THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

DS3598-3.4

MA9000 Series SILICON-ON-SAPPHIRE RADIATION HARD GATE ARRAYS

The logic building block for the GPS double level metal CMOS/SOS gate arrays is a four transistor 'cell-unit' equivalent in size to a 2 input NAND gate. Back to back cellunits as illustrated, organised in rows, form the core of the array

GEC PLESSEY

SEMICONDUCTORS

The interconnection patterns that cause groups of cell units within a row, to become defined logic cells, and the models which are used to simulate these cells, are stored as software in LIBRARIES. Cells up to the complexity of, say, multiple bit shift registers are treated in this way.

Higher complexity functions are described by MACROS as the interconnection of defined cells. Macros are 'hard', 'soft', or 'firm' according to the constraints that are applied to the distribution of the component cells within the array and whether the full function is simulated by a model or by the additive effects of the component cells.

FEATURES

- Radiation Hard to 1MRad(Si)
- High SEU Immunity, Latch-Up Free
- Double-Level-Metal CMOS/SOS Technology
- 2.5 Micron Design Rules
- Typical Gate Delay 1.2nS With 2 Loads, 60MHz Toggle Speeds
- Comprehensive Library of Logic Cells and Logic Function **Building Macros**
- 100% Automatic Place and Route for Typically 70% Utilisation

ARRAY OPTIONS

Array				Pads
Туре	Units	I/O	Power	Total
MA9007	748	46	2	48
MA9024	2484	80	4	84
MA9040	4048	102	4	106

Each cell-unit is equivalent to a 2 input NAND gate.

Any I/O site may be configured as a power pad to give flexible bonding options, but to standardise testing, preferred positions exist.

Figure 1: Cell Unit

MA9000 Series

CHARACTERISITICS & RATINGS

Symbol	Parameter	Min.	Max.	Units
V _{DD}	Supply voltage	-0.5	7	V
V _I	Input voltage	-0.3	V _{DD} + 0.3	V
T _A	Operating temperature	-55	125	°C
T _S	Storage temperature	-65	150	°C

Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions, or at any other condition above those indicated in the operations section of this specification. is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 1: Absolute Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{DD}	Supply voltage	-	4.5	5.0	5.5	V
V _{IH1}	TTL input high voltage	-	2.0	-	-	V
V _{IL1}	TTL input low voltage	-	-	-	0.8	V
V _{IH2}	CMOS input high voltage	-	80	-	-	%V _{DD}
V _{IL2}	CMOS input low voltage	-	-	-	20	%V _{DD}
V _{OH1}	TTL output high voltage	I _{ОН} = -2mА	2.4	-	-	V
V _{OL1}	TTL output low voltage	$I_{OL} = 5mA$	-	-	0.4	V
V _{OH2}	CMOS output high voltage	I _{ОН} = -4mА	90	-	-	%V _{DD}
V _{OL2}	CMOS output low voltage	$I_{OL} = 4mA$	-	-	10	%V _{DD}
IL.	Input leakage current	-	-	-	10	μA
l _{oz}	Output leakage current	Tristate Output	-	-	30	μA
I _{DD}	Power supply current	-	-	0.1	*	mA

 V_{DD} = 5V ±10%, over full operating temperature.

* Dependent on array type.

Table 2: Electrical Characteristics

AC CHARACTERISTICS

Cell Name	Function	O/P Edge	Inherent Delay	Per 1pF Load*	Units
NOP	Push/Pull Output Buffer	Rising	0.5	0.4	ns
		Falling	0.3	0.2	
NOR2	2 Input NOR	Rising	1.6	13.6	ns
		Falling	0.8	5.0	
		Rising CK - QB	4.6	13.7	
		Falling CK - QB	7.8	13.6	
RDT	Reset D Type	Data Set-up time	7.1	-	ns
		Data Hold time	4.4	-	

* 1pF is equivalent to fanout of 5 standard gates

Table 3: Electrical Characteristics

PROPAGATION DELAY

Worst case maximum propagation delays for 5 volts working and 25°C are stated in the cell libraries. These are for the data change or state change which gives the greatest delay. Typical process figures under the same conditions are generally 60% of those listed.

Use the following normalised graphs to obtain converstion factors to predict delays at any other working temperature or voltage:

Figure 2: Propogation Delay vs Temperature & Propogation Delay vs Supply Voltage

PACKAGE OPTIONS

	MA9007	MA9024	MA9040			
	196 x 129					
	100 x 120	247 7 240	001 X 002			
DIL14	Х					
DIL16	Х					
DIL20	Х					
DIL24	Х	Х				
DIL28	Х	Х				
DIL40	Х	Х				
DIL48		Х	Х			
DIL64		Х	Х			
LCC28	Х					
LCC40	Х	Х				
LCC44	Х					
LCC48		Х	Х			
LCC68		Х	Х			
LCC84		Х	Х			
FPK16	Х					
FPK20	Х					
FPK24	Х					
FPK28	Х	Х				
FPK64		Х	Х			
FPK68		Х	Х			
FPK84		Х	Х			
PGA68		Х	Х			
PGA84		Х	Х			
PGA120		Х	Х			
PGA144		Х	Х			
DIL = Dual in li	DIL = Dual in line					
LCC = Leadless chip carrier						
FPK = Leaded	flatpack					
PGA = Pin grid	array					
These are standard packages. If your package requirement is not shown above, discuss other options with an applications engineer.						

MA9000 Series

RADIATION TOLERANCE

For product procured to guaranteed total dose radiation levels, each wafer lot will be approved when all sample devices from each lot pass the total dose radiation test.

The sample devices will be subjected to the total dose radiation level (Cobalt-60 Source), defined by the ordering code, and must continue to meet the electrical parameters specified in the data sheet. Electrical tests, pre and post irradiation, will be read and recorded.

GPS can provide radiation testing compliant with MIL-STD-883C remote sensing method 1019 notice 5.

Total Dose (Function to specification)*	3x10 ⁵ Rad(Si)
Transient Upset (Stored data loss)	5x10 ¹⁰ Rad(Si)/sec
Transient Upset (Survivability)	>1x10 ¹² Rad(Si)/sec
Neutron Hardness (Function to specification)	>1x10 ¹⁵ n/cm ²
Single Event Upset**	<1x10 ⁻¹⁰ Errors/bit day
Latch Up	Not possible

* Other total dose radiation levels available on request

** Worst case galactic cosmic ray upset - interplanetary/high altitude orbit

Table 4: Radiation Hardness Parameters

CELL LIBRARY QUICK GUIDE

8 input NOR

Cell Name	Function	Cell Units	Cell Name	Function	Cell Units
COMBINAT	IONAL GATES		NOR12 NOR16	12 input NOR 16 input NOR	8 11
INV DUALINV INVB INVC BUFF BUFFC NAND2 NAND2 NAND2 NAND3 NAND4 NAND4 NAND12 NAND16 AND2 AND3 AND4 NOR2 NOR2B	Inverter Dual inverter Fast inverter Super fast inverter Non-inverting buffer Fast non-inverting buffer 2 input NAND Fast 2 input NAND 3 input NAND 4 input NAND 12 input NAND 16 input NAND 2 input AND 3 input AND 2 input AND 3 input AND 3 input AND 4 input AND 4 input AND 5 input NOR Fast 2 input NOR	1 1 2 1 2 3 1 2 2 2 6 8 11 2 3 1 2 3 1 2	NOR16 OR2 OR3 OR4 ANDNOR ANDOR ORNAND ORAND A2N01 A201 02NA1 02A1 EXNOR EXORN SEL21NV SEL2 SEL41NV SEL4	2 input NOR 2 input OR 3 input OR 4 Input OR 2 + 2 input AND/NOR 2 + 2 input AND/OR 2 + 2 OR/NAND 2 + 2 OR/AND 2 + 1 Input AND/NOR 2 + 1 input AND/OR 2 + 1 input OR/NAND 2 + 1 input OR/NAND 2 + 1 input OR/NAND Exclusive NOR Exclusive OR Select 1 of 2 (inverting) Select 1 of 2 4 bit data selector (inverting)	2 2 3 2 3 2 3 2 2 2 2 2 3 3 3 3 3 3 6 7
NOR3 NOR4	3 input NOR 4 input NOR	2 2			

6

NOR8

MA9000 Series

Cell Name	Function	Cell Units	Cell Name	Function	Cell Units	
DECODERS			REGISTERS	SHIFT REGISTERS		
DEC2T4 DEC3T8	2 to 4 line decoder 3 to 8 line decoder	6 11	SHRx RSHRx	Multibit (x = 2-8) serial register Multibit (x = 2-8) serial reg. with r		
DEC4T16	4 to 16 line decider	40	DREGx DREGTx	Multibit parallel register (x = 2-8) Multibit parallel register (x = 2-8) with tri-state outputs	8-22 12-36	
			HPLSx	Half parallel loading shift register	s 22-64	
HAD	Half adder Full adder	5		(x = 2-8)		
FAD FLAD	Full adder Fast look ahead adder	8 6	INVERTING T	RI-STATE BUFFERS		
LAH2	2 bit look ahead unit	10				
LAH3	3 bit look ahead unit	14	TRIBUFF	Tristate buffer (enable high)	2	
LAH4	4 bit look ahead unit	24	TRIBUFFL	Tristate buffer (enable low)	2	
ADD4	4 bit look ahead adder	50	TRINV	Tristate inv buffer (enable high)	2	
ADD8	8 bit look ahead adder	106	TRINVL	Tristate inv. buffer (enable low)	2	
SIMPLE LATCHES			INPUT OUTPUT AND PERIPHERAL CELLS			
NASR	NAND set reset-latch	3	DIP	Direct input (protection cicuit only	/)	
NOSR	NOR set-reset latch	3	PUP	Pull up (approx 30 Kohms)	,	
			PDO	Pull down (approx 40 Kohms)		
TRANSPARE	NT LATCHES		TSCHMITT	TTL compatible Schmitt	6	
			CSCHMITT	CMOS compatible Schmitt	6	
DL	D-latch (Active low)	4	CMOSIN	CMOS buffer (non-inverting)	1	
DLH	D-latch(Actlve high)	4	TTLIN	TTL buffer (non-inverting)	3	
SDL	Set D-latch	4	NOP	Push/pull output buffer (inverting)	
RDL	Reset D-latch	4	WNOP	Multiple NOP		
SRDL	Set/reset D-latch	5	BOP	Push/pull output buffer (non inve	rting)	
			ZOP	Tri-state output buffer		
EDGE TRIGG	ERED LATCHES		ODN	Open drain output pull down		
		_	ODP	Open drain output pull up		
RETS	Latch with reset	7	TRIOP	Tristate I/O buffer	4	
SRETS	Latch with reset and set	8	BUSINT STEPUP	Bus interface Output Buffer	6 6	
MASTER-SLA	VE FLIP-FLOPS		STEPUP		0	
			POWER SUP	PLY PADS		
DT	D-type	6				
D2T	Dual input D-type	8	VDD	V _{DD} pad		
SDT	Set D-type	7	VSS	V _{ss} pad		
RDT	Reset D-type	7				
SRDT	Set/reset D-type	8				
JK	JK flip-flop	10				
SDK	JK flip-flopwith set	11				
RJK	JK flip-flop with reset	11				
SRJK	JK flip-flop with reset and set	12				
TOGGLE FLIP	TOGGLE FLIP-FLOPS					

STT	Set T-type	7
RTT	Reset T-type	7
SRTT	Set/reset T-type	8

SYNCHRONOUS COUNTER

SYNC	Synchronous counter stage	10
01110	Cynchronous counter stage	10

MACROS

The following Macros are included in the MA9000 library. GPS are constantly adding new Macros to the library, please contact our nearest office for information on the latest additions.

Macro name	Macro name
ACOUNTn ALU4 GCOUNTn JCOUNTn LADDn MCOMPn PARITYn RADDn SEL8 SEL16 M2901 M2909 M2902 M2910	Asynchronous counters ALU Gray counters Johnson counters Lookahead adders Magnitude comparators Parity detectors Ripple carry adders Select 1 of 8 Select 1 of 16 4 bit slice microprocessor 4 bit microprogram controller Look ahead carry unit 12 bit microprogram sequencer
M2918	Pipeline register

DEVELOPMENT INTERFACES

Circuit design, captive and simulation activities are carried out by the customer. Schematic capture and simulation libraries for Dazix and Mentor Graphics CAE systems are provided by GPS. GPS will accept a simulated design and perform layout, verification checks and PG. GPS will then procure masks and fabricate and test parts prior to prototype delivery. The MA9000 arrays fall within the ESA capability domain.

DAZIX is a trademark of Intergraph UK

Mentor Graphics is a trademark of Mentor Graphics Corporation.

Figure 3: Development Interfaces

ORDERING INFORMATION

For details of Reliability, QA/QCI, Test, and Assembly options, see 'Manufacturing Capability and Quality Assurance Standards'.

GEC PLESSEY

HEADQUARTERS OPERATIONS

GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire, SN2 2QW, United Kingdom. Tel: (01793) 518000 Fax: (01793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017, 1500 Green Hills Road, Scotts Valley, California 95067-0017, United States of America. Tel: (408) 438 2900 Fax: (408) 438 5576

CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 64 46 23 45 Fax: (1) 64 46 06 07
- GERMANY Munich Tel: (089) 3609 06-0 Fax: (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 7023
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
- TAIWAN, ROC Taipei Tel: 886 2 5461260 Fax: 886 2 7190260
- UK, EIRE, DENMARK, FINLAND & NORWAY Swindon, UK Tel: (01793) 518527/518566 Fax: (01793) 518582

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1995 Publication No. DS3598-3.4 May 1995

TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any peducts whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.