macro-instruction IFNOBIT: test if a bit is 0.

; Parameters: - destination: All the addressing mode used for the “tm”
; instruction.

; - mask selecting the bit to be tested.

; ex: 00000010b to test bit 1.

; 1 Do not forget the “}" after instructions executed when the condition is
; TRUE.

; application example

; ifnobit destmak

; }
.macroifnobit dest,mask

tm dest,mask

if [SETZ] { ; the bit is set to 1.
.endm

;—- macro-instruction WHILENOBIT: DO WHILE bit = 0.

; Parameters: - destination: All the addressing mode used for the “tm”
; instruction.

; - mask selecting the bit to be tested.

; ex: 00000010b to test bit 1.

; application example
do {

whilenobit dest,mak
.macrowhilenobit dest,mask

tm dest,mask

} while [SETZ]; The bit is set to 1.
.endm

;— WAITBIT: waiting for a bit to be 1.
; Parameters: - destination: All the addressing mode used for “tm”

; instruction.
; - mask selecting the bit to be tested.
; ex: 00000010b to test bit 1.
.macrowaitbit dest,mask

*hkkkdkk

do {

tm dest,mask
} while [SETZ] ; WAITING for bit = 1.

.endm

Nz 56S-THOMSON 33/34
7lz MIERSELEECTRONIES

USING THE I°C-bus PROTOCOL WITH THE ST9

Appendix C. Module Macro Definitions (Continued)

* * * Kk Kk ok * * *

WAITNOBIT: waiting for a bit to be a 0.
Parameters: - destination: All the addressing mode used with the “tm”
; instruction.
; - mask selecting the bit to be testesd.
ex: 00000010b to test bit 1.

.macrowaitnobit dest,mask
do {
tm dest,mask

} while [CLZ] ; WAITING for the bit = 0.
.endm

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-THOMSON SHALL NOT
BE HELD LIABLEFOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECTTO
ANY CLAIMS ARISING FROM USE OF THE SOFTWARE.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics
assumes no responsability for the consequences of use of such information nor for any infringement of
patents or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications
mentioned inthis publicationare subjectto change without notice. This publication supersedes and replaces
all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support
devices or systems without the express written approval of SGS-THOMSON Microelectronics.

0 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I°C Components by SGS-THOMSON Microelectronics conveys a license under the Philips 12C Patent.
Rights to use these components in an rc system is granted provided that the system conforms to the I’C Standard
Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Nether-
lands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

34/34 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

