

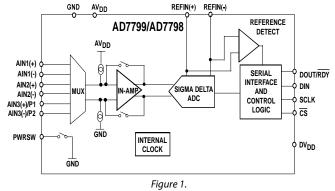
Low Power, 24-Bit/16-Bit Sigma-Delta ADC with In-Amp

Preliminary Technical Data

AD7798/AD7799

FEATURES

Resolution: AD7798: 16-Bit AD7799: 24-Bit **Three Differential Analog Inputs** Low Noise Programmable Gain Amp RMS noise: 80 nV (Gain = 64) at 16.6 Hz update rate (AD7798) 65 nV (Gain = 64) at 16.6 Hz update rate (AD7799) 30 nV (Gain = 64) at 4 Hz update rate (AD7799) Update Rate: 4 Hz to 500 Hz Power Supply: 2.7 V to 5.25 V operation Normal: 330 µA typ (AD7798) 400 µA typ (AD7799) Power-down: 1 µA max Simultaneous 50 Hz/60 Hz Rejection **Two Programmable Digital Outputs Internal Clock Oscillator Reference Detect** 100 nA Burnout Currents Low Side Power Switch **Independent Interface Power Supply** 16-Lead TSSOP


INTERFACE

3-wire serial SPI®, QSPI™, MICROWIRE™, and DSP compatible Schmitt trigger on SCLK

APPLICATIONS

Pressure measurement Weigh scales

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The AD7798/AD7799 is a low power, complete analog front end for low frequency measurement applications. The device contains a low noise 24-bit (AD7799)/ 16-bit (AD7798) Σ - Δ ADC with three differential inputs. The on-chip low noise instrumentation amplifier means that signals of small amplitude can be interfaced directly to the ADC. With a gain setting of 64, the rms noise is 80 nV for AD7798 and 65 nV for the AD7799 at 16.6 Hz.

The device contains a low side power switch which is useful in bridge applications. The switch allows the bridge to be disconnected from the power supply when conversions are not being performed and this will minimise power consumption. The device also has 100 nA burnout currents. These currents are used to detect if sensors connected to the analog inputs are burnt out. Other on-chip features include an internal clock so the user does not have to supply a clock to the device. This reduces the component count in a system and provides board space savings. The update rate is programmable on the AD7798/99. It can be varied from 4 Hz to 500 Hz. The part operates with a single power supply from 2.7 V to 5.25 V. It consumes a current of 380 uA maximum for the AD7798 and 450 uA maximum for the AD7799. The AD7799/AD7798 is housed in a 16-lead TSSOP package.

Rev. PrD.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and WWW. Data Stream the property of their respective companies.

TABLE OF CONTENTS

AD7799/AD7798—Specifications
Timing Characteristics [,]
Absolute Maximum Ratings
Pin Configuration and Function Descriptions9
Typical Performance Characteristics11
On-chip Registers
Communications Register (RS2, RS1, RS0 = 0, 0, 0) 12
Status Register (RS2, RS1, RS0 = 0, 0, 0; Power-on/Reset = 0x88)
Mode Register (RS2, RS1, RS0 = 0, 0, 1; Power-on/Reset = 0x000A)

REVISION HISTORY

Prelim D, June 2004: Initial Version

Configuration Register (rs2, RS1, RS0 = 0, 1, 0; Power- on/Reset = 0x0710)
Data Register (RS2, RS1, RS0 = 0, 1, 1; Power-on/Reset = 0x0000 (AD7798)/ 0x000000 (AD7799))16
ID Register (RS2, RS1, RS0 = 1, 0, 0; Power-on/Reset = 0xX8 (AD7798)/ 0xX9 (AD7799))
OFFSET Register (RS2, RS1, RS0 = 1, 1, 0; Power-on/Reset = 0x8000 (AD7798)/0x800000 (AD7799))17
FULLSCALE Register (RS2, RS1, RS0 = 1, 1, 1; Power- on/Reset = 0x5XXX (AD7798)/0x5XXX000 (AD7799)) 17
TYPICAL APPLICATION 17

AD7799/AD7798—SPECIFICATIONS¹

Table 1. $(AV_{DD} = 2.7 \text{ V to } 5.25 \text{ V}; DV_{DD} = 2.7 \text{ V to } 5.25 \text{ V}; \text{GND} = 0 \text{ V}; \text{REFIN}(+) = 2.5 \text{ V}; \text{REFIN}(-) = 0 \text{ V}; \text{all specifications } T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted.)

Parameter	AD7798/AD7799B	Unit	Test Conditions/Comments
ADC CHANNEL SPECIFICATION			
Output Update Rate	4	Hz min nom	
	500	Hz max nom	
ADC CHANNEL			
No Missing Codes ²	24	Bits min	AD7799, $f_{ADC} \leq 125 \text{ Hz}$
	16	Bits min	AD7798
Resolution	16	Bits p-p	Gain = 128, 16.6 Hz Update Rate
	19	Bits p-p	Gain = 1, 16.6 Hz Update Rate, AD7799
	16	Bits p-p	Gain = 1, 16.6 Hz Update Rate, AD7798
	18.5	Bits p-p	Gain = 64, 4 Hz Update Rate, AD7799
Output Noise and Update Rates	See Tables in ADC Description		
Integral Nonlinearity	±15	ppm of FSR max	3.5 ppm typ, Gain 1 to 32
	±25	ppm of FSR max	Gain = 64 or 128
Offset Error ³	±3	μV typ	
Offset Error Drift vs. Temperature⁴	±10	nV/°C typ	
Full-Scale Error ⁵	±10	μV typ	
Gain Drift vs. Temperature ⁴	±0.5	ppm/°C typ	Gain = 1, 2
	±3	ppm/°C typ	Gain = 4 to 128
Power Supply Rejection	90	dB min	100 dB typ, AIN = 50 % of full scale
ANALOG INPUTS			
Differential Input Voltage Ranges	±REFIN/Gain	V nom	REFIN = REFIN(+) - REFIN(-), Gain = 1 to 128
Absolute AIN Voltage Limits ²			
Unbuffered Mode	GND + 30 mV	V max	Gain = 1 or 2
	AV _{DD} – 30 mV	V min	
Buffered Mode	GND + 100 mV	Vmin	Gain = 1 or 2
	$AV_{DD} - 100 \text{ mV}$	V max	
In-Amp Enabled	GND + 300 mV	Vmin	Gain = 4 to 128
	V _{DD} – 1.2	V max	
Common Mode Voltage			
In-Amp Enabled	0.5	V min	Gain = 4 to 128
Analog Input Current	0.0	•	
Buffered Mode or In-Amp Enabled			
Average Input Current	±200	pA max	AIN1(+) – AIN1(-), AIN2(+) – AIN2(-) only.
	±1	nA max	AIN3(+) - AIN3(-).
Average Input Current Drift	±1 ±2	pA/°C typ	
Unbuffered Mode		P/V C ()P	Gain = 1 or 2
Average Input Current	±400	nA/V typ	Input current varies with input voltage.
Average Input Current Drift	±50	pA/V/°C typ	,
Normal Mode Rejection ²	<u> </u>		
@ 50 Hz, 60 Hz	70	dB min	73 dB typ, 50 ± 1 Hz, 60 ± 1 Hz, FS[3:0] = 1010
@ 50 Hz @ 50 Hz	84	dB min	90 dB typ, 50 ± 1 Hz, 60 ± 1 Hz, $FS[3:0] = 1010$
@ 50 Hz @ 60 Hz	90	dB min	90 dB typ, 50 ± 1 Hz, $FS[3:0] = 1001^{\circ}$ 90 dB typ, 60 ± 1 Hz, $FS[3:0] = 1000^{\circ}$
	50		
Common Mode Rejection	00	dP min	AIN = 50% of FS
	90	dB min	80 dB typ, FS[3:0] = 1010 ⁶
@ 50 Hz, 60 Hz	100	dB min	50 ± 1 Hz (FS[3:0] = 1001 ⁶), 60 ± 1 Hz (FS[3:0] = 1000 ⁶)

AD7798/AD7799

Parameter	AD7798/AD7799B	Unit	Test Conditions/Comments
REFERENCE INPUT			
REFIN Voltage	2.5	V nom	REFIN = REFIN(+) - REFIN(-)
Reference Voltage Range	0.1	V min	
5 5	AV DD	V max	
Absolute REFIN Voltage Limits	GND – 30 mV	V min	
5	$AV_{DD} + 30 \text{ mV}$	V max	
Average reference Input Current	400	nA/V typ	
Average Reference Input Current Drift	±0.03	nA/V/°C typ	
Normal Mode Rejection	See ANALOG INPUTS		
Common Mode Rejection	See ANALOG INPUTS		
Reference Detect	0.3	V min	NOREF bit Inactive if VREF < 0.3 V
	0.65	V max	NOREF bit Active if VREF > 0.65 V
LOW SIDE POWER SWITCH			
Ron	5	Ωmax	$AV_{DD} = 5V$
	7	Ωmax	$AV_{DD} = 3V$
Allowable Current	20	mA max	Continuous Current
INTERNAL CLOCK			
Drift	64 ±2%	KHz nom	
	0.01	%/°C typ	
LOGIC INPUTS			
All Inputs Except SCLK and DIN			
V _{INL} , Input Low Voltage	0.8	V max	$DV_{DD} = 5 V$
	0.4	V max	$DV_{DD} = 3 V$
V _{INH} , Input High Voltage	2.0	Vmin	$DV_{DD} = 3 V \text{ or } 5 V$
SCLK and DIN Only (Schmitt-			
Triggered Input)			
V _T (+)	1.4/2	V min/V max	$DV_{DD} = 5 V$
V _T (–)	0.8/1.4	V min/V max	$DV_{DD} = 5 V$
$V_T(+) - V_T(-)$	0.3/0.85	V min/V max	$DV_{DD} = 5 V$
V _T (+)	0.9/2	V min/V max	$DV_{DD} = 3 V$
V _T (–)	0.4/1.1	V min/V max	$DV_{DD} = 3 V$
V _T (+) - V _T (-)	0.3/0.85	V min/V max	$DV_{DD} = 3 V$
Input Currents	±1	μA max	$V_{IN} = DV_{DD} \text{ or } GND$
Input Capacitance	10	pF typ	All Digital Inputs
LOGIC OUTPUTS			
V _{он} , Output High Voltage	DV _{DD} - 0.6	V min	$DV_{DD} = 3 \text{ V}, \text{ I}_{SOURCE} = 100 \mu\text{A}$
VoL, Output Low Voltage	0.4	V max	$DV_{DD} = 3 V$, $I_{SINK} = 100 \mu A$
VoH, Output High Voltage	4	V min	$DV_{DD} = 5 \text{ V}, \text{ I}_{SOURCE} = 200 \mu\text{A}$
VoL, Output Low Voltage	0.4	V max	$DV_{DD} = 5 V$, $I_{SINK} = 1.6 mA$
Floating-State Leakage Current	±1	μA max	
Floating-State Output Capacitance	10	pF typ	
Data Output Coding	Offset Binary		
DIGITAL OUTPUTS			
P1 and P2			
V _{он} , Output High Voltage ²	AV _{DD} – 0.6	V min	$AV_{DD} = 3 V$, $I_{SOURCE} = 100 \mu A$
V _{OL} , Output Low Voltage	0.4	V max	$AV_{DD} = 3 V$, $I_{SINK} = 100 \mu A$
Voн, Output High Voltage ²	4	V min	$AV_{DD} = 5 \text{ V}, \text{ I}_{SOURCE} = 200 \ \mu\text{A}$
V _{OL} , Output Low Voltage	0.4	V max	$AV_{DD} = 5 \text{ V}, \text{ I}_{\text{SINK}} = 800 \ \mu\text{A}$

Parameter	AD7798/AD7799B	Unit	Test Conditions/Comments
SYSTEM CALIBRATION ²			
Full-Scale Calibration Limit	1.05 x FS	V max	
Zero-Scale Calibration Limit	-1.05 x FS	V min	
Input Span	0.8 x FS	V min	
	2.1 x FS	V max	
POWER REQUIREMENTS ⁷			
Power Supply Voltage			
V _{DD} – GND	2.7/5.25	V min/max	
IOV _{DD} – GND	2.7/5.25	V min/max	
Power Supply Currents			
IDD Current	150	μA max	125 μA typ, Unbuffered Mode
	175	μA max	150 μA typ, Buffered Mode, In-Amp Bypassed
	380	μA max	330 μA typ, In-Amp used (AD7798)
	450	μA max	400 μA typ, IN-AMP used (AD7799)
I _{DD} (Power-Down Mode)	1	μA max	

¹ Temperature Range –40°C to +105°C.

¹ Temperature Kange -40°C to + 10°C.
 ² Specification is not production tested but is supported by characterization data at initial product release.
 ³ A System calibration will reduce this error to the order of the noise for the programmed gain and update rate.
 ⁴ A calibration at any temperature will remove this error.
 ⁵ Full-scale error applies to both positive and negative full-scale and applies at the factory calibration conditions (AV_{DD} = 4 V).
 ⁶ FS[3:0] are the four bits used in the mode register to select the output word rate.
 ⁷ Disiti inputs equal to DU

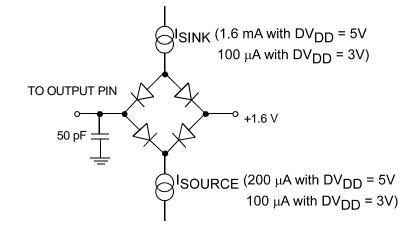
 7 Digital inputs equal to $\mathsf{DV}_{\mathsf{DD}}$ or GND.

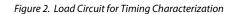
TIMING CHARACTERISTICS^{8, 9}

Table 2. $(AV_{DD} = 2.7 \text{ V to } 5.25 \text{ V}; DV_{DD} = 2.7 \text{ V to } 5.25; \text{GND} = 0 \text{ V}, \text{Input Logic } 0 = 0 \text{ V}, \text{Input Logic } 1 = DV_{DD}, \text{ unless otherwise noted.})$

Parameter	Limit at T _{MIN} , T _{MAX} (B Version)	Unit	Conditions/Comments	
t ₃	100	ns min	SCLK High Pulsewidth	
t ₄	100	ns min	SCLK Low Pulsewidth	
Read Operation				
t ₁	0	ns min	CS Falling Edge to DOUT/RDY Active Time	
	60	ns max	DV _{DD} = 4.75 V to 5.25 V	
	80	ns max	DV _{DD} = 2.7 V to 3.6 V	
t ₂ ¹⁰	0	ns min	SCLK Active Edge to Data Valid Delay ¹¹	
	60	ns max	DV _{DD} = 4.75 V to 5.25 V	
	80	ns max	DV _{DD} = 2.7 V to 3.6 V	
t ₅ ^{12, 13}	10	ns min	Bus Relinquish Time after CS Inactive Edge	
	80	ns max		
t ₆	100	ns max	SCLK Inactive Edge to CS Inactive Edge	
t ₇	10	ns min	SCLK Inactive Edge to DOUT/RDY High	
Write Operation				
t ₈	0	ns min	CS Falling Edge to SCLK Active Edge Setup Time	
t9	30	ns min	Data Valid to SCLK Edge Setup Time	
t ₁₀	25	ns min	Data Valid to SCLK Edge Hold Time	
t ₁₁	0	ns min	CS Rising Edge to SCLK Edge Hold Time	

⁸ Sample tested during initial release to ensure compliance. All input signals are specified with $t_R = t_F = 5$ ns (10% to 90% of V_{DD}) and timed from a voltage level of 1.6 V. ⁹ See Figure 3 and Figure 4.


¹⁰ These numbers are measured with the load circuit of *Figure 2* and defined as the time required for the output to cross the V_{OL} or V_{OH} limits.


¹¹ SCLK active edge is falling edge of SCLK.

¹² These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit of *Figure 2*. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, as such, are independent of external bus loading capacitances.

¹³ RDY returns high after a read of the ADC. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while RDY although care should be taken to ensure that subsequent reads do not occur close to the next output update. In continuous read mode, the digital word can be read only once.

Preliminary Technical Data

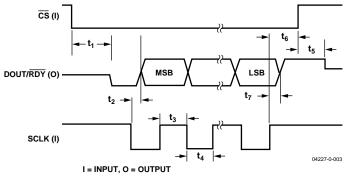


Figure 3. Read Cycle Timing Diagram

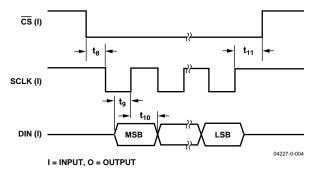


Figure 4. Write Cycle Timing Diagram

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS

Table 3. ($T_A = 25^{\circ}C$, unless otherwise noted.)

Parameter	Rating
AV _{DD} to GND	-0.3V to +7V
DV _{DD} to GND	-0.3V to +7V
Analog Input Voltage to GND	-0.3 V to AV _{DD} + 0.3 V
Reference Input Voltage to GND	-0.3 V to AV _{DD} + 0.3 V
Digital Input Voltage to GND	-0.3 V to DV _{DD} + 0.3 V
Digital Output Voltage to GND	-0.3 V to DV _{DD} + 0.3 V
AIN/digital Input Current	10 mA
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	–65°C to +150°C
Maximum Junction Temperature	150°C
TSSOP	
θ _{JA} Thermal Impedance	97.9°C/W
θ _{JC} Thermal Impedance	14°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

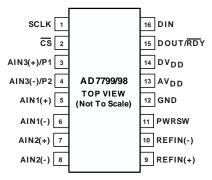


Figure 5. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	Serial Clock Input for Data Transfers to and from the ADC. The SCLK has a Schmitt-triggered input, making the interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information being transmitted to or from the ADC in smaller batches of data.	
2	<u>cs</u>	Chip Select Input. This is an active low logic input used to select the ADC. \overline{CS} can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. \overline{CS} can be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and DOUT used to interface with the device.
3	AIN3(+)/P1	Analog Input/Digital Output pin. AIN3(+) is the positive terminal of the differential analog input pair AIN3(+)/AIN3(-). Alternatively, this pin can function as a general purpose output bit referenced between AV _{DD} and GND
4	AIN3(–)/P2	Analog Input/ Digital Output pin. AIN3(-) is the negative terminal of the differential analog input pair AIN3(+)/AIN3(-). Alternatively, this pin can function as a general purpose output bit referenced between AV _{DD} and GND
5	AIN1(+)	Analog Input. AIN1(+) is the positive terminal of the differential analog input pair AIN1(+)/AIN1(-).
6	AIN1(-)	Analog Input. AIN1(-) is the negative terminal of the differential analog input pair AIN1(+)/AIN1(-).
7	AIN2(+)	Analog Input. AIN2(+) is the positive terminal of the differential analog input pair AIN2(+)/AIN2(-).
8	AIN2(-)	Analog Input. AIN2(-) is the negative terminal of the differential analog input pair AIN2(+)/AIN2(-).
9	REFIN(+)	Positive Reference Input. REFIN(+) can lie anywhere between AV _{DD} and GND + 0.1 V. The nominal reference voltage (REFIN(+) – REFIN(–)) is 2.5 V, but the part functions with a reference from 0.1 V to AV _{DD} .
10	REFIN(-)	Negative Reference Input. This reference input can lie anywhere between GND and AV _{DD} – 0.1 V.
11	PSW	Low Side Power Switch to GND.
12	GND	Ground Reference Point.
13	AV _{DD}	Supply Voltage, 2.7 V to 5.25 V.
14	DV _{DD}	Serial Interface Supply voltage, 2.7 V to 5 V. DV_{DD} is independent of AV_{DD} , therefore the serial interface can be operated at 3V with V_{DD} at 5V or vice versa.
15	DOUT/RDY	 Serial Data Output/Data Ready Output. DOUT/RDY serves a dual purpose. It functions as a serial data output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/RDY operates as a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin will go high before the next update occurs. The DOUT/RDY falling edge can be used as an interrupt to a processor, indicating that valid data is available. With an external serial clock, the data can be read using the DOUT/RDY pin. With CS low, the data/control word informa-tion is placed on the DOUT/RDY pin on the SCLK falling edge and is valid on the SCLK rising edge. The end of a conversion is also indicated by the RDY bit in the status register. When CS is high, the DOUT/RDY pin is three-stated but the RDY bit remains active.

AD7798/AD7799

Pin No.	Mnemonic	Function
16	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers within the ADC, the register selection bits of the communications register identifying the appropriate register.

TYPICAL PERFORMANCE CHARACTERISTICS

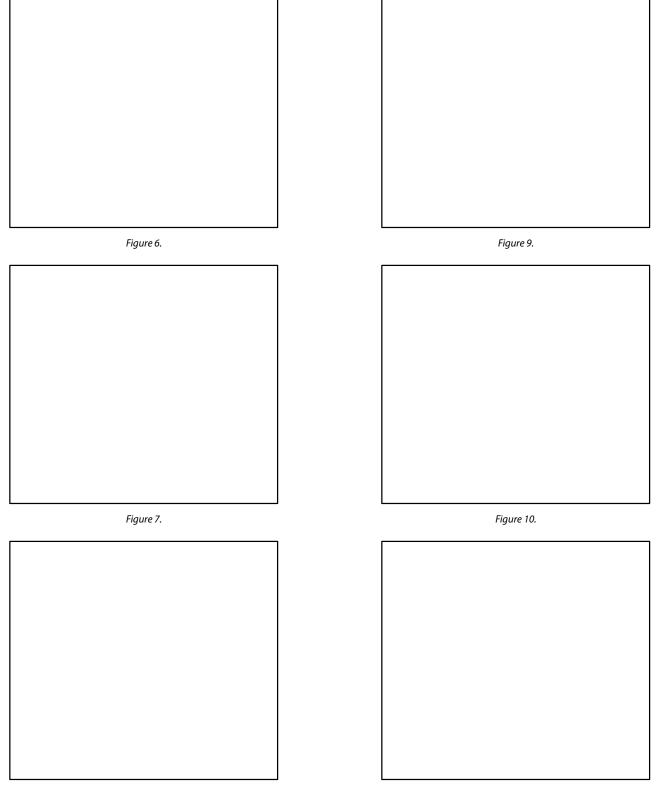


Figure 8.

Figure 11.

ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers, which are described on the following pages. In the following descriptions, *set* implies a Logic 1 state and *cleared* implies a Logic 0 state, unless otherwise stated.

COMMUNICATIONS REGISTER (RS2, RS1, RS0 = 0, 0, 0)

The communications register is an 8-bit write-only register. All communications to the part must start with a write operation to the communications register. The data written to the communications register determines whether the next operation is a read or write operation, and to which register this operation takes place. For read or write operations, once the subsequent read or write operation to the selected register is complete, the interface returns to where it expects a write operation to the communications register. This is the default state of the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications register. In situations where the interface sequence is lost, a write operation of at least 32 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 5 outlines the bit designations for the communications register. CR0 through CR7 indicate the bit location, CR denoting the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
WEN(0)	R/ W (0)	RS2(0)	RS1(0)	RS0(0)	CREAD(0)	0(0)	0(0)

Table 5. Communications Register Bit Designations

Bit Location	Bit Name	Description
CR7	WEN	Write Enable Bit. A 0 must be written to this bit so that the write to the communications register actually occurs. If a 1 is the first bit written, the part will not clock on to subsequent bits in the register. It will stay at this bit location until a 0 is written to this bit. Once a 0 is written to the WEN bit, the next seven bits will be loaded to the communications register.
CR6	R/W	A 0 in this bit location indicates that the next operation will be a write to a specified register. A 1 in this position indicates that the next operation will be a read from the designated register.
CR5–CR3	RS2-RS0	Register Address Bits. These address bits are used to select which of the ADC's registers are being selected during this serial interface communication. See Table 6.
CR2	CREAD	Continuous Read of the Data Register. When this bit is set to 1 (and the data register is selected), the serial interface is configured so that the data register can be continuously read, i.e., the contents of the data register are placed on the DOUT pin automatically when the SCLK pulses are applied. The communications register does not have to be written to for data reads. To enable continuous read mode, the instruction 01011100 must be written to the communications register. To exit the continuous read mode, the instruction 01011000 must be written to the communications register while the RDY pin is low. While in continuous read mode, the ADC monitors activity on the DIN line so that it can receive the instruction to exit continuous read mode. Additionally, a reset will occur if 32 consecutive 1s are seen on DIN. Therefore, DIN should be held low in continuous read mode until an instruction is to be written to the device.
CR1–CR0	0	These bits must be programmed to logic 0 for correct operation.

Table 6. Register Selection

RS2	RS1	RS0	Register	Register Size
0	0	0	Communications Register during a Write Operation	8-Bit
0	0	0	Status Register during a Read Operation	8-Bit
0	0	1	Mode Register	16-Bit
0	1	0	Configuration Register	16-Bit
0	1	1	Data Register	24-Bit (AD7799)
				16-bit (AD7798)
1	0	0	ID Register	8-Bit
1	0	1	IO Register	8-Bit
1	1	0	Offset Register	24-Bit (AD7799)
				16-bit (AD7798)
1	1	1	Full-Scale Register	24-Bit (AD7799)
				16-Bit (AD7798)

STATUS REGISTER (RS2, RS1, RS0 = 0, 0, 0; POWER-ON/RESET = 0x88)

The status register is an 8-bit read-only register. To access the ADC status register, the user must write to the communications register, select the next operation to be a read, and load bits RS2, RS1 and RS0 with 0. Table 7 outlines the bit designations for the status register. SR0 through SR7 indicate the bit locations, SR denoting the bits are in the status register. SR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
RDY(1)	ERR(0)	NOREF(0)	0(0)	0/1	CH2(0)	CH1(0)	CH0(0)

Bit Location	Bit Name	Description
SR7	RDY	Ready bit for ADC. <i>Cleared</i> when data is written to the ADC data register. The RDY bit is <i>set</i> automatically after the ADC data register has been read or a period of time before the data register is updated with a new conversion result to indicate to the user not to read the conversion data. It is also <i>set</i> when the part is placed in power-down mode. The end of a conversion is indicated by the DOUT/RDY pin also. This pin can be used as an alternative to the status register for monitoring the ADC for conversion data.
SR6	ERR	ADC Error Bit. This bit is written to at the same time as the RDY bit. Set to indicate that the result written to the ADC data register has been clamped to all 0s or all 1s. Error sources include overrange, underrange, NOREF Cleared by a write operation to start a conversion.
SR5	NOREF	No Reference Bit. <i>Set</i> to indicate that one or both of the REFIN pins is floating or the applied voltage is below a specified threshold. When <i>set</i> , conversion results are clamped to all ones. <i>Cleared</i> to indicate that a valid reference is applied between REFIN(+) and REFIN(-). The NOREF bit is enabled by setting the REF_DET bit in the Configuration register to 1. The ERR bit is also set if the voltage applied to the reference input is invalid.
SR4	0	This bit is automatically <i>cleared</i> .
SR3	0/1	This bit is automatically <i>cleared</i> on the AD7798, and is automatically <i>set</i> on the AD7799.
SR2–SR0	CH2–CH0	These bits indicate which channel is being converted by the ADC.

Table 7. Status Register Bit Designations

MODE REGISTER (RS2, RS1, RS0 = 0, 0, 1; POWER-ON/RESET = 0x000A)

The mode register is a 16-bit register from which data can be read or to which data can be written. This register is used to configure the Low Side Power Switch, select the mode of the ADC and select the ADC update rate. Table 8 outlines the bit designations for the mode register. MR0 through MR15 indicate the bit locations, MR denoting the bits are in the mode register. MR15 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. Any write to the setup register resets the modulator and filter and sets the RDY bit.

MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
MD2(0)	MD1(0)	MD0(0)	PSW(0)	0(0)	0(0)	0(0)	0(0)
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
(0)	(0)	0(0)	0(0)	FS3(1)	FS2(0)	FS1(1)	FS0(0)

Table 8. Mode Register Bit Designations

Bit Location	Bit Name	Description
MR15-MR13	MD2-MD0	Mode Select Bits. These bits select the operational mode of the AD7798/AD7799 (See Table 9).
MR12	PSW	Power Switch Control Bit.
		Set by user to close the power switch PSW to GND. The power switch can sink up to 20 mA.
		Cleared by user to open the power switch.
		When the ADC is placed in power-down mode, the power switch is opened.
MR11-MR4	0	These bits must be programmed with a Logic 0 for correct operation.
MR3-MR0	FS3-FS0	Filter Update Rate Select Bits (see Table 10).

Table 9. Operating Modes

MD2	MD1	ting Modes	Mode
0	0	0	Continuous Conversion Mode (Default).
Ū			In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. RDY goes low when a conversion is complete. The user can read these conversions by placing the device in continuous read mode whereby the conversions are automatically placed on the DOUT line when SCLK pulses are applied. Alternatively, the user can instruct the ADC to output the conversion by writing to the communications register. After power-on, or following a write to the Mode, Configuration or IO Registers, a conversion is available after a period $2/f_{ADC}$ while subsequent conversions are available at a frequency of f_{ADC} .
0	0	1	Single Conversion Mode.
			In single conversion mode, the ADC is placed in power-down mode when conversions are not being performed. When single conversion mode is selected, the ADC powers up and performs a single conversion, which occurs after a period 2/f _{ADC} . The conversion result in placed in the data register, RDY goes low, and the ADC returns to power-down mode. The conversion remains in the data register and RDY remains active (low) until the data is read or another conversion is performed.
0	1	0	Idle Mode.
			In Idle Mode, the ADC Filter an Modulator are held in a reset state although the modulator clocks are still provided
0	1	1	Power-Down Mode. In power down mode, all the AD7798/99 circuitry is powered down including the power switch and burnout currents.
1	0	0	Internal Zero-Scale Calibration.
			An internal short is automatically connected to the enabled channel. A calibration takes 2 conversion cycles to complete. RDY goes high when the calibration is initiated and returns low when the the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	0	1	Internal Full-Scale Calibration.
			The fullscale input is automatically connected to the selected analog input for this calibration. When the gain equals 1, a calibration takes 2 conversion cycles to complete. For higher gains, 4 conversion cycles are required for the fullscale calibration. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale calibration coefficient is placed in the fullscale register of the selected channel. A fullscale calibration is required each time the gain of a channel is changed. The full-scale error of the AD7799/AD7798 is calibrated in the factory at both a gain of 1 and 128. These values are loaded into the fullscale register when the gain is 1 or 128. If a different PGA gain is used, then an Internal Full-Scale Calibration is required to calibrate out the gain error associated with that PGA gain. Note that Internal Fullscale Calibrations cannot be performed at a gain of 128.
1	1	0	System Offset Calibration.
			User should connect the system zero-scale input to the channel input pins as selected by the CH2-CH0 bits. A system offset calibration takes 2 conversion cycles to complete. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measurded offset calibration coefficient is placed in the offset register of the selected channel.
1	1	1	System Full-Scale Calibration. User should connect the system full-scale input to the channel input pins s selected by the CH2-CH0 bits. A system full-scale calibration takes 2 conversion cycles to complete. RDY goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale calibration coefficient is placed in the fullscale register of the selected channel.

					Tsettle	
FS3	FS2	FS1	FS0	f _{ADC} (Hz)	(ms)	Rejection @50 Hz/60 Hz
0	0	0	0	х	х	
0	0	0	1	500	5	
0	0	1	0	250	8	
0	0	1	1	125	16	
0	1	0	0	62.5	32	
0	1	0	1	50	40	
0	1	1	0	41.6	48	
0	1	1	1	33.3	60	
1	0	0	0	19.6	101	90 dB (60 Hz only)
1	0	0	1	16.6	120	84 dB (50 Hz only)
1	0	1	0	16.6	120	70 dB (50 Hz and 60 Hz)
1	0	1	1	12.5	160	67 dB (50 Hz and 60 Hz)
1	1	0	0	10	200	69 dB (50 Hz and 60 Hz)
1	1	0	1	8.33	240	73 dB (50 Hz and 60 Hz)
1	1	1	0	6.25	320	74 dB (50 Hz and 60 Hz)
1	1	1	1	4.17	480	75 dB @ 50/60 Hz

Table 10. Update Rates Available

CONFIGURATION REGISTER (RS2, RS1, RS0 = 0, 1, 0; POWER-ON/RESET = 0x0710)

The configuration register is a 16-bit register from which data can be read or to which data can be written. This register is used to configure the ADC for unipolar or bipolar mode, enable or disable the buffer, enable or disable the burnout currents, select the gain and select the analog input channel. CON0 through CON15 indicate the bit locations, CON denoting the bits are in the configuration register. CON15 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
0	0	BO(0)	U/ B (0)	0(0)	G2(1)	G1(1)	G0(1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
0	0	REF_DET(0)	BUF(1)	0(0)	CH2(0)	CH1(0)	CH0(0)

Table 11.	Configuration	Register Bi	t Designations

Bit Location	Bit Name	Descrip	otion			
CON15-CON14	0	These b	its mus	t be pro	ogrammed with a lo	gic 0 for correct operation.
CON13	во	signal p	ath are	enable		is set to 1 by the user, the 100 nA current sources in the e burnout currents are disabled. The burnout currents n-Amp is active.
CON12	U/B		(00) out			unipolar coding, i.e., zero differential input will result in ential input will result in 0XFFFF(FF) output for the
		output	code of ve full-s	0x0000)(00), zero different	ing. Negative full-scale differential input will result in an ial input will result in an output code of 0x8000(00), and result in an output code of 0xFFFF(FF) for the
CON11	0	This bit	must b	e progr	ammed with a Logi	c 0 for correct operation.
CON10-CON8	G2-G0	Gain Se	lect Bits			
		Written	by the	user to	select the ADC inpu	ut range as follows
		G2	G1	G0	Gain	ADC Input Range (2.5V Reference)
		0	0	0	1 (In-Amp not used)	±2.5 V
		0	0	1	2 (In-Amp not used)	±1.25 V

AD7798/AD7799

Bit Location	Bit Name	Description					
		0 1	0	4	±625 mV		
		0 1	1	8	±312.5 mV		
		1 0	0	16	±156.2 mV		
		1 0	1	32	±78.125 mV		
		1 1	0	64	±39.06 mV		
		1 1	1	128	±19.53 mV		
CON7-CON6	0	These bits m	ust be pr	ogrammed to a logic	0 for correct operation.		
CON5	REF_DET	Enables the l	Reference	e Detect Function.			
		When <i>set</i> , the ADC is not p		bit in the status regis	ster indicates when the reference being used by the		
		When cleared	, the ref	erence detect functio	on is disabled.		
CON4	BUF	unbuffered r buffered mo	node, lov de, allow	vering the power cor	fered mode of operation. If <i>cleared</i> , the ADC operates in nsumption of the device. If <i>set</i> , the ADC operates in source impedances on the front end without		
CON3	0	This bits mus	t be prog	grammed to a logic 0	for correct operation.		
CON2-CON0	CH2-CH0	Channel Sele	ct bits.				
				select the active and	alog input channel to the ADC.		
		CH2 CH1	CH0	Channel	Calibration Pair		
		0 0	0	AIN1(+) – AIN1(-)	0		
		0 0	1	AIN2(+) – AIN2(-)	1		
		0 1	0	AIN3(+) – AIN3(-)	2		
		0 1	1	AIN1(-) – AIN1(-)	0		
		1 0	0	Reserved			
		1 0	1	Reserved			
		1 1	0	Reserved			
		1 1	1	VDD Monitor			

DATA REGISTER (RS2, RS1, RS0 = 0, 1, 1; POWER-ON/RESET = 0x0000 (AD7798)/ 0X000000 (AD7799))

The conversion result from the ADC is stored in this data register. This is a read-only register. On completion of a read operation from this register, the $\overline{\text{RDY}}$ bit/pin is set.

ID REGISTER (RS2, RS1, RS0 = 1, 0, 0; POWER-ON/RESET = 0xX8 (AD7798)/ 0xX9 (AD7799))

The Identification Number for the AD7798/AD7799 is stored in the ID register. This is a read-only register.

IO REGISTER (RS2, RS1, RS0 = 1, 0, 1; POWER-ON/RESET = 0x00)

The I/O register is an 8-bit register from which data can be read or to which data can be written. IO0 through IO7 indicate the bit locations, IO denoting the bits are in the IO register. Table 12 outline the bit designations for the IO register. IO7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

107	106	105	104	103	102	101	100
0	IOEN(0)	IO2DAT(0)	IO1DAT(0)	0	0	0	0

Table 12. I/O register Bit Designations

Bit Location	Bit Name	Description						
107	0	These bits must be programmed to a logic 0 for correct operation.						
106	IOEN	Configures the pins AIN3(+)/P1 and AIN3(-)/P2 as analog input pins or digital output pins. When this bit is <i>set</i> , the pins are configured as digital output pins P1 and P2. When this bit is <i>cleared</i> , these pins are configured as analog input pins AIN3(+) and AIN3(-).						
105-104	IO2DAT/IO1DAT	P2/P1 Data.						
103-100	0	These bits must be programmed to a logic 0 for correct operation.						

OFFSET REGISTER (RS2, RS1, RS0 = 1, 1, 0; Power-on/Reset = 0x8000 (AD7798)/0x800000 (AD7799))

The offset register holds the offset calibration coefficient for the ADC. The power-on-reset value of the internal zero-scale calibration coefficient register is 8000 hex (AD7798)/800000 hex (AD7799). The AD7798/AD7799 has 3 offset registers. Each of these registers is a 16/24-bit read/write register. However, when writing to the offset-scale registers, the ADC must be placed in power down mode or idle mode. This register is used in conjunction with its associated full-scale register to form a register pair. The power-on-reset value is automatically overwritten if an internal or system zero-scale calibration is initiated by the user.

FULLSCALE Register (RS2, RS1, RS0 = 1, 1, 1; Power-on/Reset = 0x5XXX (AD7798)/0x5XXX000 (AD7799))

The full-scale register holds the full-scale calibration coefficient for the ADC. The AD7798/AD7799 has 3 full-scale registers. Each of these registers is a 16/24-bit read/write register. However, when writing to the full-scale registers, the ADC must be placed in power down mode or idle mode. The full-scale error of the AD7799/AD7798 is calibrated in the factory at both a gain of 1 and 128. Therefore if the gain is set to 128, as on power-on, or if the gain is set to 1, the factory calibrated internal full-scale coefficients are automatically loaded into the full-scale registers of the AD7799/AD7798. Therefore, every device will have different default coefficients. The user can overwrite these values, if required. These coefficients will be automatically overwritten if an internal or system full-scale calibration is initiated by the user. A full-scale calibration should be performed when the gain is changed. When the gain equals 128, internal full-scale calibrations cannot be performed.

TYPICAL APPLICATION

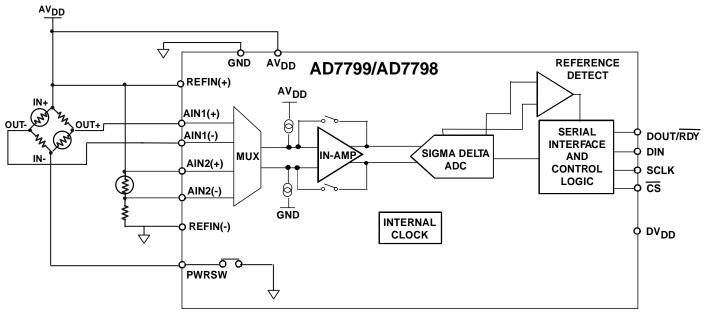


Figure 12.