THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

MA9000 Series
 SILICON-ON-SAPPHIRE RADIATION HARD GATE ARRAYS

The logic building block for the GPS double level metal CMOS/SOS gate arrays is a four transistor 'cell-unit' equivalent in size to a 2 input NAND gate. Back to back cellunits as illustrated, organised in rows, form the core of the array

The interconnection patterns that cause groups of cell units within a row, to become defined logic cells, and the models which are used to simulate these cells, are stored as software in LIBRARIES. Cells up to the complexity of, say, multiple bit shift registers are treated in this way.

Higher complexity functions are described by MACROS as the interconnection of defined cells. Macros are 'hard', 'soft', or 'firm' according to the constraints that are applied to the distribution of the component cells within the array and whether the full function is simulated by a model or by the additive effects of the component cells.

FEATURES

- Radiation Hard to $1 \mathrm{MRad}(\mathrm{Si})$
- High SEU Immunity, Latch-Up Free

■ Double-Level-Metal CMOS/SOS Technology

- 2.5 Micron Design Rules
- Typical Gate Delay 1.2nS With 2 Loads, 60 MHz Toggle Speeds
- Comprehensive Library of Logic Cells and Logic Function Building Macros
- 100\% Automatic Place and Route for Typically 70\% Utilisation

ARRAY OPTIONS

Array Type	Cell Units	Bonding Pads		
		I/O	Power	Total
MA9007	748	46	2	48
MA9024	2484	80	4	84
MA9040	4048	102	4	106

Each cell-unit is equivalent to a 2 input NAND gate.
Any I/O site may be configured as a power pad to give flexible bonding options, but to standardise testing, preferred positions exist.

Figure 1: Cell Unit

MA9000 Series

CHARACTERISITICS \& RATINGS

Symbol	Parameter	Min.	Max.	Units
V_{DD}	Supply voltage	-0.5	7	V
$\mathrm{~V}_{1}$	Input voltage	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature	-55	125	${ }^{\circ} \mathrm{C}$
T_{S}	Storage temperature	-65	150	${ }^{\circ} \mathrm{C}$

Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions, or at any other condition above those indicated in the operations section of this specification. is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 1: Absolute Maximum Ratings

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$V_{D D}$	Supply voltage	-	4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{HH} 1}$	TTL input high voltage	-	2.0	-	-	V
$\mathrm{V}_{\text {LL } 1}$	TTL input low voltage	-	-	-	0.8	V
$\mathrm{V}_{1 \mathrm{H} 2}$	CMOS input high voltage	-	80	-	-	$\% \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\text {IL2 }}$	CMOS input low voltage	-	-	-	20	$\% \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\mathrm{OH} 1}$	TTL output high voltage	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4	-	-	V
$\mathrm{V}_{\text {OL1 }}$	TTL output low voltage	$\mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}$		-	0.4	V
$\mathrm{V}_{\mathrm{OH} 2}$	CMOS output high voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	90	-	-	$\% \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\mathrm{OL} 2}$	CMOS output low voltage	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	-	-	10	$\% \mathrm{~V}_{\mathrm{DD}}$
I_{L}	Input leakage current	-	-	-	10	$\mu \mathrm{A}$
I_{Oz}	Output leakage current	Tristate Output	-	-	30	$\mu \mathrm{A}$
I_{DD}	Power supply current	-	-	0.1	*	mA

$V_{D D}=5 \mathrm{~V} \pm 10 \%$, over full operating temperature.

* Dependent on array type.

Table 2: Electrical Characteristics

AC CHARACTERISTICS

Cell Name	Function	O/P Edge	Inherent Delay	Per 1pF Load*	Units
NOP	Push/Pull Output Buffer	Rising	0.5	0.4	ns
		Falling	0.3	0.2	
NOR2	2 Input NOR	Rising	1.6	13.6	ns
		Falling	0.8	5.0	
		Rising CK - QB	4.6	13.7	
		Falling CK - QB	7.8	13.6	
		Data Set-up time	7.1	-	

* 1 pF is equivalent to fanout of 5 standard gates

Table 3: Electrical Characteristics

PROPAGATION DELAY

Worst case maximum propagation delays for 5 volts working and $25^{\circ} \mathrm{C}$ are stated in the cell libraries. These are for the data change or state change which gives the greatest delay. Typical process figures under the same conditions are generally 60% of those listed.

Use the following normalised graphs to obtain converstion factors to predict delays at any other working temperature or voltage:

Figure 2: Propogation Delay vs Temperature \& Propogation Delay vs Supply Voltage

	MA9007	MA9024	MA9040
	196×129	247×240	301×302
DIL14	X		
DIL16	X		
DIL20	X		
DIL24	X	X	
DIL28	X	X	
DIL40	X	X	
DIL48		X	X
DIL64		X	X
LCC28	X		
LCC40	X	X	
LCC44	X		
LCC48		x	x
LCC68		X	X
LCC84		X	X
FPK16	x		
FPK20	X		
FPK24	X		
FPK28	X	X	
FPK64		X	X
FPK68		X	X
FPK84		X	X
PGA68		x	x
PGA84		X	X
PGA120		X	X
PGA144		X	X
DIL = Dual in line			
LCC = Leadless chip carrier			
FPK = Leaded flatpack			
PGA $=$ Pin grid array			
These are standard packages. If your package requirement is not shown above, discuss other options with an applications engineer.			

PACKAGE OPTIONS

LCC2

LCC44
LCC48
LCC68
X
X

FPK16
FPK20
X
FPK24

FPK64
X
X

PGA68

DIL = Dual in line
LCC = Leadless chip carrier
FPK = Leaded flatpack
PGA = Pin grid array

These are standard packages. If your package requirement is not shown above, discuss other options with an applications engineer.

MA9000 Series

RADIATION TOLERANCE

For product procured to guaranteed total dose radiation levels, each wafer lot will be approved when all sample devices from each lot pass the total dose radiation test.

The sample devices will be subjected to the total dose radiation level (Cobalt-60 Source), defined by the ordering code, and must continue to meet the electrical parameters specified in the data sheet. Electrical tests, pre and post irradiation, will be read and recorded.

GPS can provide radiation testing compliant with MIL-STD883C remote sensing method 1019 notice 5.

Total Dose (Function to specification) *	$3 \times 10^{5} \mathrm{Rad}(\mathrm{Si})$
Transient Upset (Stored data loss)	$5 \times 10^{10} \mathrm{Rad}(\mathrm{Si}) / \mathrm{sec}$
Transient Upset (Survivability)	$>1 \times 10^{12} \mathrm{Rad}(\mathrm{Si}) / \mathrm{sec}$
Neutron Hardness (Function to specification)	$>1 \times 10^{15} \mathrm{n} / \mathrm{cm}^{2}$
Single Event Upset**	$<1 \times 10^{-10} \mathrm{Errors} /$ bit day
Latch Up	Not possible

* Other total dose radiation levels available on request
** Worst case galactic cosmic ray upset - interplanetary/high altitude orbit
Table 4: Radiation Hardness Parameters

CELL LIBRARY QUICK GUIDE

Cell Name Function		Cell Units	Cell Name	Function	Cell Units
COMBINATIONAL GATES			NOR12	12 input NOR	8
			NOR16	16 input NOR	11
INV	Inverter	1	OR2	2 input OR	2
DUALINV	Dual inverter	1	OR3	3 input OR	2
INVB	Fast inverter	1	OR4	4 Input OR	3
INVC	Super fast inverter	2	ANDNOR	$2+2$ input AND/NOR	2
BUFF	Non-inverting buffer	1	ANDOR	$2+2$ input AND/OR	3
BUFFB	Fast non-inverting buffer	2	ORNAND	$2+2$ OR/NAND	2
BUFFC	Super fast non-inverting buffer	3	ORAND	$2+2$ OR/AND	3
NAND2	2 input NAND	1	A2N01	$2+1$ Input AND/NOR	2
NAND2B	Fast 2 input NAND	2	A201	$2+1$ input AND/OR	2
NAND3	3 input NAND	2	02NA1	$2+1$ input OR/NAND	2
NAND4	4 input NAND	2	02A1	$2+1$ input OR/AND	2
NAND8	8 input NAND	6	EXNOR	Exclusive NOR	3
NAND12	12 input NAND	8	EXORN	Exclusive OR	3
NAND16	16 input NAND	11	SEL21NV	Select 1 of 2 (inverting)	3
AND2	2 input AND	2	SEL2	Select 1 of 2 (inverting)	6
AND3	3 input AND	2	SEL41NV	4 bit data selector (inverting)	6
AND4	4 input AND	3	SEL4	4 bit data selector	7
NOR2	2 input NOR	1			
NOR2B	Fast 2 input NOR	2			
NOR3	3 input NOR	2			
NOR4	4 input NOR	2			
NOR8	8 input NOR	6			

Cell Name Function Cell Units

DECODERS

DEC2T4	2 to 4 line decoder
DEC3T8	3 to 8 line decoder
DEC4T16	4 to 16 line decider

ARITHMETIC

HAD	Half adder	5
FAD	Full adder	8
FLAD	Fast look ahead adder	6
LAH2	2 bit look ahead unit	10
LAH3	3 bit look ahead unit	14
LAH4	4 bit look ahead unit	24
ADD4	4 bit look ahead adder	50
ADD8	8 bit look ahead adder	106

SIMPLE LATCHES
NASR NAND set reset-latch 3
NOSR NOR set-reset latch
TRANSPARENT LATCHES

DL	D-latch (Active low)
DLH	D-latch(Actlve high)
SDL	Set D-latch
RDL	Reset D-latch
SRDL	Set/reset D-latch

EDGE TRIGGERED LATCHES
RETS Latch with reset 7

SRETS Latch with reset and set
MASTER-SLAVE FLIP-FLOPS

DT	D-type	6
D2T	Dual input D-type	8
SDT	Set D-type	7
RDT	Reset D-type	7
SRDT	Set/reset D-type	8
JK	JK flip-flop	10
SDK	JK flip-flopwith set	11
RJK	JK flip-flop with reset	11
SRJK	JK flip-flop with reset and set	12

TOGGLE FLIP-FLOPS

STT	Set T-type	7
RTT	Reset T-type	7
SRTT	Set/reset T-type	8

SRTT
Set/reset T-type

SYNC
Synchronous counter stage

Cell Name Function

Cell Units

REGISTERS / SHIFT REGISTERS

SHRx	Multibit $(x=2-8)$ serial register	$16-46$
RSHRx	Multibit $(x=2-8)$ serial reg. with reset 18-54	
DREGx	Multibit parallel register $(x=2-8)$	$8-22$
DREGTx	Multibit parallel register $(x=2-8)$	$12-36$
	with tri-state outputs	
HPLSx	Half parallel loading shift registers	$22-64$
	$(x=2-8)$	

INVERTING TRI-STATE BUFFERS

TRIBUFF	Tristate buffer (enable high)	2
TRIBUFFL	Tristate buffer (enable low)	2
TRINV	Tristate inv buffer (enable high)	2
TRINVL	Tristate inv. buffer (enable low)	2
INPUT OUTPUT AND PERIPHERAL CELLS		

DIP	Direct input (protection cicuit only)	
PUP	Pull up (approx 30 Kohms)	
PDO	Pull down (approx 40 Kohms)	
TSCHMITT	TTL compatible Schmitt	6
CSCHMITT	CMOS compatible Schmitt	6
CMOSIN	CMOS buffer (non-inverting)	1
TTLIN	TTL buffer (non-inverting)	3
NOP	Push/pull output buffer (inverting)	
WNOP	Multiple NOP	
BOP	Push/pull output buffer (non inverting)	
ZOP	Tri-state output buffer	
ODN	Open drain output pull down	
ODP	Open drain output pull up	
TRIOP	Tristate I/O buffer	4
BUSINT	Bus interface	6
STEPUP	Output Buffer	6

POWER SUPPLY PADS

VDD	V $_{\text {DD }}$ pad
VSS	V $_{S S}$ pad

MA9000 Series

MACROS

The following Macros are included in the MA9000 library. GPS are constantly adding new Macros to the library, please contact our nearest office for information on the latest additions.

Macro name	Macro name
ACOUNTn	Asynchronous counters
ALU4	ALU
GCOUNTn	Gray counters
JCOUNTn	Johnson counters
LADDn	Lookahead adders
MCOMPn	Magnitude comparators
PARITYn	Parity detectors
RADDn	Ripple carry adders
SEL8	Select 1 of 8
SEL16	Select 1 of 16
M2901	4 bit slice microprocessor
M2909	4 bit microprogram controller
M2902	Look ahead carry unit
M2910	12 bit microprogram sequencer
M2918	Pipeline register

DEVELOPMENT INTERFACES

Circuit design, captive and simulation activities are carried out by the customer. Schematic capture and simulation libraries for Dazix and Mentor Graphics CAE systems are provided by GPS. GPS will accept a simulated design and perform layout, verification checks and PG. GPS will then procure masks and fabricate and test parts prior to prototype delivery. The MA9000 arrays fall within the ESA capability domain.

DAZIX is a trademark of Intergraph UK
Mentor Graphics is a trademark of Mentor Graphics Corporation.

Figure 3: Development Interfaces

ORDERING INFORMATION

For details of Reliability, QA/QCI, Test, and Assembly options, see 'Manufacturing Capability and Quality Assurance Standards'.

Base Type

07 MA9007
24 MA9024
40 MA9040

3Sx24nnnxxxxx

Radiation Tolerance

S Radiation hard processing
R 100 kRads (Si) guaranteed
Q 300 kRads (Si) guaranteed
QA/QCI Process
H 1000 kRads (Si) guaranteed

Test Process

Package Type

C Ceramic DIL (solder seal)
F Flatpack (solder seal)
L Leadless Chip Carrier
N Naked Die

Assembly Process

Reliability Level

L Rel 0
C Rel 1
D Rel 2
E Rel $3 / 4 / 5 /$ STACK
B Class B
S Class S

HEADQUARTERS OPERATIONS

GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon,
Wiltshire, SN2 2QW, United Kingdom.
Tel: (01793) 518000
Fax: (01793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017,

1500 Green Hills Road, Scotts Valley,
California 95067-0017,
United States of America.
Tel: (408) 4382900
Fax: (408) 4385576

CUSTOMER SERVICE CENTRES

- FRANCE \& BENELUX Les Ulis Cedex Tel: (1) 64462345 Fax: (1) 64460607
- GERMANY Munich Tel: (089) 3609 06-0 Fax: (089) 3609 06-55
- ITALY Milan Tel: (02) 66040867 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- NORTH AMERICA Scotts Valley, USA Tel: (408) 4382900 Fax: (408) 4387023
- SOUTH EAST ASIA Singapore Tel: (65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 4687029770 Fax: 4686404736
- TAIWAN, ROC Taipei Tel: 88625461260 Fax: 88627190260
- UK, EIRE, DENMARK, FINLAND \& NORWAY Swindon, UK Tel: (01793) 518527/518566 Fax: (01793) 518582

These are supported by Agents and Distributors in major countries world-wide.
© GEC Plessey Semiconductors 1995 Publication No. DS3598-3.4 May 1995
TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM.

