


1/116

..

GPS PROCESSOR
FEATURES
■ Application specific features

• 12 channel GPS correlation DSP hardware
and ST20 CPU (for control and position calu-
culations) on one chip

• no TCXO required
• RTCA-SC159 / WAAS / EGNOS  supported

■ GPS performance
• accuracy

- stand alone
  with SA on <100m, SA off <30m
- differential <1m
- surveying <1cm

• time to first fix
- autonomous start 90s
- cold start 45s
- warm start 7s
- obscuration 1s

■ 32-bit ST20 CPU
• 16/33 MHz processor clock
• 25 MIPS at 33 MHz
• fast integer/bit operations

■ 4 Kbytes on-chip SRAM
• 130 Mbytes/s maximum bandwidth

■ Programmable memory interface
• 4 separately configurable regions
• 8/16-bits wide
• support for mixed memory
• 2 cycle external access

■ Serial communications
• Programmable UART (ASC)
• OS-Link

■ Vectored interrupt subsystem
• 2 dedicated interrupt pins
• 5 levels of interrupt

■ Power management
• low power operation
• power down modes

■ Professional toolset support
• ANSI C compiler and libraries
• INQUEST advanced debugging tools

■ Technology
• Static clocked 50 MHz design
• 3.3 V, sub micron technology

■ 100 pin PQFP package

ST20-GP1

ENGINEERING DATA
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APPLICATIONS
■ Global Positioning System (GPS) receivers
■ Car navigation systems
■ Fleet management systems
■ Time reference for telecom systems
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1 Introduction
The ST20-GP1 is an application-specific single chip micro using the ST20 CPU with
microprocessor style peripherals added on-chip. It incorporates DSP hardware for processing the
signals from GPS (Global Positioning System) satellites.

The twelve channel GPS correlation DSP hardware is designed to handle twelve satellites, two of
which can be initialized to support the RTCA-SC159 specification for WAAS (Wide Area
Augmentation Service) and EGNOS (European Geostationary Navigation Overlay System)
services.

The ST20-GP1 has been designed to minimize system costs and reduce the complexity of GPS
systems. It offers all hardware DSP and microprocessor functions on one chip. Whilst the entire
analogue section, RF and clock generation are available on a companion chip. Thus, with the
addition of a ROM and a RAM chip, a complete GPS system is possible using just four chips, see
Figure 1.1.

Figure 1.1 GPS system

The ST20-GP1 supports large values of frequency offset, allowing the use of a very low cost
oscillator, thus saving the cost of a Temperature Controlled Crystal Oscillator (TCXO).

The CPU and software have access to the part-processed signal to enable accelerated acquisition
time.

The ST20-GP1 can implement the GPS digital signal processing algorithms using less than 50% of
the available CPU processing power. This leaves the rest available for integrating OEM application
functions such as route-finding, map display and telemetry. A hardware microkernel in the ST20
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CPU supports the sharing of CPU time between applications without an operating system or
executive overhead.

The architecture is based on the ST20 CPU core and supporting macrocells developed by SGS-
THOMSON Microelectronics. The ST20 micro-core family provides the tools and building blocks to
enable the development of highly integrated application specific 32-bit devices at the lowest cost
and fastest time to market. The ST20 macrocell library includes the ST20Cx family of 32-bit VL-
RISC (variable length reduced instruction set computer) micro-cores, embedded memories,
standard peripherals, I/O, controllers and ASICs.

The ST20-GP1 uses the ST20 macrocell library to provide the hardware modules required in a
GPS system. These include:

• DSP hardware

• Dual channel UART for serial communications

• 6 bits of parallel I/O

• Interrupt controller

• Real time clock/calendar

• Watchdog timer

The ST20-GP1 is supported by a range of software and hardware development tools for PC and
UNIX hosts including an ANSI-C ST20 software toolset and the ST20 INQUEST window based
debugging toolkit.
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2 ST20-GP1 architecture overview
The ST20-GP1 consists of an ST20 CPU plus application specific DSP hardware for handling GPS
signals, plus a dual channel UART, 8-bit parallel half-duplex link interface, 6-bit parallel IO, real time
clock and watchdog functions.

Figure 2.1 shows the subsystem modules that comprise the ST20-GP1. These modules are
outlined below and more detailed information is given in the following chapters.

DSP

The ST20-GP1 includes DSP hardware for processing signals from the GPS satellites. The DSP
module generates the pseudo-random noise (prn) signals, and de-spreads the incoming signal.

It consists of a down conversion stage that takes the 4 MHz input signal down to nominally zero
frequency both in-phase and quadrature (I & Q). This is followed by 12 parallel hardware channels
for satellite tracking, whose output is passed to the CPU for further software processing at a
programmable interval, nominally every millisecond.

CPU

The Central Processing Unit (CPU) on the ST20-GP1 is the ST20 32-bit processor core. It contains
instruction processing logic, instruction and data pointers, and an operand register. It directly
accesses the high speed on-chip memory, which can store data or programs. The processor can
access up to 4 Mbytes of memory via the programmable memory interface.
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Figure 2.1 ST20-GP1 architectural block diagram
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Memory subsystem

The ST20-GP1 on-chip memory system provides 130 Mbytes/s internal data bandwidth,
supporting pipelined 2-cycle internal memory access at 30 ns cycle times. The ST20-GP1 memory
system consists of SRAM and a programmable memory interface. The programmable memory
interface is also referred to as an external memory interface (EMI).

The ST20-GP1 uses 8 or 16-bit external RAM, 8 or 16-bit ROM, and supports an address width of
20 bits.

The ST20-GP1 product has 4 Kbytes of on-chip SRAM. The advantage of this is the ability to store
time critical code on chip, for instance interrupt routines, software kernels or device drivers, and
even frequently used data.

The ST20-GP1 memory interface controls the movement of data between the ST20-GP1 and off-
chip memory. It is designed to support memory subsystems without any external support logic and
is programmable to support a wide range of memory types. Memory is divided into 4 banks which
can each have different memory characteristics and each bank can access up to 1 Mbyte of
external memory.

The normal memory provision in a simple GPS receiver is a single 128K x 8-bit SRAM (55 or 70 ns
access time), and a single 64K x 16-bit ROM or Flash ROM (70, 90 or 100 ns access time). The
ST20-GP1 can support up to 1 Mbyte of SRAM plus 1 Mbyte of ROM, enabling additional
applications to be loaded if required.

Low power controller, real time clock and watchdog timer

The ST20-GP1 has power-down capabilities configurable in software. When powered down, a
timer can be used as an alarm, re-activating the CPU after a programmed delay. This is suitable for
ultra low power or solar powered applications such as container tracking, railway truck tracking, or
marine navigation buoys that must check they are on station at intervals. The timer can also be
used to provide a watchdog function, resetting the system if it times out.

The real time clock/calendar function is provided by a 64-bit binary counter running continuously
from the low-power clock (nominally 32768 Hz).

The ST20-GP1 is designed for 0.5 micron, 3.3 V CMOS technology and runs at speeds of up to
33 MHz. 3.3 V operation provides reduced power consumption internally and allows the use of low
power peripherals. In addition, a power-down mode is available on the ST20-GP1.

The different power levels of the ST20-GP1 are listed below.

• Operating power — power consumed during functional operation.

• Stand-by power — power consumed during little or no activity. The CPU is idle but ready to
immediately respond to an interrupt/reschedule.

• Power-down — clocks are stopped and power consumption is significantly reduced. Func-
tional operation is stalled. Normal functional operation can be resumed from previous state
as soon as the clocks are stable. No information is lost during power down as all internal
logic is static.

• Power to most of the chip removed — only the real time clock supply (RTCVDD) power on.

In power-down mode the processor and all peripherals are stopped, including the external memory
controller and optionally the PLL. Effectively the internal clock is stopped and functional operation
is stalled. On restart the clock is restarted and the chip resumes normal functional operation.
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Serial communications

The ST20-GP1 has two UARTs (Asynchronous Serial Controllers (ASCs)) for serial
communication. The UARTs provide an asynchronous serial interface and can be programmed to
support a range of baud rates and data formats, for example, data size, stop bits and parity.

There is one OS-Link on the ST20-GP1 which acts as a DMA engine independent of the CPU. The
OS-Link uses an asynchronous bit-serial (byte-stream) protocol, each bit received is sampled five
times, hence the term oversampled link (OS-Link). The OS-Link provides a pair of channels, one
input and one output channel. The link is used for:

• bootstrapping during development,

• debugging,

• communicating with OS-Link peripherals or other ST20 devices.

Interrupt subsystem

The ST20-GP1 interrupt subsystem supports five prioritized interrupts. Three interrupts are
connected to on-chip peripherals (2 for the UARTs, 1 for the programmable IO) and two are
available as external interrupt pins.

All interrupts are at a higher priority than the high priority process queue. Each interrupt level has a
higher priority than the previous and each level supports only one software handler process.

Note that interrupt handlers must not prevent the GPS DSP data traffic from being handled. During
continuous operation this has 1 ms latency and is not a problem, but during initial acquisition it has
a 32 µs rate and thus all interrupts must be disabled except if used to stop GPS operation.

Byte-wide parallel port

The byte-wide parallel port is provided to communicate with an external device. It transfers a byte
at a time, operating half duplex in the program-selected direction.

Parallel IO module

Six bits of parallel IO are provided. Each bit is programmable as an output or an input. Edge
detection logic is provided which can generate an interrupt on any change of an input bit.

System services module

The ST20-GP1 system services module includes:

• reset, initialization and error port.

• phase locked loop (PLL) — accepts 16.368 MHz input and generates all the internal high
frequency clocks needed for the CPU and the OS-Link.
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3 Digital signal processing module
The ST20-GP1 chip includes 12 channel GPS correlation DSP hardware. It is designed to handle
twelve satellites, two of which can be initialized to support the RTCA-SC159 specification.

The digital signal processing (DSP) module extracts GPS data from the incoming IF (Intermediate
Frequency) data. There are a number of stages of processing involved; these are summarized
below and in Figure 3.1. After the 12 pairs of hardware correlators, the data for all channels are
time division multiplexed onto the appropriate internal buses (i.e. values for each channel are
passed in sequence, for example: I1, Q1, I2, Q2 ... I12, Q12, I1, Q1).

Figure 3.1 DSP module block diagram

The main stages of processing are as follows:

Data sampling

This stage removes any meta-stability caused by the asynchronous input data coming from an
analogue source (the radio receiver). The data at this point consists of a carrier of nominally
4.092 MHz with a bandwidth of approximately ±1 MHz.

This stage is common to all 12 channels.

Frequency conversion (A)

The first frequency converter mixes the sampled IF data with the (nominal) 4.092 MHz signal. This
is done twice with a quarter cycle offset to produce I and Q (In-phase and Quadrature) versions of
the data at nominal zero centre frequency (this can actually be up to ±132 KHz due to errors such
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as doppler shift, crystal accuracy, etc.). The sum frequency (~8 MHz) is removed by low-pass
filtering in the correlator.

This stage is common to all 12 channels.

Correlation against pseudo-random sequence

The GPS data is transmitted as a spread-spectrum signal (with a bandwidth of about 2 MHz). In
order to recover the data it is necessary to correlate against the same Pseudo-Random Noise
(PRN) signal that was used to transmit the data. The output of the correlator accumulator is
sampled at 264 KHz. The PRN sequences come from the PRN generator.

There is a correlator for the I and Q signals for each of the 12 channels. The output signal is now
narrowband.

Frequency conversion (B)

The second stage of frequency conversion mixes the data with the local oscillator signal generated
by the Numerically Controlled Oscillator (NCO). This signal is locked, under software control, to the
Space Vehicle (SV) frequency and phase to remove the errors and take the frequency and
bandwidth of the data down to 0 and ±50 Hz respectively. Filtering to 500 Hz is achieved in
hardware, to 50 Hz in software.

This stage is shared by time division multiplexing between all 12 channels. This is loss-free as the
stage supports 12 channels x 264 KHz, approximately 3 MHz, well within its 16 MHz clock rate.

Result integration

The final stage sums the I and Q values for each channel over a user defined period. In normal
operation, the sampling period is slightly less than the 1ms length of the PRN sequence. This
ensures that no data is lost, although it may mean that some data samples are seen twice — this is
handled (mainly) in software.

The sampling period can also be programmed to be much shorter (i.e. a higher cut-off frequency
for the filter) when the system is trying to find new satellites (‘acquisition mode’).

There are two further stages of buffering for the accumulated 16-bit I and Q values for each
channel. These allow for the slightly different time domains involved1.

The results after hardware processing of the signal, using the parameters set in the DSP registers,
refer to Section 3.1, are delivered to the CPU via a DMA engine in packet format. The CPU should
perform an in (input) instruction on the appropriate channel (see address map, Figure 7.1 on
page 47) in order to read a packet.

The format of the 62-byte packets is given in Figure 3.2. These represent a two byte header,
followed by the 16-bit I-values for 12 channels, then the 16-bit Q-values for 12 channels, then the 8-
bit timestamp values for the 12 channels. The I and Q values are sent least significant byte first.
The 2 byte header contains: a ‘sync’ byte with the value #1B, and a ‘sample rate’ byte which
contains the two SampleRate  bits from the DSPControl  register, see Table 3.1.

Packets are delivered at the rate selected by the DSPControl  register, even if new data is not
available. In this case, the data value for the field is set to #8000. This guarantees that synchronism

1. Data sampled in SV time, data transmitted to the CPU at fixed intervals.
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is maintained between the satellite one-millisecond epochs and the receiver, despite time-of-
reception variations due to the varying path length from the satellite.

Figure 3.2 DSP packet format

3.1 DSP module registers

The GPS hardware channels of the ST20-GP1 are controlled by three sets of registers:

1 DSPControl  register

2 PRNcode0-11 and PRNphase0-11  registers

3 NCOfrequency0-11  and NCOphase0-11  registers

The base addresses for the DSP registers are given in the Memory Map chapter.

DSPControl register

The DSPControl  register determines whether the PRN generators are on (normal use) or disabled
(for built-in-self-test of a system), whether the system is in tracking mode (840/970 µs output rate)
or initial acquisition mode (31/62 µs), and selects which of the two rates for each mode. It also
determines whether the accumulated carrier phase in the NCO are reset to zero automatically or
continue from their existing value. The bit allocations are given in Table 3.1.

62 byte packet every 840/970/31/62 µs

Absent 16-bit values padded with #8000

12 x 8-bit
time values

12 x 16-bit
Q values

12 x 16-bit
I values

16-bit
header

sync
sample

rate
Acquisition mode

First packet (in SV ms)
T[7:6] = 10
T[5:0] = time[5:0]

Remaining packets
T[7:6] = 00
T[5:0] = sequence number
(sequence numbers are 2 to
16 or 32)

Tracking mode

T[7:6] = 10
T[5:0] = time[5:0]
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PRNcode0-11 registers

The PRNcode0-11  registers choose the code for the particular satellite, and writing these causes a
reset to the accumulated carrier phase in the NCO for the corresponding channel, if enabled by the
DSPControl  register.

The bit-fields for selecting particular GPS satellites are given in Table 3.3.

DSPControl DSP base address + #140 Write only

Bit Bit field Function

1:0 SampleRate These bits control the sampling rate (the rate at which data is sent to the DMA
controller). The encoding of these bits is as follows:

SampleRate[1:0] Transfer period
No. of samples
accumulated

Mode

00 840 µs 256 Tracking

01 970 µs 256

10 31 µs 8 Acquisition

11 62 µs 16

2 NCOResetEnable When set to 1, the accumulated NCO phase for a channel is reset when the corre-
sponding PRN code register is written.

3 PRNDisable When set to 1, all PRN generators are disabled.

Table 3.1 DSPControl  register format

PRNcode0-11 DSP base address + #00 to #2C Write only

Bit Bit field Function

6:0 PRNcode Satellite code as a 7-bit value.

Table 3.2 PRNcode0-11  register format

Satellite ID
PRNcode0-11
register value

Taps selected from G2 shift register a

by bits 6 to 4 by bits 3 to 0

1 #62 6 2

2 #73 7 3

3 #04 8 4

4 #15 9 5

5 #11 9 1

6 #22 10 2

7 #01 8 1

8 #12 9 2

9 #23 10 3

10 #32 3 2

11 #43 4 3

12 #65 6 5

13 #76 7 6

14 #07 8 7

15 #18 9 8

Table 3.3 PRNcode0-11  register value
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For channels 0 and 1, RTCA-SC159 satellite codes can also be selected. This is achieved by
setting the PRNcode0-11  register appropriately and also writing the initial value for the satellite to
the PRNinitialVal0-1  register, see Table 3.8. If uninitialized by the software, the PRNinitialVal
register defaults to 11 1111 1111 (#3FF) as required for GPS satellites.

The PRNcode0-11  and PRNinitialVal0-1  registers are normally written only when the satellite is
first chosen.

PRNphase0-11 registers

The PRN0-11phase  registers determine the relative delay between the receiver master clock, and
the start of the one millisecond repetitive code sequence. The code sequence starts when the
receiver clock counter (invisible to the software except through message timestamps) reaches the
value written to the PRNphase0-11  register. The PRNphase0-11  register must only be written
once per satellite milliseconds-epoch, which varies from the receiver epoch dynamically due to
satellite motion. Synchronism with the software is achieved by reading the register, when a write
enable flag is returned. If not enabled, the write operation is abandoned by the software.

a. Refer to the US DoD document ICD-GPS-200.
b. It is the responsibility of the software to ensure that when this value is selected, a suitable value has

been written into the PRNinitialVal0-1 register. If this channel is later used for a standard GPS sat-
ellite, the PRNinitialVal0-1  must be set to all ones (#3FF).

16 #29 10 9

17 #41 4 1

18 #52 5 2

19 #63 6 3

20 #74 7 4

21 #05 8 5

22 #16 9 6

23 #31 3 1

24 #64 6 4

25 #75 7 5

26 #06 8 6

27 #17 9 7

28 #28 10 8

29 #61 6 1

30 #72 7 2

31 #03 8 3

32 #14 9 4

- #25 10 5

- #24 10 4

- #71 7 1

- #02 8 2

- #24 10 4

WAASb #20 10 0

Satellite ID
PRNcode0-11
register value

Taps selected from G2 shift register a

by bits 6 to 4 by bits 3 to 0

Table 3.3 PRNcode0-11  register value
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The 19-bit value comprises three fields. The 3 least significant bits represent the fractional-delay in
eighths of a code-chip. The middle 10 bits represent the integer delay in code-chips, 0-1022, with
the value 1023 illegal. The upper 6 most significant bits represent the delay in integer milliseconds.

Note also that the eighth-chip resolution of the code generator is not sufficient for positioning. At
125 ns it represents approximately 40 m of range, over 100 m of position. The software must
maintain the range measurements around the 1 ns resolution level in a 32-bit field, and send an
appropriate 19-bit sub-field to the register. Note, care must be taken when calculating this field from
a computed delay, or vice versa, to allow for the missing value 1023. The overall register bit-field
cannot be used mathematically as a single binary number.

PRNphase0-11WrEn registers

The PRNphase0-11WrEn  flags are active low flags that record when the PRNphase0-11  register
can be updated. The PRNphaseWrEn  flag for a channel is set high when the corresponding
PRNphase  register is written. The flag is reset again when the value written is loaded into the PRN
generator. Note, the PRNphase0-11  register should only be updated when the PRNphase0-
11WrEn  register has been cleared by the hardware.

NCOfrequency0-11 registers

The NCOfrequency0-11  registers hold a signed 18-bit value that is added repetitively, ignoring
overflows, to the accumulated NCO phase from which the NCO sine and cosine waveforms are
generated. The addition is performed at a 264 KHz rate (16.368MHz/62). The accumulated NCO
phase is not accessible to the software, but can be cleared when initialising the channel if enabled
by the DSPControl  register.

Each unit value in the NCOfrequency0-11  register represents 264KHz/(218), i.e.
1.007080078125 Hz.

If the extreme values are written, #1FFFF and #20000, the sine wave generated will be at
approximately +132 KHz, and precisely -132 KHz respectively.

PRNphase0-11 DSP base address + #40 to #6C Write only

Bit Bit field Function

2:0 FractionalDelay Fractional delay in eighths of a code-chip.

12:3 IntegerDelay Integer delay in code-chips. Value 0-1022. Note, the value 1023 is illegal.

18:13 Delay Delay in integer milliseconds.

Table 3.4 PRNphase0-11  register format

PRNphase0-11WrEn DSP base address + #40 to #6C Read only

Bit Bit field Function

0 PRNphaseWrEn Set when the corresponding PRNphase0-11  register is set.

Table 3.5 PRNphase0-11WrEn register format

NCOfrequency0-11 DSP base address + #80 to #AC Write only

Bit Bit field Function

17:0 NCOfrequency NCO frequency as a signed 18-bit value.

Table 3.6 NCOfrequency0-11 register format
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NCOphase0-11 registers

The NCOphase0-11  registers contents are added to the accumulated phase to correct the carrier
for the final 1 Hz that cannot be resolved by the NCO frequency. This addition is not cumulative,
and the value must be updated regularly by the software as a result of carrier phase errors
measured on the satellite signal. The register holds a signed 7-bit field representing +/-180
degrees total in steps of 2.8125 degrees (360/128).

PRNinitialVal0-1 registers

The initial value for the two RTCA-SC159 capable satellites channels should be written to the
PRNinitialVal0-1  registers. The value can be found in the RTCA-SC159 Specification.

Note : The value written to the register is the Initial Value defined by RTCA-SC159 for the PRN
required. The conversion from ‘big-endian’ as used in the specification to ‘little-endian’ as
conventionally used in ST20 architectures has been implemented in the hardware.

If uninitialized by the software, this register defaults to 11 1111 1111 (#3FF) as required for GPS
satellites.

NCOphase0-11 DSP base address + #C4 to #EC Write only

Bit Bit field Function

6:0 NCOphase NCO phase as a signed 7-bit value representing +/-180 degrees total in steps of
2.8125 degrees (360/128).

Table 3.7 NCOphase0-11 register format

PRNinitialVal0-1 DSP base address + #100, #104 Write only

Bit Bit field Function

9:0 InitialValue Initial value of the RTCA-SC159 satellite channel.

Table 3.8 PRNinitialVal0-1 register format
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4 Central processing unit
The Central Processing Unit (CPU) is the ST20 32-bit processor core. It contains instruction
processing logic, instruction and data pointers, and an operand register. It can directly access the
high speed on-chip memory, which can store data or programs. Where larger amounts of memory
are required, the processor can access memory via the External Memory Interface (EMI).

The processor provides high performance:

• Fast integer multiply — 3 cycle multiply

• Fast bit shift — single cycle barrel shifter

• Byte and part-word handling

• Scheduling and interrupt support

• 64-bit integer arithmetic support

The scheduler provides a single level of pre-emption. In addition, multi-level pre-emption is
provided by the interrupt subsystem, see Chapter 5 for details. Additionally, there is a per-priority
trap handler to improve the support for arithmetic errors and illegal instructions, refer to section 4.6.

4.1 Registers

The CPU contains six registers which are used in the execution of a sequential integer process.
The six registers are:

• The workspace pointer (Wptr ) which points to an area of store where local data is kept.

• The instruction pointer (IptrReg ) which points to the next instruction to be executed.

• The status register (StatusReg ).

• The Areg , Breg  and Creg registers which form an evaluation stack.

The Areg , Breg  and Creg  registers are the sources and destinations for most arithmetic and
logical operations. Loading a value into the stack pushes Breg  into Creg , and Areg  into Breg ,
before loading Areg . Storing a value from Areg , pops Breg  into Areg and Creg  into Breg . Creg  is
left undefined.

Figure 4.1 Registers used in sequential integer processes

Areg

Breg

Creg

Wptr

IptrReg

Local data ProgramRegisters
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Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For
example, the add instruction adds the top two values in the stack and places the result on the top of
the stack. The use of a stack removes the need for instructions to explicitly specify the location of
their operands. No hardware mechanism is provided to detect that more than three values have
been loaded onto the stack; it is easy for the compiler to ensure that this never happens.

Note that a location in memory can be accessed relative to the workspace pointer, enabling the
workspace to be of any size.

The use of shadow registers provides fast, simple and clean context switching.

4.2 Processes and concurrency

The following section describes ‘default’ behavior of the CPU and it should be noted that the user
can alter this behavior, for example, by disabling timeslicing, installing a user scheduler, etc.

A process starts, performs a number of actions, and then either stops without completing or
terminates complete. Typically, a process is a sequence of instructions. The CPU can run several
processes in parallel (concurrently). Processes may be assigned either high or low priority, and
there may be any number of each.

The processor has a microcoded scheduler which enables any number of concurrent processes to
be executed together, sharing the processor time. This removes the need for a software kernel,
although kernels can still be written if desired.

At any time, a process may be

active - being executed
- interrupted by a higher priority process
- on a list waiting to be executed

inactive - waiting to input
- waiting to output
- waiting until a specified time

The scheduler operates in such a way that inactive processes do not consume any processor time.
Each active high priority process executes until it becomes inactive. The scheduler allocates a
portion of the processor’s time to each active low priority process in turn (see Section 4.3). Active
processes waiting to be executed are held in two linked lists of process workspaces, one of high
priority processes and one of low priority processes. Each list is implemented using two registers,
one of which points to the first process in the list, the other to the last. In the linked process list
shown in Figure 4.2, process S is executing and P, Q and R are active, awaiting execution. Only the
low priority process queue registers are shown; the high priority process ones behave in a similar
manner.
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Figure 4.2 Linked process list

Each process runs until it has completed its action or is descheduled. In order for several
processes to operate in parallel, a low priority process is only permitted to execute for a maximum
of two timeslice periods. After this, the machine deschedules the current process at the next
timeslicing point, adds it to the end of the low priority scheduling list and instead executes the next
active process. The timeslice period is 1ms.

There are only certain instructions at which a process may be descheduled. These are known as
descheduling points. A process may only be timesliced at certain descheduling points. These are
known as timeslicing points and are defined in such a way that the operand stack is always empty.
This removes the need for saving the operand stack when timeslicing. As a result, an expression
evaluation can be guaranteed to execute without the process being timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace
and the next process taken from the list.

The processor core provides a number of special instructions to support the process model,
including startp (start process) and endp (end process). When a main process executes a parallel
construct, startp is used to create the necessary additional concurrent processes. A startp
instruction creates a new process by adding a new workspace to the end of the scheduling list,
enabling the new concurrent process to be executed together with the ones already being
executed. When a process is made active it is always added to the end of the list, and thus cannot
pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the endp instruction. This uses
a data structure that includes a counter of the parallel construct components which have still to
terminate. The counter is initialized to the number of components before the processes are started.
Each component ends with an endp instruction which decrements and tests the counter. For all but

Function High priority Low priority

Pointer to front of active process list FptrReg0 FptrReg1

Pointer to back of active process list BptrReg0 BptrReg1

Table 4.1  Priority queue control registers

P

Q

R

S

FptrReg1

Local DataRegisters Program

BptrReg1

pw.Iptr
pw.Link

pw.Iptr
pw.Link

pw.Iptr

Wptr

IptrReg

Areg

Breg

Creg
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the last component, the counter is non zero and the component is descheduled. For the last
component, the counter is zero and the main process continues.

4.3 Priority

The following section describes ‘default’ behavior of the CPU and it should be noted that the user
can alter this behavior, for example, by disabling timeslicing and priority interrupts.

The processor can execute processes at one of two priority levels, one level for urgent (high
priority) processes, one for less urgent (low priority) processes. A high priority process will always
execute in preference to a low priority process if both are able to do so.

High priority processes are expected to execute for a short time. If one or more high priority
processes are active, then the first on the queue is selected and executes until it has to wait for a
communication, a timer input, or until it completes processing.

If no process at high priority is active, but one or more processes at low priority are active, then one
is selected. Low priority processes are periodically timesliced to provide an even distribution of
processor time between computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority
process becomes active to the time when it starts processing is the order of 2n timeslice periods. It
is then able to execute for between one and two timeslice periods, less any time taken by high
priority processes. This assumes that no process monopolizes the CPU’s time; i.e. it has frequent
timeslicing points.

The specific condition for a high priority process to start execution is that the CPU is idle or running
at low priority and the high priority queue is non-empty.

If a high priority process becomes able to run whilst a low priority process is executing, the low
priority process is temporarily stopped and the high priority process is executed. The state of the
low priority process is saved into ‘shadow’ registers and the high priority process is executed.
When no further high priority processes are able to run, the state of the interrupted low priority
process is re-loaded from the shadow registers and the interrupted low priority process continues
executing. Instructions are provided on the processor core to allow a high priority process to store
the shadow registers to memory and to load them from memory. Instructions are also provided to
allow a process to exchange an alternative process queue for either priority process queue (see
Table 6.21 on page 43). These instructions allow extensions to be made to the scheduler for
custom runtime kernels.

A low priority process may be interrupted after it has completed execution of any instruction. In
addition, to minimize the time taken for an interrupting high priority process to start executing, the
potentially time consuming instructions are interruptible. Also some instructions are abortable and
are restarted when the process next becomes active (refer to the Instruction Set chapter).

4.4 Process communications

Communication between processes takes place over channels, and is implemented in hardware.
Communication is point-to-point, synchronized and unbuffered. As a result, a channel needs no
process queue, no message queue and no message buffer.

A channel between two processes executing on the same CPU is implemented by a single word in
memory; a channel between processes executing on different processors is implemented by point-
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to-point links. The processor provides a number of operations to support message passing, the
most important being in (input message) and out (output message).

The in and out instructions use the address of the channel to determine whether the channel is
internal or external. This means that the same instruction sequence can be used for both hard and
soft channels, allowing a process to be written and compiled without knowledge of where its
channels are implemented.

Communication takes place when both the inputting and outputting processes are ready.
Consequently, the process which first becomes ready must wait until the second one is also ready.
The inputting and outputting processes only become active when the communication has
completed.

A process performs an input or output by loading the evaluation stack with, a pointer to a message,
the address of a channel, and a count of the number of bytes to be transferred, and then executing
an in or out instruction.

4.5 Timers

There are two 32-bit hardware timer clocks which ‘tick’ periodically. These are independent of any
on-chip peripheral real time clock. The timers provide accurate process timing, allowing processes
to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond,
cycling completely in approximately 4295 seconds. The other is accessible only to low priority
processes and is incremented every 64 microseconds, giving 15625 ticks in one second. It has a
full period of approximately 76 hours. All times are approximate due to the clock rate.

The current value of the processor clock can be read by executing a ldtimer (load timer) instruction.
A process can arrange to perform a tin (timer input), in which case it will become ready to execute
after a specified time has been reached. The tin instruction requires a time to be specified. If this
time is in the ‘past’ then the instruction has no effect. If the time is in the ‘future’ then the process is
descheduled. When the specified time is reached the process becomes active. In addition, the
ldclock (load clock), stclock (store clock) instructions allow total control over the clock value and the
clockenb (clock enable), clockdis (clock disable) instructions allow each clock to be individually
stopped and re-started.

Figure 4.3 shows two processes waiting on the timer queue, one waiting for time 21, the other for
time 31.

Note, these timers stop counting when power-down mode (see Section 10.2 on page 61) is
invoked.

Register Function

ClockReg0 Current value of high priority (level 0) process clock

ClockReg1 Current value of low priority (level 1) process clock

TnextReg0 Indicates time of earliest event on high priority (level 0) timer queue

TnextReg1 Indicates time of earliest event on low priority (level 1) timer queue

TptrReg0 High priority timer queue

TptrReg1 Low priority timer queue

Table 4.2  Timer registers
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Figure 4.3 Timer registers

4.6 Traps and exceptions

A software error, such as arithmetic overflow or array bounds violation, can cause an error flag to
be set in the CPU. The flag is directly connected to the ErrorOut  pin. Both the flag and the pin can
be ignored, or the CPU stopped. Stopping the CPU on an error means that the error cannot cause
further corruption. As well as containing the error in this way it is possible to determine the state of
the CPU and its memory at the time the error occurred. This is particularly useful for postmortem
debugging where the debugger can be used to examine the state and history of the processor
leading up to and causing the error condition.

In addition, if a trap handler process is installed, a variety of traps/exceptions can be trapped and
handled by software. A user supplied trap handler routine can be provided for each high/low
process priority level. The handler is started when a trap occurs and is given the reason for the
trap. The trap handler is not re-entrant and must not cause a trap itself within the same group. All
traps are individually maskable.

4.6.1 Trap groups

The trap mechanism is arranged on a per priority basis. For each priority there is a handler for each
group of traps, as shown in Figure 4.4.
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Figure 4.4 Trap arrangement

There are four groups of traps, as detailed below.

• Breakpoint

This group consists of the Breakpoint trap. The breakpoint instruction (j0) calls the break-
point routine via the trap mechanism.

• Errors

The traps in this group are IntegerError and Overflow. Overflow represents arithmetic over-
flow, such as arithmetic results which do not fit in the result word. IntegerError represents
errors caused when data is erroneous, for example when a range checking instruction finds
that data is out of range.

• System operations

This group consists of the LoadTrap, StoreTrap and IllegalOpcode traps. The IllegalOpcode
trap is signalled when an attempt is made to execute an illegal instruction. The LoadTrap
and StoreTrap traps allow a kernel to intercept attempts by a monitored process to change
or examine trap handlers or trapped process information. It enables a user program to sig-
nal to a kernel that it wishes to install a new trap handler.

• Scheduler

The scheduler trap group consists of the ExternalChannel, InternalChannel, Timer, TimeS-
lice, Run, Signal, ProcessInterrupt and QueueEmpty traps. The ProcessInterrupt trap sig-
nals that the machine has performed a priority interrupt from low to high. The QueueEmpty
trap indicates that there is no further executable work to perform. The other traps in this
group indicate that the hardware scheduler wants to schedule a process on a process
queue, with the different traps enabling the different sources of this to be monitored.

The scheduler traps enable a software scheduler kernel to use the hardware scheduler to
implement a multi-priority software scheduler.

Note that scheduler traps are different from other traps as they are caused by the micro-
scheduler rather than by an executing process.

Note, when the scheduler trap is caused by a process that is ready to be scheduled, the
Wptr  of that process is stored in the workspace of the scheduler trap handler, at address 0.
The trap handler can access this using a ldl 0 instruction.

Low priority traps High priority traps
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Trap groups encoding is shown in Table 4.4 below. These codes are used to identify trap groups to
various instructions.

In addition to the trap groups mentioned above, the CauseError  flag in the Status register is used
to signal when a trap condition has been activated by the causeerror instruction. It can be used to
indicate when trap conditions have occurred due to the user setting them, rather than by the
system.

4.6.2 Events that can cause traps

Table 4.4 summarizes the events that can cause traps and gives the encoding of bits in the trap
Status  and Enable  words.

Trap group Code

Breakpoint 0

CPU Errors 1

System operations 2

Scheduler 3

Table 4.3  Trap group codes

Trap cause Status/Enable
codes

Trap
group

Comments

Breakpoint 0 0 When a process executes the breakpoint instruction (j0) then it traps
to its trap handler.

IntegerError 1 1 Integer error other than integer overflow – e.g. explicitly checked or
explicitly set error.

Overflow 2 1 Integer overflow or integer division by zero.

IllegalOpcode 3 2 Attempt to execute an illegal instruction. This is signalled when opr
(operate) is executed with an invalid operand.

LoadTrap 4 2 When the trap descriptor is read with the ldtraph (load trap handler)
instruction or when the trapped process status is read with the
ldtrapped (load trapped) instruction.

StoreTrap 5 2 When the trap descriptor is written with the sttraph (store trap handler)
instruction or when the trapped process status is written with the
sttrapped (store trapped) instruction.

InternalChannel 6 3 Scheduler trap from internal channel.

ExternalChannel 7 3 Scheduler trap from external channel.

Timer 8 3 Scheduler trap from timer alarm.

Timeslice 9 3 Scheduler trap from timeslice.

Run 10 3 Scheduler trap from runp (run process) or startp (start process).

Signal 11 3 Scheduler trap from signal.

ProcessInterrupt 12 3 Start executing a process at a new priority level.

QueueEmpty 13 3 Caused by no process active at a priority level.

CauseError 15 (Status only) Any,
encoded

0-3

Signals that the causeerror instruction set the trap flag.

Table 4.4  Trap causes and Status /Enable  codes
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4.6.3 Trap handlers

For each trap handler there is a trap handler structure and a trapped process structure. Both the
trap handler structure and the trapped process structure are in memory and can be accessed via
instructions, see Section 4.6.4.

The trap handler structure specifies what should happen when a trap condition is present, see
Table 4.6.

The trapped process structure saves some of the state of the process that was running when the
trap was taken, see Table 4.7.

In addition, for each priority, there is an Enables  register and a Status  register. The Enables
register contains flags to enable each cause of trap. The Status  register contains flags to indicate
which trap conditions have been detected. The Enables  and Status  register bit encodings are
given in Table 4.4.

A trap will be taken at an interruptible point if a trap is set and the corresponding trap enable bit is
set in the Enables  register. If the trap is not enabled then nothing is done with the trap condition. If
the trap is enabled then the corresponding bit is set in the Status register to indicate the trap
condition has occurred.

When a process takes a trap the processor saves the existing Iptr , Wptr , Status  and Enables  in
the trapped process structure. It then loads Iptr , Wptr  and Status  from the equivalent trap handler
structure and ANDs the value in Enables  with the value in the structure. This allows the user to
disable various events while in the handler, in particular a trap handler must disable all the traps of
its trap group to avoid the possibility of a handler trapping to itself.

The trap handler then executes. The values in the trapped process structure can be examined
using the ldtrapped instruction (see Section 4.6.4). When the trap handler has completed its
operation it returns to the trapped process via the tret (trap return) instruction. This reloads the
values saved in the trapped process structure and clears the trap flag in Status .

Note that when a trap handler is started, Areg , Breg and Creg are not saved. The trap handler
must save the Areg , Breg , Creg  registers using stl (store local).

Comments

Iptr Iptr  of trap handler process. Base + 3

Wptr Wptr  of trap handler process. Base + 2

Status Contains the Status register that the trap handler starts with. Base + 1

Enables Contains a word which encodes the trap enable and global interrupt masks which will be
ANDed with the existing masks to allow the trap handler to disable various events while it
runs.

Base + 0

Table 4.5  Trap handler structure

Comments

Iptr Points to the instruction after the one that caused the trap condition. Base + 3

Wptr Wptr  of the process that was running when the trap was taken. Base + 2

Status The relevant trap bit is set, see Table 4.5 for trap codes. Base + 1

Enables Interrupt enables. Base + 0

Table 4.6  Trapped process structure
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4.6.4 Trap instructions

Trap handlers and trapped processes can be set up and examined via the ldtraph, sttraph,
ldtrapped and sttrapped instructions. Table 4.8 describes the instructions that may be used when
dealing with traps.

The first four instructions transfer data to/from the trap handler structures or trapped process
structures from/to an area in memory. In these instructions Areg contains the trap group code (see
Table 4.4) and Breg  points to the 4 word area of memory used as the source or destination of the
transfer. In addition Creg  contains the priority of the handler to be installed/examined in the case of
ldtraph or sttraph. ldtrapped and sttrapped apply only to the current priority.

If the LoadTrap trap is enabled then ldtraph and ldtrapped do not perform the transfer but set the
LoadTrap  trap flag. If the StoreTrap trap is enabled then sttraph and sttrapped do not perform the
transfer but set the StoreTrap  trap flag.

The trap enable masks are encoded by an array of bits (see Table 4.5) which are set to indicate
which traps are enabled. This array of bits is stored in the lower half-word of the Enables register.
There is an Enables  register for each priority. Traps are enabled or disabled by loading a mask into
Areg  with bits set to indicate which traps are to be affected and the priority to affect in Breg .
Executing trapenb ORs the mask supplied in Areg  with the trap enables mask in the Enables
register for the priority in Breg . Executing trapdis negates the mask supplied in Areg  and ANDs it
with the trap enables mask in the Enables  register for the priority in Breg . Both instructions return
the previous value of the trap enables mask in Areg .

4.6.5 Restrictions on trap handlers

There are various restrictions that must be placed on trap handlers to ensure that they work
correctly.

1 Trap handlers must not deschedule or timeslice. Trap handlers alter the Enables  masks,
therefore they must not allow other processes to execute until they have completed.

2 Trap handlers must have their Enable  masks set to mask all traps in their trap group to
avoid the possibility of a trap handler trapping to itself.

3 Trap handlers must terminate via the tret (trap return) instruction. The only exception to this
is that a scheduler kernel may use restart to return to a previously shadowed process.

Instruction Meaning Use

ldtraph load trap handler load the trap handler from memory to the trap handler descriptor

sttraph store trap handler store an existing trap handler descriptor to memory

ldtrapped load trapped load replacement trapped process status from memory

sttrapped store trapped store trapped process status to memory

trapenb trap enable enable traps

trapdis trap disable disable traps

tret trap return used to return from a trap handler

causeerror cause error program can simulate the occurrence of an error

Table 4.7  Instructions which may be used when dealing with traps
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5 Interrupt controller
The ST20-GP1 supports external interrupts, enabling an on-chip subsystem or external interrupt
pin to interrupt the currently running process in order to run an interrupt handling process.

The ST20-GP1 interrupt subsystem supports five prioritized interrupts. This allows nested pre-
emptive interrupts for real-time system design. Three interrupts are connected to on-chip
peripherals (2 for the UARTs, 1 for the programmable IO) and two are available as external
interrupt pins.

All interrupts are at a higher priority than the high priority process queue, see Figure 5.1. Each
interrupt level has a higher priority than the previous (interrupt 0 is lowest priority) and each level
supports only one software handler process.Note that interrupt handlers must not prevent the GPS
DSP data traffic from being handled. During continuous operation this has 1 ms latency and is not
a problem, but during initial acquisition it has a 32 µs rate and thus all interrupts must be disabled
except if used to stop GPS operation.

Figure 5.1 Interrupt priority

Interrupts on the ST20-GP1 are implemented via an on-chip interrupt controller peripheral. An
interrupt can be signalled to the controller by one of the following:

• a signal on an external Interrupt pin

• a signal from an internal peripheral or subsystem

• software asserting an interrupt in a bit mask
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5.1 Interrupt vector table

The interrupt controller contains a table of pointers to interrupt handlers. Each interrupt handler is
represented by its workspace pointer (Wptr ). The table contains a workspace pointer for each level
of interrupt.

The Wptr  gives access to the code, data and interrupt save space of the interrupt handler. The
position of the Wptr  in the interrupt table implies the priority of the interrupt.

Run-time library support is provided for setting and programming the vector table.

5.2 Interrupt handlers

At any interruptible point in its execution the CPU can receive an interrupt request from the
interrupt controller. The CPU immediately acknowledges the request.

In response to receiving an interrupt the CPU performs a procedure call to the process in the
vector table. The state of the interrupted process is stored in the workspace of the interrupt handler
as shown in Figure 5.2. Each interrupt level has its own workspace.

Figure 5.2 State of interrupted process

The interrupt routine is initialized with space below Wptr . The Iptr and Status word for the routine
are stored there permanently. This should be programmed before the Wptr  is written into the vector
table. The behavior of the interrupt differs depending on the priority of the CPU when the interrupt
occurs.

When an interrupt occurs when the CPU was running at high priority, the CPU saves the current
process state (Areg , Breg , Creg , Wptr , Iptr and Status ) into the workspace of the interrupt
handler. The value HandlerWptr , which is stored in the interrupt controller, points to the top of this
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workspace. The values of Iptr  and Status to be used by the interrupt handler are loaded from this
workspace and starts executing the handler. The value of Wptr is then set to the bottom of this
save area.

When an interrupt occurs when the CPU was idle or running at low priority, the Status is saved.
This indicates that no valid process is running (Null Status). The interrupted processes (low priority
process) state is stored in shadow registers. This state can be accessed via the ldshadow (load
shadow registers) and stshadow (store shadow registers) instructions. The interrupt handler is then
run at high priority.

When the interrupt routine has completed it must adjust Wptr to the value at the start of the
handler code and then execute the iret (interrupt return) instruction. This restores the interrupted
state from the interrupt handler structure and signals to the interrupt controller that the interrupt has
completed. The processor will then continue from where it was before being interrupted.

5.3 Interrupt latency

The interrupt latency is dependent on the data being accessed and the position of the interrupt
handler and the interrupted process. This allows systems to be designed with the best trade-off use
of fast internal memory and interrupt latency.

5.4 Pre-emption and interrupt priority

Each interrupt channel has an implied priority fixed by its place in the interrupt vector table. All
interrupts will cause scheduled processes of any priority to be suspended and the interrupt handler
started. Once an interrupt has been sent from the controller to the CPU the controller keeps a
record of the current executing interrupt priority. This is only cleared when the interrupt handler
executes a return from interrupt (iret) instruction. Interrupts of a lower priority arriving will be
blocked by the interrupt controller until the interrupt priority has descended to such a level that the
routine will execute. An interrupt of a higher priority than the currently executing handler will be
passed to the CPU and cause the current handler to be suspended until the higher priority interrupt
is serviced.

In this way interrupts can be nested and a higher priority interrupt will always pre-empt a lower
priority one. Deep nesting and placing frequent interrupts at high priority can result in a system
where low priority interrupts are never serviced or the controller and CPU time are consumed in
nesting interrupt priorities and not executing the interrupt handlers.

5.5 Restrictions on interrupt handlers

There are various restrictions that must be placed on interrupt handlers to ensure that they interact
correctly with the rest of the process model implemented in the CPU.

1 Interrupt handlers must not deschedule.

2 Interrupt handlers must not execute communication instructions. However they may com-
municate with other processes through shared variables using the semaphore signal to
synchronize.

3 Interrupt handlers must not perform block move instructions.

4 Interrupt handlers must not cause program traps. However they may be trapped by a
scheduler trap.
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5.6 Interrupt configuration registers

The interrupt controller is allocated a 4k block of memory in the internal peripheral address space.
Information on interrupts is stored in registers as detailed in the following section. The registers can
be examined and set by the devlw (device load word) and devsw (device store word) instructions.
Note, they can not be accessed using memory instructions.

HandlerWptr register

The HandlerWptr registers (1 per interrupt) contain a pointer to the workspace of the interrupt
handler.

Note, before the interrupt is enabled, by writing a 1 in the Mask  register, the user (or toolset) must
ensure that there is a valid Wptr  in the register.

TriggerMode register

Each interrupt channel can be programmed to trigger on rising/falling edges or high/low levels on
the external Interrupt .

Note, level triggering is different to edge triggering in that if the input is held at the triggering level, a
continuous stream of interrupts is generated.

Mask register

An interrupt mask register is provided in the interrupt controller to selectively enable or disable
external interrupts. This mask register also includes a global interrupt disable bit to disable all
external interrupts whatever the state of the individual interrupt mask bits.

To complement this the interrupt controller also includes an interrupt pending register which
contains a pending flag for each interrupt channel. The Mask register performs a masking function
on the Pending register to give control over what is allowed to interrupt the CPU while retaining the
ability to continually monitor external interrupts.

HandlerWptr0-4 Interrupt controller base address + #00 to #10 Read/Write

Bit Bit field Function

31:2 HandlerWptr Pointer to the workspace of the interrupt handler.

1:0 RESERVED. Write 0.

Table 5.1 HandlerWptr  register format — one register per interrupt

TriggerMode0-4 Interrupt controller base address + #40 to #50 Read/Write

Bit Bit field Function

2:0 Trigger Control the triggering condition of the Interrupt , as follows:
Trigger2:0 Interrupt triggers on

000 No trigger mode
001 High level - triggered while input high
010 Low level - triggered while input low
011 Rising edge - low to high transition
100 Falling edge - high to low transition
101 Any edge - triggered on rising and falling edges
110 No trigger mode
111 No trigger mode

Table 5.2 TriggerMode  register format — one register per interrupt
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On start-up, the Mask register is initialized to zero’s, thus all interrupts are disabled, both globally
and individually. When a 1 is written to the GlobalEnable  bit, the individual interrupt bits are still
disabled and must also have a 1 individually written to the InterruptEnable  bit to enable the
respective interrupt.

The Mask register is mapped onto two additional addresses so that bits can be set or cleared
individually.

Set_Mask  (address ‘interrupt base address + #C4’) allows bits to be set individually. Writing a ‘1’ in
this register sets the corresponding bit in the Mask register, a ‘0’ leaves the bit unchanged.

Clear_Mask  (address ‘interrupt base address + #C8’) allows bits to be cleared individually. Writing
a ‘1’ in this register resets the corresponding bit in the Mask register, a ‘0’ leaves the bit
unchanged.

Pending register

The Pending register contains a bit per interrupt with each bit controlled by the corresponding
interrupt. A read can be used to examine the state of the interrupt controller while a write can be
used to explicitly trigger an interrupt.

A bit is set when the triggering condition for an interrupt is met. All bits are independent so that
several bits can be set in the same cycle. Once a bit is set, a further triggering condition will have
no effect. The triggering condition is independent of the Mask register.

The highest priority interrupt bit is reset once the interrupt controller has made an interrupt request
to the CPU.

Mask Interrupt controller base address + #C0 Read/Write

Bit Bit field Function

0 Interrupt0Enable When set to 1, interrupt 0 is enabled. When 0, interrupt 0 is disabled.

1 Interrupt1Enable When set to 1, interrupt 1 is enabled. When 0, interrupt 1 is disabled.

2 Interrupt2Enable When set to 1, interrupt 2 is enabled. When 0, interrupt 2 is disabled.

3 Interrupt3Enable When set to 1, interrupt 3 is enabled. When 0, interrupt 3 is disabled.

4 Interrupt4Enable When set to 1, interrupt 4 is enabled. When 0, interrupt 4 is disabled.

16 GlobalEnable When set to 1, the setting of the interrupt is determined by the specific InterruptEn-
able  bit. When 0, all interrupts are disabled.

15:5 RESERVED. Write 0.

Table 5.3 Mask  register format
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The interrupt controller receives external interrupt requests and makes an interrupt request to the
CPU when it has a pending interrupt request of higher priority than the currently executing interrupt
handler.

The Pending register is mapped onto two additional addresses so that bits can be set or cleared
individually.

Set_Pending  (address ‘interrupt base address + #84’) allows bits to be set individually. Writing a
‘1’ in this register sets the corresponding bit in the Pending register, a ‘0’ leaves the bit unchanged.

Clear_Pending  (address ‘interrupt base address + #88’) allows bits to be cleared individually.
Writing a ‘1’ in this register resets the corresponding bit in the Pending register, a ‘0’ leaves the bit
unchanged.

Note, if the CPU wants to write or clear some bits of the Pending register, the interrupts should be
masked (by writing or clearing the Mask register) before writing or clearing the Pending  register.
The interrupts can then be unmasked.

Exec register

The Exec register keeps track of the currently executing and pre-empted interrupts. A bit is set
when the CPU starts running code for that interrupt. The highest priority interrupt bit is reset once
the interrupt handler executes a return from interrupt (iret).

The Exec register is mapped onto two additional addresses so that bits can be set or cleared
individually.
Set_Exec  (address ‘interrupt base address + #104’) allows bits to be set individually. Writing a ‘1’
in this register sets the corresponding bit in the Exec register, a ‘0’ leaves the bit unchanged.

Clear_Exec  (address ‘interrupt base address + #108’) allows bits to be cleared individually. Writing
a ‘1’ in this register resets the corresponding bit in the Exec register, a ‘0’ leaves the bit unchanged.

Pending Interrupt controller base address + #80 Read/Write

Bit Bit field Function

0 PendingInt0 Interrupt 0 pending bit.

1 PendingInt1 Interrupt 1 pending bit.

2 PendingInt2 Interrupt 2 pending bit.

3 PendingInt3 Interrupt 3 pending bit.

4 PendingInt4 Interrupt 4 pending bit.

Table 5.4 Pending  register format

Exec Interrupt controller base address + #100 Read/Write

Bit Bit field Function

0 Interrupt0Exec Set to 1 when the CPU starts running code for interrupt 0.

1 Interrupt1Exec Set to 1 when the CPU starts running code for interrupt 1.

2 Interrupt2Exec Set to 1 when the CPU starts running code for interrupt 2.

3 Interrupt3Exec Set to 1 when the CPU starts running code for interrupt 3.

4 Interrupt4Exec Set to 1 when the CPU starts running code for interrupt 4.

Table 5.5 Exec  register format
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6 Instruction set
This chapter provides information on the instruction set. It contains tables listing all the instructions,
and where applicable provides details of the number of processor cycles taken by an instruction.

The instruction set has been designed for simple and efficient compilation of high-level languages.
All instructions have the same format, designed to give a compact representation of the operations
occurring most frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits
(MSB) of the byte are a function code and the four least significant bits (LSB) are a data value, as
shown in Figure 6.1.

Figure 6.1 Instruction format

For further information on the instruction set refer to the ST20 Instruction Set Manual (document
number 72-TRN-273-01).

6.1 Instruction cycles

Timing information is available for some instructions. However, it should be noted that many
instructions have ranges of timings which are data dependent.

Where included, timing information is based on the number of clock cycles assuming any memory
accesses are to 2 cycle internal memory and no other subsystem is using memory. Actual time will
be dependent on the speed of external memory and memory bus availability.

Note that the actual time can be increased by:

1 the instruction requiring a value on the register stack from the final memory read in the pre-
vious instruction — the current instruction will stall until the value becomes available.

2 the first memory operation in the current instruction can be delayed while a preceding
memory operation completes — any two memory operations can be in progress at any
time, any further operation will stall until the first completes.

3 memory operations in current instructions can be delayed by access by instruction fetch or
subsystems to the memory interface.

4 there can be a delay between instructions while the instruction fetch unit fetches and par-
tially decodes the next instruction — this will be the case whenever an instruction causes
the instruction flow to jump.

Note that the instruction timings given refer to ‘standard’ behavior and may be different if, for
example, traps are set by the instruction.

Function Data

7 4 3 0
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6.2 Instruction characteristics

The Primary Instructions Table 6.3 gives the basic function code. Where the operand is less than
16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative
the first prefix instruction will be nfix. Examples of pfix and nfix coding are given in Table 6.1.

Any instruction which is not in the instruction set tables is an invalid instruction and is flagged
illegal, returning an error code to the trap handler, if loaded and enabled.

The Notes  column of the tables indicates the descheduling and error features of an instruction as
described in Table 6.2.

Mnemonic Function code Memory code

ldc #3 #4 #43

ldc #35

is coded as

pfix #3 #2 #23

ldc #5 #4 #45

ldc #987

is coded as

pfix #9 #2 #29

pfix #8 #2 #28

ldc #7 #4 #47

ldc -31 ( ldc #FFFFFFE1)

is coded as

nfix #1 #6 #61

ldc #1 #4 #41

Table 6.1  Prefix coding

Ident Feature

E Instruction can set an IntegerError trap

L Instruction can cause a LoadTrap trap

S Instruction can cause a StoreTrap trap

O Instruction can cause an Overflow trap

I Interruptible instruction

A Instruction can be aborted and later restarted.

D Instruction can deschedule

T Instruction can timeslice

Table 6.2  Instruction features
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6.3 Instruction set tables

Function
code

Memory
code

Mnemonic Processor
cycles

Name Notes

0 0X j 7 jump D, T

1 1X ldlp 1 load local pointer

2 2X pfix 0 to 3 prefix

3 3X ldnl 1 load non-local

4 4X ldc 1 load constant

5 5X ldnlp 1 load non-local pointer

6 6X nfix 0 to 3 negative prefix

7 7X ldl 1 load local

8 8X adc 2 to 3 add constant O

9 9X call 8 call

A AX cj 1 or 7 conditional jump

B BX ajw 2 adjust workspace

C CX eqc 1 equals constant

D DX stl 1 store local

E EX stnl 2 store non-local

F FX opr 0 operate

Table 6.3  Primary functions

Memory
code

Mnemonic Processor
cycles

Name Notes

22FA testpranal 1 test processor analyzing

23FE saveh 3 save high priority queue registers

23FD savel 3 save low priority queue registers

21F8 sthf 1 store high priority front pointer

25F0 sthb 1 store high priority back pointer

21FC stlf 1 store low priority front pointer

21F7 stlb 1 store low priority back pointer

25F4 sttimer 2 store timer

2127FC lddevid 1 load device identity†

27FE ldmemstartval 1 load value of MemStart  address

†See Section 22

Table 6.4  Processor initialization operation codes
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Memory
code

Mnemonic Processor
cycles

Name Notes

24F6 and 1 and

24FB or 1 or

23F3 xor 1 exclusive or

23F2 not 1 bitwise not

24F1 shl 1 shift left

24F0 shr 1 shift right

F5 add 2 add A, O

FC sub 2 subtract A, O

25F3 mul 3 multiply A, O

27F2 fmul 5 fractional multiply A, O

22FC div 4 to 35 divide A, O

21FF rem 3 to 35 remainder A, O

F9 gt 2 greater than A

25FF gtu 2 greater than unsigned A

F4 diff 1 difference

25F2 sum 1 sum

F8 prod 3 product A

26F8 satadd 2 to 3 saturating add A

26F9 satsub 2 to 3 saturating subtract A

26FA satmul 4 saturating multiply A

Table 6.5  Arithmetic/logical operation codes



ST20-GP1

38/116



Memory
code

Mnemonic Processor
cycles

Name Notes

21F6 ladd 2 long add A, O

23F8 lsub 2 long subtract A, O

23F7 lsum 1 long sum

24FF ldiff 1 long diff

23F1 lmul 4 long multiply A

21FA ldiv 3 to 35 long divide A, O

23F6 lshl 2 long shift left A

23F5 lshr 2 long shift right A

21F9 norm 3 normalize A

26F4 slmul 4 signed long multiply A, O

26F5 sulmul 4 signed times unsigned long multiply A, O

Table 6.6  Long arithmetic operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

F0 rev 1 reverse

23FA xword 3 extend to word A

25F6 cword 2 to 3 check word A, E

21FD xdble 1 extend to double

24FC csngl 2 check single A, E

24F2 mint 1 minimum integer

25FA dup 1 duplicate top of stack

27F9 pop 1 pop processor stack

68FD reboot 2 reboot

Table 6.7  General operation codes
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Memory
code

Mnemonic Processor
cycles

Name Notes

F2 bsub 1 byte subscript

FA wsub 1 word subscript

28F1 wsubdb 1 form double word subscript

23F4 bcnt 1 byte count

23FF wcnt 1 word count

F1 lb 1 load byte

23FB sb 2 store byte

24FA move move message I

Table 6.8  Indexing/array operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

22F2 ldtimer 1 load timer

22FB tin timer input I

24FE talt 3 timer alt start

25F1 taltwt timer alt wait D, I

24F7 enbt 1 to 7 enable timer

22FE dist disable timer I

Table 6.9  Timer handling operation codes
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Memory
code

Mnemonic Processor
cycles

Name Notes

F7 in input message D

FB out output message D

FF outword output word D

FE outbyte output byte D

24F3 alt 2 alt start

24F4 altwt 3 to 6 alt wait D

24F5 altend 8 alt end

24F9 enbs 1 to 2 enable skip

23F0 diss 1 disable skip

21F2 resetch 3 reset channel

24F8 enbc 1 to 4 enable channel

22FF disc 1 to 6 disable channel

Table 6.10  Input and output operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

22F0 ret 2 return

21FB ldpi 1 load pointer to instruction

23FC gajw 2 to 3 general adjust workspace

F6 gcall 6 general call

22F1 lend 4 to 5 loop end T

Table 6.11  Control operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

FD startp 5 to 6 start process

F3 endp 4 to 6 end process D

23F9 runp 3 run process

21F5 stopp 2 stop process

21FE ldpri 1 load current priority

Table 6.12  Scheduling operation codes
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Memory
code

Mnemonic Processor
cycles

Name Notes

21F3 csub0 2 check subscript from 0 A, E

24FD ccnt1 2 check count from 1 A, E

22F9 testerr 1 test error false and clear

21F0 seterr 1 set error

25F5 stoperr 1 to 3 stop on error (no error) D

25F7 clrhalterr 2 clear halt-on-error

25F8 sethalterr 1 set halt-on-error

25F9 testhalterr 1 test halt-on-error

Table 6.13  Error handling operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

25FB move2dinit 1 initialize data for 2D block move

25FC move2dall 2D block copy I

25FD move2dnonzero 2D block copy non-zero bytes I

25FE move2dzero 2D block copy zero bytes I

Table 6.14  2D block move operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

27F4 crcword 34 calculate crc on word A

27F5 crcbyte 10 calculate crc on byte A

27F6 bitcnt 3 count bits set in word A

27F7 bitrevword 1 reverse bits in word

27F8 bitrevnbits 2 reverse bottom n bits in word A

Table 6.15  CRC and bit operation codes
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Memory
code

Mnemonic Processor
cycles

Name Notes

27F3 cflerr 2 check floating point error E

29FC fptesterr 1 load value true (FPU not present)

26F3 unpacksn 4 unpack single length floating point number A

26FD roundsn 7 round single length floating point number A

26FC postnormsn 7 to 8 post-normalize correction of single length float-
ing point number

A

27F1 ldinf load single length infinity

Table 6.16  Floating point support operation codes

Memory
code

Mnemonic Processor
cycles

Name Notes

2CF7 cir 2 to 4 check in range A, E

2CFC ciru 2 to 4 check in range unsigned A, E

2BFA cb 2 to 3 check byte A, E

2BFB cbu 2 to 3 check byte unsigned A, E

2FFA cs 2 to 3 check sixteen A, E

2FFB csu 2 to 3 check sixteen unsigned A, E

2FF8 xsword 2 sign extend sixteen to word A

2BF8 xbword 3 sign extend byte to word A

Table 6.17  Range checking and conversion instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

2CF1 ssub 1 sixteen subscript

2CFA ls 1 load sixteen

2CF8 ss 2 store sixteen

2BF9 lbx 1 load byte and sign extend

2FF9 lsx 1 load sixteen and sign extend

Table 6.18  Indexing/array instructions
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Memory
code

Mnemonic Processor
cycles

Name Notes

2FF0 devlb 3 device load byte A

2FF2 devls 3 device load sixteen A

2FF4 devlw 3 device load word A

62F4 devmove device move I

2FF1 devsb 3 device store byte A

2FF3 devss 3 device store sixteen A

2FF5 devsw 3 device store word A

Table 6.19  Device access instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

60F5 wait 4 to 10 wait D

60F4 signal 6 to 10 signal

Table 6.20  Semaphore instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

60F0 swapqueue 3 swap scheduler queue

60F1 swaptimer 5 swap timer queue

60F2 insertqueue 1 to 2 insert at front of scheduler queue

60F3 timeslice 3 to 4 timeslice

60FC ldshadow 6 to 23 load shadow registers A

60FD stshadow 5 to 17 store shadow registers A

62FE restart 19 restart

62FF causeerror 2 cause error

61FF iret 3 to 9 interrupt return

2BF0 settimeslice 1 set timeslicing status

2CF4 intdis 1 interrupt disable

2CF5 intenb 2 interrupt enable

2CFD gintdis 2 global interrupt disable

2CFE gintenb 2 global interrupt enable

Table 6.21  Scheduling support instructions
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Memory
code

Mnemonic Processor
cycles

Name Notes

26FE ldtraph 11 load trap handler L

2CF6 ldtrapped 11 load trapped process status L

2CFB sttrapped 11 store trapped process status S

26FF sttraph 11 store trap handler S

60F7 trapenb 2 trap enable

60F6 trapdis 2 trap disable

60FB tret 9 trap return

Table 6.22  Trap handler instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

68FC ldprodid 1 load product identity

63F0 nop 1 no operation

Table 6.23  Processor initialization and no operation instructions

Memory
code

Mnemonic Processor
cycles

Name Notes

64FF clockenb 2 clock enable

64FE clockdis 2 clock disable

64FD ldclock 1 load clock

64FC stclock 2 store clock

Table 6.24  Clock instructions
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7 Memory map
The ST20-GP1 processor memory has a 32-bit signed address range. Words are addressed by
30-bit word addresses and a 2-bit byte-selector identifies the bytes in the word. Memory is divided
into 4 banks which can each have different memory characteristics and can be used for different
purposes. In addition, on-chip peripherals can be accessed via the device access instructions (see
Table 6.19).

Various memory locations at the bottom and top of memory are reserved for special system
purposes. There is also a default allocation of memory banks to different uses.

Note that the ST20-GP1 uses 30 bits of addressing internally, but addresses A20-A29 are not
brought out to external pins. Address bits A30 and A31 are used as bank selects.

7.1 System memory use

The ST20-GP1 has a signed address space where the address ranges from MinInt (#80000000)
at the bottom to MaxInt  (#7FFFFFFF) at the top. The ST20-GP1 has an area of 4 Kbytes of RAM
at the bottom of the address space provided by on chip memory. The bottom of this area is used to
store various items of system state. These addresses should not be accessed directly but via the
appropriate instructions.

Near the bottom of the address space there is a special address MemStart . Memory above this
address is for use by user programs while addresses below it are for private use by the processor
and used for subsystem channels and trap handlers. The address of MemStart  can be obtained
via the ldmemstartval instruction.

7.1.1 Subsystem channels memory

Each DMA channel between the processor and a subsystem is allocated a word of storage below
MemStart . This is used by the processor to store information about the state of the channel. This
information should not normally be examined directly, although debugging kernels may need to do
so.

Boot channel

The subsystem channel which is a link input channel is identified as a ‘boot channel’. When the
processor is reset, and is set to boot from link, it waits for boot commands on this channel.

7.1.2 Trap handlers memory

The area of memory reserved for trap handlers is broken down hierarchically. Full details on trap
handlers is given in see Section 4.6 on page 23.

• Each high/low process priority has a set of trap handlers.

• Each set of trap handlers has a handler for each of the four trap groups (refer to Section
4.6.1).

• Each trap group handler has a trap handler structure and a trapped process structure.

• Each of the structures contains four words, as detailed in Section 4.6.3.

The contents of these addresses can be accessed via ldtraph, sttraph, ldtrapped and sttrapped
instructions.
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7.2 Boot ROM

When the processor boots from ROM, it jumps to a boot program held in ROM with an entry point 2
bytes from the top of memory at #7FFFFFFE. These 2 bytes are used to encode a negative jump
of up to 256 bytes down in the ROM program. For large ROM programs it may then be necessary
to encode a longer negative jump to reach the start of the routine.

7.3 Internal peripheral space

On-chip peripherals are mapped to addresses in the top half of memory bank 2 (address range
#20000000 to #3FFFFFFF). They can only be accessed by the device access instructions (see
Table 6.19). When used with addresses in this range, the device instructions access the on-chip
peripherals rather than external memory. For all other addresses the device instructions access
memory. Standard load/store instructions to these addresses will access external memory.

This area of memory is allocated to peripherals in 4K blocks, see the following memory map.



ST20-GP1

47/116



ADDRESS USE
MEMORY
BANK

MaxInt #7FFFFFFF

Bank 3
BootEntry #7FFFFFFE Boot entry point

↑
User code/Data/Stack and Boot ROM

#40000000
↑

RESERVED

Bank 2

#2000E000
↑ DSP controller peripheral

(registers accessed via CPU device accesses)#2000C000
↑ Parallel port controller peripheral

(registers accessed via CPU device accesses)#2000A000
↑ PIO controller peripheral

(registers accessed via CPU device accesses)#20008000
↑ ASC1 controller peripheral

(registers accessed via CPU device accesses)#20006000
↑ ASC0 controller peripheral

(registers accessed via CPU device accesses)#20004000
↑ EMI controller peripheral

(registers accessed via CPU device accesses)#20002000
↑ Interrupt and low power controller peripheral

(registers accessed via CPU device accesses)#20000000
↑

External peripherals or memory
#00000000

↑

User code/Data/Stack

Bank 1
#C0000000

↑

Bank 0

Start of external memory #80001000
↑

MemStart #80000140
#80000130 Low priority Scheduler trapped process
#80000120 Low priority Scheduler trap handler
#80000110 Low priority SystemOperations trapped process
#80000100 Low priority SystemOperations trap handler
#800000F0 Low priority Error trapped process
#800000E0 Low priority Error trap handler
#800000D0 Low priority Breakpoint trapped process
#800000C0 Low priority Breakpoint trap handler
#800000B0 High priority Scheduler trapped process
#800000A0 High priority Scheduler trap handler

Figure 7.1 ST20-GP1 memory map
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#80000090 High priority SystemOperations trapped process

Bank 0

#80000080 High priority SystemOperations trap handler
#80000070 High priority Error trapped process
#80000060 High priority Error trap handler
#80000050 High priority Breakpoint trapped process

TrapBase #80000040 High priority Breakpoint trap handler
#8000003C

RESERVED↑
#8000001C
#80000018 Byte wide parallel port input DMA channel
#80000014 DSP module DMA channel
#80000010 Link0 (boot) input channel
#8000000C RESERVED
#80000008 Byte wide parallel port output DMA channel
#80000004 RESERVED

MinInt #80000000 Link0 output channel

ADDRESS USE
MEMORY
BANK

Figure 7.1 ST20-GP1 memory map
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8 Memory subsystem
The memory system consists of SRAM and a programmable memory interface. The specific details
on the operation of the memory interface are described separately in Chapter 9.

8.1 SRAM

There is an internal memory module of 4 Kbytes of SRAM. The internal SRAM is mapped into the
base of the memory space from MinInt  (#80000000) extending upwards, as shown in Figure 8.1.

This memory can be used to store on-chip data, stack or code for time critical routines.

Figure 8.1 SRAM mapping

Where internal memory overlays external memory, internal memory is accessed in preference.

SRAM

External
memory

MinInt #80000000

#80001000
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9 Programmable memory interface
The ST20-GP1 programmable memory interface provides glueless support for up to four banks of
SRAM or ROM memory. Sufficient configuration options are provided to enable the interface to be
used with a wide variety of SRAM speeds, permitting systems to be built with optimum price/
performance trade-offs.

Although designed primarily for SRAM-like memory devices, the configurability enables glueless
connection to other peripheral devices such as FIFOs and UARTs.

The programmable memory interface is also referred to as the external memory interface (EMI).
The EMI provides configuration information for four independent banks of external memory
devices. The addresses of these bank boundaries are hard wired to give each bank one quarter of
the address space of the machine. Bank 0 occupies the lowest quarter of the [signed] address
space, bank 3 is the highest, see Figure 9.1. Each bank can contain up to 1 Mbyte of external
memory.

Figure 9.1 Memory allocation
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9.1 EMI signal descriptions

The following section describes the functions of the EMI pins. Note that a signal name prefixed by
not  indicates active low.

MemAddr1-19

External address bus. The ST20-GP1 uses 30 bits of addressing internally but only the bottom 18
bits are brought out to external pins (MemAddr2-19 ); MemAddr1  is generated by the EMI.
MemAddr1-19 is valid and constant for the whole duration of an external access. The memory
locations in each bank can be accessed at multiple addresses, as bits 20-29 are ignored when
making external accesses.

MemData0-15

External data bus. The data bus may be configured to be either 8 or 16 bits wide on a per bank
basis. MemData0 is always the least significant bit. MemData7 is the most significant bit in 8-bit
mode and MemData15 is the most significant bit in 16-bit mode. When performing a write access
to a bank configured to be 8-bits wide, MemData8-15 are held in a high-impedance state for the
duration of the access; MemData0-7 behave according to the configuration parameters as
specified in Section 9.5. When making a write to a bank configured to be 16-bits wide,
MemData0-15 behave according to the configuration parameters.

notMemCE0-3

Chip enable strobes, one per bank. The notMemCE0-3 strobe corresponding to the bank being
accessed will be active on both reads and writes to that bank.

notMemOE3-0

Output enable strobes, one per bank. The notMemOE0-3  strobe corresponding to the bank being
accessed will be active only on reads to that bank.

notMemWB0-1

Byte selector strobes to select bytes within a 16-bit half-word. These strobes are shared between
all four banks. notMemWB0 always corresponds to write data on MemData0-7 whether the bus is
currently 8 or 16 bits wide. When the EMI is writing to a bank configured to be 16 bits wide,
notMemWB1 corresponds to MemData8-15 . When the EMI is accessing a bank configured to be
8 bits wide, notMemWB1 becomes address bit 0 and follows the timing of MemAddr1-19 for that
bank.

MemWait

Halt external access. The EMI samples MemWait at or just after the midpoint of an access. If
MemWait is sampled high, the access is stalled. MemWait will then continue to be sampled and
the access proceeds when MemWait is sampled low. The action of MemWait may be disabled by
software, see Section 9.4. No mechanism is provided to abort an access; if MemWait is held high
too long the EMI will become a contentious resource and may stall the ST20-GP1.

BootSource0-1

These signals are sampled immediately after reset and determine both the bootstrap behavior and
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the initial bus width of all banks after reset.

9.2 Strobe allocation

9.3 External accesses

The EMI differentiates accesses and transactions. An access is the lowest denominator of a
transaction. Since the ST20 word size is 32 bits, several accesses are required to complete a
transaction in most cases. The following are cases where several accesses may not be required:

• CPU executes a sb (store byte), lb (load byte) or ss (store sixteen), ls (load sixteen) instruc-
tion.

• CPU is executing a move2dnonzero (2D block copy non-zero bytes) or move2dzero (2D
block copy zero bytes) instruction and the data dictates that certain bytes are not to be
written.

• The first or last DMA operation to or from a link is to a non word aligned byte address.

Figure 9.2 shows the generic EMI activity during a read access and the configurable parameters.
The rising edge of notMemOE  always occurs at the end of the read access just after the data is
latched on chip. notMemWB0  is always inactive during a read access. notMemWB1  activity
during a read access depends on the bus width for the bank. The strobe is inactive if the bus width
is configured to be 16-bit. If the bus width is configured to be 8-bit, notMemWB1 behaves as
address bit 0 with the same timing as MemAddr1-19 .

BootSource[1:0] Bootstrap start-up conditions

00 Boot from link. 16-bit bus width for all banks.

01 Boot from ROM. 8-bit bus width for all banks. Link operational.

10 Boot from ROM. 16-bit bus width for all banks. Link powered down.

11 Boot from ROM. 8-bit bus width for all banks. Link powered down.

Table 9.1 BootSource0-1  encoding

Pin Bank allocation Correspondence Active access type

notMemCE0-3 1 per bank 0 ⇒ bank 0
1 ⇒ bank 1
2 ⇒ bank 2
3 ⇒ bank 3

Reads and writes

notMemOE0-3 1 per bank 0 ⇒ bank 0
1 ⇒ bank 1
2 ⇒ bank 2
3 ⇒ bank 3

Reads only

notMemWB0 Shared amongst
all banks.

MemData0-7 Writes only. Indicates valid write data on MemData0-7 .

notMemWB1 Shared amongst
all banks.

16-bit bus:
MemData8-15

Writes only. Indicates valid write data on MemData8-15 .

8-bit bus:
not applicable

Reads and writes. Behaves as address bit 0 with same
timing as MemAddr1-19 .

Table 9.2  Strobe allocation
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Figure 9.2 Configuration parameters for a read access
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† Ignored when bus width is 8-bit.
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Figure 9.3 shows the generic EMI activity during a write access. notMemOE  is inactive during a
write access, and the function of notMemWB1  is dictated by the bus width of the bank in the same
way as for a read access. MemData8-15  is held in high impedance during a write access if the bus
width is 8-bit, otherwise it follows the timing configured for MemData0-7 .

Figure 9.3 Configuration parameters for a write access

The following caveats relate to strobe edge programming:

• If any of the strobe edges are programmed to occur outside the period defined by Access-
Duration , the activity for that strobe is undefined.

• If a strobe’s rising and falling edges are programmed to occur on the same system clock
edge, they will nullify each other and the strobe will stay in the same state. This rule also
applies for consecutive accesses.

Transactions normally consist of several accesses which run consecutively without any ‘dead
cycles’. The number of accesses in a transaction is dependent on the bus width and the nature of
the memory bus request. Table 9.3 lists the transaction composition and the behavior of
MemAddr1  and notMemWB0-1  for each access.

MemAddr1-19

notMemWB1 *

notMemCE

notMemWB0

MemData0-7

MemData8-15†

Access duration

CEe1 time CEe2 time

WBe1 time

* Only when bus width is 8-bit. When bus width is 16-bit, notMemWB1  follows the timing

WBe2 time

specified for notMemWB0 .
† Held in high impedance when bus width is 8-bit.

Data drive delay

(MemAddr0 )
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Key: L = low for whole access
H = high for whole access
A = active on write accesses
I = inactive for whole access

The EMI buffers subsequent transactions which may occur, without intervening dead cycles except

Bus
width

Valid
bytes
<3:0>

Number of
accesses
required

MemAddr1 notMemWB1 notMemWB0

1 2 3 4 1 2 3 4 1 2 3 4

8 0001 1 L - - - L - - - A - - -

8 0010 1 L - - - H - - - A - - -

8 0011 2 L L - - L H - - A A - -

8 0100 1 H - - - L - - - A - - -

8 0101 2 L H - - L L - - A A - -

8 0110 2 L H - - H L - - A A - -

8 0111 3 L L H - L H L - A A A -

8 1000 1 H - - - H - - - A - - -

8 1001 2 L H - - L H - - A A - -

8 1010 2 L H - - H H - - A A - -

8 1011 3 L L H - L H H - A A A -

8 1100 2 H H - - L H - - A A - -

8 1101 3 L H H - L L H - A A A -

8 1110 3 L H H - H L H - A A A -

8 1111 4 L L H H L H L H A A A A

16 0001 1 L - - - I - - - A - - -

16 0010 1 L - - - A - - - I - - -

16 0011 1 L - - - A - - - A - - -

16 0100 1 H - - - I - - - A - - -

16 0101 2 L H - - I I - - A A - -

16 0110 2 L H - - A I - - I A - -

16 0111 2 L H - - A I - - A A - -

16 1000 1 H - - - A - - - I - - -

16 1001 2 L H - - I A - - A I - -

16 1010 2 L H - - A A - - I I - -

16 1011 2 L H - - A A - - A I - -

16 1100 1 H - - - A - - - A - - -

16 1101 2 L H - - I A - - A A - -

16 1110 2 L H - - A A - - I A - -

16 1111 2 L H - - A A - - A A - -

Table 9.3  Transaction composition for valid bytes on internal memory bus
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in the following two cases:

• The previous access was a read and the pending one is a write. The write access will not
start until the programmed number of BusReleaseTime  cycles have elapsed.

• The previous access was to a different bank to the pending access (bank switch). One
cycle is always inserted between accesses to different banks. Note that, if the first condition
is also true, further cycles may be inserted to account for BusReleaseTime .

The first case may be optimized slightly by making use of the DataDriveDelay  configuration
register parameter, see Table 9.4. When this is used, the programmed BusReleaseTime  may be
smaller, reducing the number of dead cycles, see Figure 9.4.

Figure 9.4 Use of DataDriveDelay parameter

Note, if DataDriveDelay  is used, it must be used for all banks. If this rule is not adhered to, bus
contention may occur on bank switches. For example, consider case 2 in Figure 9.4 above. If the
BusReleaseTime  coincides with the dead cycle inserted due to a bank switch, contention will
occur unless DataDriveDelay  is programmed in the same way as if no bank switch had occurred.

9.4 MemWait

When enabled (see Table 9.4), MemWait  is sampled at the midpoint of accesses which are
configured to be four cycles or greater. If the duration of the external access is not an even number
of cycles (i.e. the AccessDuration  bit field in the EMIConfigData  register, see Table 9.4, is an odd
number), MemWait is sampled on the internal rising clock edge just after the midpoint of the
access.

Once a high has been sampled, the access is stalled. MemWait suspends the state of the EMI in
the cycle after it is sampled high. The state remains suspended until MemWait  is sampled low. Any
strobe edges scheduled to occur in the cycle after MemWait  is sampled will not occur. Strobe
edges scheduled to occur on the same edge as MemWait  is sampled are not affected. Figure 9.5
and Figure 9.6 show the extension of the external memory cycle and the delaying of strobe
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transitions. Note, the clock shown in the figures is the internal on-chip clock and is provided as a
guide to show the minimum setup time of MemWait  relative to the strobes.

Figure 9.5 Strobe activity without MemWait

Figure 9.6 Strobe activity with MemWait

clock
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clock

MemWait
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wait
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9.5 EMI configuration registers

Configuration parameters are stored in registers which are mapped into the device address space.
They may be accessed using devsw (device store word) and devlw (device load word) instructions.

The base addresses for the EMI registers are given in the Memory Map chapter.

EMIConfigData0-3 registers

The EMIConfigData0-3  registers contain configuration data for each of the EMI banks. The format
of each of the EMIConfigData0-3  registers is identical and is shown in Table 9.4.

EMIConfigLock register

The EMIConfigLock  register is provided to write protect the EMIConfigData0-3  registers (further
writes to these registers are ignored). This bit is set by performing a devsw instruction to the given
address; the write data is ignored.

This register, once set, can only be cleared by resetting the ST20-GP1.

EMIConfigStatus register

The EMIConfigStatus  register is provided to indicate which registers have been written to and the

EMIConfigData0-3 EMI base address + #00, #04, #08, #0C Read/Write

Bit Bit field Function Units

0 MemWaitEnable Enables the MemWait  pin. -

3:1 DataDriveDelay Drive delay of data bus for writes. Phases

4 BusWidth Bus width of the bank (8 or 16 bits).
BusWidth Bank width

0 16 bits
1 8 bits

-

8:5 AccessDuration Duration of the external access. Cycles

10:9 BusReleaseTime Duration bus release time. Cycles

14:11 CEe1Time Delay from access start to notMemCE  falling edge. Phases

18:15 CEe2Time Delay from notMemCE  rising edge to end of access. Phases

22:19 OEe1Time Delay from access start to notMemOE  falling edge. Phases

26:23 WBe1Time Delay from access start to notMemWB falling edge. Phases

30:27 WBe2Time Delay from notMemWB rising edge to end of access. Phases

31 Reserved -

Table 9.4 EMIConfigData0-3 register format - 1 per bank

EMIConfigLock EMI base address + #10 Write only

Bit Bit field Function

0 ConfigLock When set, the EMIConfigData0-3  registers are read only.

Table 9.5 EMIConfigLock register format
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status of the lock and stall bits. Table 9.6 shows the format of the EMIConfigStatus  register.

EMIConfigStall register

The EMIConfigStall  register can be used to stall the EMI. When set it prevents the EMI from
accepting further requests from the CPU or communications subsystems. Its main use is intended
to be in systems which anticipate turning the power off; the EMI must be inactive during such an
event, otherwise battery backed memory may be corrupted.

This register, once set, can only be cleared by resetting the ST20-GP1.

9.6 Reset and bootstrap behavior

Table 9.8 shows the state of the EMI signals during reset. MemAddr2-19  are driven with a copy of
the value on the internal memory bus2-19.

Table 9.9 shows the configuration values for all banks during and after reset. If the BootSource0-1
pins indicate that the ST20-GP1 will boot from ROM, the BusWidth is set to the correct value as
the ST20-GP1 comes out of reset.

EMIConfigStatus EMI base address + #20 Read only

Bit Bit field Function

0 WrittenBank0 Bank 0 configuration has been written to using a devsw instruction.

1 WrittenBank1 Bank 1 configuration has been written to using a devsw instruction.

2 WrittenBank2 Bank 2 configuration has been written to using a devsw instruction.

3 WrittenBank3 Bank 3 configuration has been written to using a devsw instruction.

4 WriteLock EMIConfigData0-3  registers are write protected.

5 MemStall EMIConfigStall  has been set.

31:6 Reserved

Table 9.6 EMIConfigStatus  register format

EMIConfigStall EMI base address + #30 Write only

Bit Bit field Function

0 EMIStall When set, this bit prevents the arbiter from granting any more accesses to the
memory subsystem.

Table 9.7 EMIConfigStall register format

Pins Value

MemAddr2-19 Valid

MemAddr1 High

notMemCE0-3 All high

notMemOE0-1 All high

notMemWB0-1 All high

MemData0-15 High impedance

Table 9.8  EMI signal values during reset
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The behavior of the ST20-GP1 after reset depends upon the value on the BootSource0-1  pins. In
all cases, the EMI is loaded with a slow default configuration which is suitable for performing
accesses to ROM and SRAM (see Figure 9.7).

Figure 9.7 Default configuration

When booting from ROM, the first EMI access will be an instruction fetch from bank 3. When
booting from a link, the bootstrap is loaded into the ST20-GP1 internal SRAM located logically at
the bottom of bank 0.

The default bus width for all banks is set at reset by reading the value on the BootSource0-1 pins
(see Table 9.1). If this bus width is inappropriate for a particular bank, then configuration software
must change it before it is accessed, otherwise some memory locations will contain indeterminate
contents. Note, particular care must be paid to instruction fetching behavior of the CPU. It is
important to match the program memory with the correct bus width using BootSource0-1 .

Parameter Bits Value during and after reset Units

BusWidth 1 Depends on BootSource0-1  pins (see Table 9.1, page 52). -

MemWaitEnable 1 1 (Enabled) -

BankReadOnly 1 0 (Read/Write) -

AccessDuration 4 1010 (10 cycles) Cycles

CEe1Time 4 0000 Phases

CEe2Time 4 0000 Phases

OEe1Time 4 0000 Phases

WBe1Time 4 1001 (9 phases; 4.5 cycles) Phases

WBe2Time 4 0010 (2 phases; 1 cycle) Phases

BusReleaseTime 2 10 (2 cycles) Cycles

DataDriveDelay 3 101 (5 phases; 2.5 cycles) Phases

Table 9.9  Configuration register values during reset

MemData0-15
(write)

MemAddr1-19

notMemCE

notMemOE

notMemWB0-1

MemData0-15
(read)

10 cycles

5 phases

2 cycles

2 phases (1 cycle)
9 phases (4.5 cycles)
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10 Clocks and low power controller

10.1 Clocks

An on-chip phase locked loop (PLL) generates all the internal high frequency clocks. The PLL is
used to generate the internal clock frequencies needed for the CPU and the Link. Alternatively a
direct clock input can provide the system clocks. The single clock input (ClockIn ) must be
16.368 MHz for PLL operation for GPS.

The internal clock may be turned off (including the PLL) enabling power down mode.

The ST20-GP1 can be set to operate in TimesOneMode , which is when the PLL is bypassed.
During TimesOneMode  the input clock must be in the range 0 to 30 MHz and should be nominally
50/50 mark space ratio.

10.1.1 Speed select

The speed of the internal processor clock is variable in discrete steps. The clock rate at which the
ST20-GP1 runs is determined by the logic levels applied on the two speed select lines
SpeedSelect0-1 as detailed in Table 10.1. The frequency of ClockIn  (fclk) for the speeds given in
the table is 16.368 MHz.

The SysRatio  register, see Table 10.9, gives the speed at which the system PLL is running. It
contains the relevant PLL multiply ratio when using the PLL, or contains the value ‘1’ when in
TimesOneMode  for the PLL.

Table 10.1  Processor speed selection

10.2 Low power control

The ST20-GP1 is designed for 0.5 micron, 3.3V CMOS technology and runs at speeds of up to
32.736 MHz. 3.3V operation provides reduced power consumption internally and allows the use of
low power peripherals. In addition, to further enhance the potential for battery operation, a low
power power-down mode is available.

The different power levels of the ST20-GP1 are listed below.

• Operating power — power consumed during functional operation.

• Stand-by power — power consumed during little or no activity. The CPU is idle but ready to
immediately respond to an interrupt/reschedule.

• Power-down — internal clocks are stopped and power consumption is significantly reduced.
Functional operation is stalled. Normal functional operation can be resumed from previous

SpeedSelect1 SpeedSelect0 Processor clock
speed (MHz)

Processor
cycle time (ns)
approximate

Phase lock loop
factor (PLLx)

Link speed
(Mbits/s)

0 0 TimesOneMode 0.4 x fclk

0 1 16.368 61.0 1 19.641

1 0 32.736 30.5 2 19.641

1 1 RESERVED
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state as soon as the clocks are stable. All internal logic is static so no information is lost
during power down.

• Power to most of the chip removed — only the real time clock supply (RTCVDD) power on.

10.2.1 Power-down mode

The ST20-GP1 enters power-down when:

• the low power alarm is programmed and started, via configuration registers, providing there
are no interrupts pending.

The ST20-GP1 exits power-down when:

• an unmasked interrupt becomes pending.

• the low power alarm counter reaches zero.

In power-down mode the processor and all peripherals are stopped, including the external memory
controller and optionally the PLL. Effectively the internal clock is stopped and functional operation
is stalled. On restart the clock is restarted and the chip resumes normal functional operation.

10.2.2 Low power mode

Low power mode can be achieved in one of two ways, as listed below.

• Availability of direct clock input — this allows external control of clocking directly and thus
direct control of power consumption.

• Internal global system clock may be stopped — in this case the external clock remains run-
ning. This mechanism allows the PLL to be kept running (if desired) so that wake up from
low power mode will be fast.

Wake-up from low power mode can be from: specific external pin activity (Interrupt  pin); or the low
power timer alarm.

The low power timer and alarm are provided to control the duration for which the global clock
generation is stopped during low power mode. The timer and alarm registers can be set by the
device store instructions and read by the device load instructions.

Low power timer

The timer keeps track of real time, even when the internal clocks are stopped. The timer is a 64-bit
counter which runs off an external clock (LPClockIn ). This clock rate must not be more than one
eighth of the system clock rate.

The real time clock is powered from a separate Vdd (RTCVDD) allowing it to be maintained at
minimal power consumption.

Low power alarm

There is also a 40-bit counter which can be used as a low power alarm or as a watchdog timer, this
is determined by the setting of the WdEnable  register, see Table 10.10.

Alarm

A write to the LPAlarmStart  register starts the low power alarm counter and the ST20-GP1 enters
low power mode. When the counter has counted down to zero, assuming no other valid wake-up
sources occur first, the ST20-GP1 exits low power mode and the global clocks are turned back on.
Whilst the clocks are turned off the LowPowerStatus  pin is high, otherwise it is low.
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Watchdog timer

The low power alarm counter is set to operate as a watchdog timer by setting the WdEnable
register to 1. This disables entering low power mode when starting the timer. The low power alarm
is programmed and started as normal.

The WdFlag  register can be read to determine if the device was reset by the notRST  input or by a
watchdog time-out.

When the low power alarm counts down to the value #1, the notWdReset pin is asserted low for 1
low power clock cycle. In addition an internal reset of the ST20-GP1 is performed.

10.3 Low power configuration registers

The low power controller is allocated a 4k block of memory in the internal peripheral address
space. Information on low power mode is stored in registers as detailed in the following section.
The registers can be examined and set by the devlw (device load word) and devsw (device store
word) instructions, see Table 6.19 on page 43. Note, they can not be accessed using memory
instructions.

LPTimerLS and LPTimerMS

The LPTimerLS and LPTimerMS  registers are the least significant word and most significant word
of the LPTimer register. This enables the least significant or most significant word to be written
independently without affecting the other word.

Table 10.2 LPTimerLS  register format

Table 10.3 LPTimerMS  register format

When the LPTimer  register is written, the low power timer is stopped and the new value is
available to be written to the low power timer.

LPTimerStart

A write to the LPTimerStart  register starts the low power timer counter. The counter is stopped
and the LPTimerStart  register reset if either counter word (LPTimerLS and LPTimerMS ) is
written.

Note, setting the LPTimerStart  register to zero does not stop the timer.

Table 10.4 LPTimerStart  register format

LPTimerLS LPC base address + #400 Read/Write

Bit Bit field Function

31:0 LPTimerLS Least significant word of the low power timer.

LPTimerMS LPC base address + #404 Read/Write

Bit Bit field Function

31:0 LPTimerMS Most significant word of the low power timer.

LPTimerStart LPC base address + #408 Write

Bit Bit field Function

0 LPTimerStart A write to this bit starts the low power timer counter.
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LPAlarmLS and LPAlarmMS

The LPAlarmLS and LPAlarmMS  registers are the least significant word and most significant word
of the LPAlarm register. This is used to program the low power alarm.

Table 10.5 LPAlarmLS  register format

Table 10.6 LPAlarmMS  register format

LPAlarmStart

A write to the LPAlarmStart  register starts the low power alarm counter. The counter is stopped
and the LPStart  register reset if either counter word (LPTimerLS and LPTimerMS ) is written.

Table 10.7 LPAlarmStart  register format

LPSysPll

The LPSysPll register controls the System Clock PLL operation when low power mode is entered.
This allows a compromise between wake-up time and power consumption during stand-by.

Table 10.8 LPSysPll  register format

LPAlarmLS LPC base address + #410 Read/Write

Bit Bit field Function

31:0 LPAlarmLS Least significant word of the low power alarm.

LPAlarmMS LPC base address + #414 Read/Write

Bit Bit field Function

7:0 LPAlarmMS Most significant word of the low power alarm.

LPAlarmStart LPC base address + #418 Write

Bit Bit field Function

0 LPAlarmStart A write to this bit starts the low power alarm counter.

LPSysPll LPC base address + #420 Read/Write

Bit Bit field Function

1:0 LPSysPll Determines the system clock PLL when low power mode is entered, as follows:
LPSysPll1:0 System clock

00 PLL off
01 PLL reference on and power on
10 PLL reference on and power on
11 PLL on
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SysRatio

The SysRatio  register is a read only register and gives the speed at which the system PLL is running.
It contains the relevant PLL multiply ratio when using the PLL, or contains the value ‘1’ when in
TimesOneMode  for the PLL.

Table 10.9 SysRatio  register format

WdEnable

Setting the WdEnable  register enables the low power alarm counter to be used as a watchdog
timer.

Table 10.10 WdEnable  register format

WdFlag

This register can be used to determine if the device was reset by the notRST  input or by a
watchdog time-out.

Note that this bit is not reset by the CPUReset  input.

Table 10.11 WdFlag  register format

10.4 Clocking sources

The low power timer and alarm must be clocked at all times by one of the following clocking sources:

• External clock input (LPClockIn ) — this clock must not be more than one eighth of the sys-
tem clock rate. In this case the LPClockOsc pin should not be connected on the board.

• Watch crystal, as in Figure 10.1.

SysRatio LPC base address + #500 Read

Bit Bit field Function

5:0 SysRatio PLL speed, as follows:
SysRatio PLL

1 x1 TimesOneMode
2 x1 16.368 MHz
4 x2 32.736 MHz
6 x3 RESERVED

WdEnable LPC base address + #510 Read/Write

Bit Bit field Function

0 WdEnable Determines whether the low power alarm is set to operate as an alarm or as a
watchdog timer.

0 alarm
1 watchdog

WdFlag LPC base address + #514 Read

Bit Bit field Function

0 WdFlag Watchdog timer flag.
0 set to 0 by an external notRST
1 set to 1 when the watchdog counter is #1 and the WdEnable  register is 1
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Figure 10.1 Watch crystal clocking source

internal low power clock

watch crystal

LPClockOscLPClockIn

(32768 Hz)

GNDGND

22 pF10 pF

AB

A - this node should have very low capacitance < 10 pF.
B - this node must have zero dc load.

330 KΩ



ST20-GP1

67/116



11 System services
The system services module includes the control system, the PLL and power control. System
services include all the necessary logic to initialize and sustain operation of the device and also
includes error handling and analysis facilities.

11.1 Reset, initialization and debug

The ST20-GP1 is controlled by a notRST  pin which is a global power-on-reset. The CPU itself can
also be controlled by CPUReset and CPUAnalyse  signals separately from the on-chip peripherals.

11.1.1 Reset

notRST  initializes the device and causes it to enter its boot sequence which can either be in off-
chip ROM or can be received down a link (see Section 11.2 on bootstrap). notRST  must be
asserted at power-on.

When notRST is asserted low, all modules are forced into their power-on reset condition. The
clocks are stopped. The rising edge of notRST is internally synchronized and delayed until the
clocks are stable before starting the initialization sequence.

CPUReset  is provided as a functional reset which is quicker to reboot as the PLL is not reset. In
other respects the effect is the same as notRST. CPUReset  can be used in conjunction with
CPUAnalyse .

11.1.2 CPUAnalyse

If CPUAnalyse  is taken high when the ST20-GP1 is running, the ST20-GP1 will halt at the next
descheduling point. CPUReset  may then be asserted. When CPUReset  comes low again the
ST20-GP1 will be in its reset state, and information on the state of the machine when it was halted
by the assertion of CPUAnalyse , is maintained permitting analysis of the halted machine.

An input link will continue with outstanding transfers. An output link will not make another access to
memory for data but will transmit only those bytes already in the link buffer. Providing there is no
delay in link acknowledgment, the link will be inactive within a few microseconds of the ST20-GP1
halting.

If CPUAnalyse  is taken low without CPUReset  going high the processor state and operation are
undefined.

11.1.3 Errors

Software errors, such as arithmetic overflow or array bounds violation, can cause an error flag to be
set. This flag is directly connected to the ErrorOut  pin. The ST20-GP1 can be set to ignore the
error flag in order to optimize the performance of a proven program. If error checks are removed
any unexpected error then occurring will have an arbitrary undefined effect. The ST20-GP1 can
alternatively be set to halt-on-error to prevent further corruption and allow postmortem debugging.
The ST20-GP1 also supports user defined trap handlers, see Section 4.6 on page 23 for details.

If a high priority process pre-empts a low priority one, status of the Error  and HaltOnError  flags is
saved for the duration of the high priority process and restored at the conclusion of it. Status of both
flags is transmitted to the high priority process. Either flag can be altered in the process without
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upsetting the error status of any complex operation being carried out by the pre-empted low priority
process.

In the event of a processor halting because of HaltOnError , the link will finish outstanding transfers
before shutting down. If CPUAnalyse  is asserted then all inputs continue but outputs will not make
another access to memory for data. Memory refresh will continue to take place.

11.2 Bootstrap

The ST20-GP1 can be bootstrapped from external ROM, internal ROM or from a link. This is
determined by the setting of the BootSource0-1  pins, see Table 9.1 on page 52. If both
BootSource0-1 pins are held low it will boot from a link. If either or both pins are held high, it will
boot from ROM. This is sampled once only by the ST20-GP1, before the first instruction is
executed after reset.

11.2.1 Booting from ROM

When booting from ROM, the ST20-GP1 starts to execute code from the top two bytes in external
memory, at address #7FFFFFFE which should contain a backward jump to a program in ROM.

11.2.2 Booting from link

When booting from a link, the ST20-GP1 will wait for the first bootstrap message to arrive on the
link. The first byte received down the link is the control byte. If the control byte is greater than 1 (i.e.
2 to 255), it is taken as the length in bytes of the boot code to be loaded down the link. The bytes
following the control byte are then placed in internal memory starting at location MemStart .
Following reception of the last byte the ST20-GP1 will start executing code at MemStart . The
memory space immediately above the loaded code is used as work space. A byte arriving on the
bootstrapping link after the last bootstrap byte, is retained and no acknowledge is sent until a
process inputs from the link.

11.2.3 Peek and poke

Any location in internal or external memory can be interrogated and altered when the ST20-GP1 is
waiting for a bootstrap from link.

When booting from link, if the first byte (the control byte) received down the link is greater than 1, it
is taken as the length in bytes of the boot code to be loaded down the link.

If the control byte is 0 then eight more bytes are expected on the link. The first four byte word is
taken as an internal or external memory address at which to poke (write) the second four byte
word.

If the control byte is 1 the next four bytes are used as the address from which to peek (read) a word
of data; the word is sent down the output channel of the link.
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Figure 11.1 Peek, poke and bootstrap

Note, peeks and pokes in the address range #20000000 to #3FFFFFFF access the internal
peripheral device registers. Therefore they can be used to configure the EMI before booting. Note
that addresses that overlap the internal peripheral addresses (#20000000 to 3FFFFFFF) can not
be accessed via the link.

Following a peek or poke, the ST20-GP1 returns to its previously held state. Any number of
accesses may be made in this way until the control byte is greater than 1, when the ST20-GP1 will
commence reading its bootstrap program.
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12 Serial link interface (OS-Link)
The OS-Link based serial communications subsystem provides serial data transfer. Its main
function is for booting the device during software development.

The OS-Link is a serial communications engine consisting of two signal wires, one in each
direction. OS-Links use an asynchronous bit-serial (byte-stream) protocol, each bit received is
sampled five times, hence the term over-sampled links (OS-Links). The OS-Link provides a pair of
channels, one input and one output channel.

The OS-Link is used for the following purposes:

• Bootstrapping — the program which is executed at power up or after reset can reside in
ROM in the address space, or can be loaded via the OS-Link directly into memory.

• Diagnostics — diagnostic and debug software can be downloaded over the link connected
to a PC or other diagnostic equipment, and the system performance and functionality can
be monitored.

• Communicating with OS-Link peripherals or other ST20 devices.

12.1 OS-Link protocol

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed
by a one bit followed by eight data bits followed by a low stop bit (see Figure 12.1). The least
significant bit of data is transmitted first. After transmitting a data byte the sender waits for the
acknowledge, which consists of a high start bit followed by a zero bit. The acknowledge signifies
both that a process was able to receive the acknowledged data byte and that the receiving link is
able to receive another byte. The sending link reschedules the sending process only after the
acknowledge for the final byte of the message has been received. The link allows an acknowledge
to be sent before the data has been fully received.

Figure 12.1 OS-Link data and acknowledge formats

12.2 OS-Link speed

The OS-Link data rate is 19.6416 Mbits/s. This rate is the result of basing the clock on the
GPS-specific 16.368 MHz input. Standard 20 MHz development systems are not  within
specification, but operate correctly under benign conditions. To operate within spec, the reference
clock for 5 MHz (B008, C011, C012) systems should be changed to 4.9104 MHz, for 10 MHz to
9.8208 MHz.
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12.3 OS-Link connections

Links are TTL compatible and intended to be used in electrically quiet environments, between
devices on a single printed circuit board or between two boards via a backplane. Direct connection
may be made between devices separated by a distance of less than 300 mm. For longer distances
a matched 100 ohm transmission line should be used with series matching resistors (RM), see
Figure 12.3. When this is done the line delay should be less than 0.4 bit time to ensure that the
reflection returns before the next data bit is sent. Buffers may be used for very long transmissions,
see Figure 12.4. If so, their overall propagation delay should be stable within the skew tolerance of
the link, although the absolute value of the delay is immaterial.

Figure 12.2 OS-Links directly connected

Figure 12.3 OS-Links connected by transmission line

Figure 12.4 OS-Links connected by buffers
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13 UART interface (ASC)
The UART interface, also referred to as the Asynchronous Serial Controller (ASC), provides serial
communication between the ST20 device and other microcontrollers, microprocessors or external
peripherals.

The ASC supports full-duplex asynchronous communication, where both the transmitter and the
receiver use the same data frame format and the same baud rate. Data is transmitted on the
transmit data output pin (TXD) and received on the receive data input pin (RXD).

Figure 13.1 Block diagram of the ASC
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Eight or nine bit data transfer, parity generation, and the number of stop bits are programmable.
Parity, framing, and overrun error detection is provided to increase the reliability of data transfers.
Transmission and reception of data is double-buffered. For multiprocessor communication, a
mechanism to distinguish address from data bytes is included. Testing is supported by a loop-back
option. A 16-bit baud rate generator provides the ASC with a separate serial clock signal.

13.1 Asynchronous serial controller operation

The operating mode of the serial channel ASC is controlled by the control register (ASCControl ).
This register contains control bits for mode and error check selection, and status flags for error
identification.

A transmission is started by writing to the transmit buffer register (ASCTxBuffer ), see Table 13.3.

Data transmission is double-buffered, therefore a new character may be written to the transmit
buffer register, before the transmission of the previous character is complete. This allows
characters to be sent back-to-back without gaps.

Data reception is enabled by the receiver enable bit (RxEnable ) in the ASCControl register. After
reception of a character has been completed the received data, and received parity bit if selected,
can be read from the receive buffer register (ASCRxBuffer ), refer to Table 13.4.

Data reception is double-buffered, so the reception of a second character may begin before the
previously received character has been read out of the receive buffer register. The overrun error
status flag (OverrunError ) in the status register (ASCStatus ), see Table 13.7, will be set when the
receive buffer register has not been read by the time reception of a second character is complete.
The previously received character in the receive buffer is overwritten, and the ASCStatus register
is updated to reflect the reception of the new character.

The loop-back option (selected by the LoopBack bit) internally connects the output of the
transmitter shift register to the input of the receiver shift register. This may be used to test serial
communication routines at an early stage without having to provide an external network.

13.1.1 Data frames

Data frames are selected by the setting of the Mode  bit field in the ASCControl  register, see Table
13.5.

8-bit data frames

8-bit data frames consist of:

• eight data bits D0-7;

• seven data bits D0-6 plus an automatically generated parity bit.

Parity may be odd or even, depending on the ParityOdd  bit in the ASCControl  register. An even
parity bit will be set, if the modulo-2-sum of the seven data bits is 1. An odd parity bit will be cleared
in this case. The parity error flag (ParityError ) will be set if a wrong parity bit is received. The parity
bit itself will be stored in bit 7 of the ASCRxBuffer  register.
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Figure 13.2 8-bit data frames

9-bit data frames

9-bit data frames consist of:

• nine data bits D0-8;

• eight data bits D0-7 plus an automatically generated parity bit;

• eight data bits D0-7 plus a wake-up bit.

Parity may be odd or even, depending on the ParityOdd  bit in the ASCControl  register. An even
parity bit will be set, if the modulo-2-sum of the eight data bits is 1. An odd parity bit will be cleared
in this case. The parity error flag (ParityError ) will be set if a wrong parity bit is received. The parity
bit itself will be stored in bit 8 of the ASCRxBuffer  register, see Table 13.4.

In wake-up mode, received frames are only transferred to the receive buffer register if the ninth bit
(the wake-up bit) is 1. If this bit is 0, no receive interrupt request will be activated and no data will
be transferred. This feature can be used to control communication in multi-processor systems.
When the master processor wants to transmit a block of data to one of several slaves, it first sends
out an address byte which identifies the target slave. An address byte differs from a data byte in
that the additional ninth bit is a 1 for an address byte and a 0 for a data byte, so no slave will be
interrupted by a data byte. An address byte will interrupt all slaves (operating in 8-bit data + wake-
up bit mode), so each slave can examine the 8 least significant bits (LSBs) of the received
character (the address). The addressed slave will switch to 9-bit data mode, which enables it to
receive the data bytes that will be coming (with the wake-up bit cleared). The slaves that are not
being addressed remain in 8-bit data + wake-up bit mode, ignoring the following data bytes.
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Figure 13.3 9-bit data frames

Transmission

Transmission begins at the next overflow of the divide-by-16 counter (see Figure 13.3 above),
provided that the Run  bit is set and data has been loaded into the ASCTxBuffer . The transmitted
data frame consists of three basic elements:

• the start bit

• the data field (8 or 9 bits, least significant bit (LSB) first, including a parity bit, if selected)

• the stop bits (0.5, 1, 1.5 or 2 stop bits)

Data transmission is double buffered. When the transmitter is idle, the transmit data written into the
transmit buffer is immediately moved to the transmit shift register, thus freeing the transmit buffer
for the next data to be sent. This is indicated by the transmit buffer empty flag (TxBufEmpty ) being
set. The transmit buffer can be loaded with the next data, while transmission of the previous data is
still going on.

The transmitter empty flag (TxEmpty ) will be set at the beginning of the last data frame bit that is
transmitted, i.e. during the first system clock cycle of the first stop bit shifted out of the transmit shift
register.

Reception

Reception is initiated by a falling edge on the data input pin (RXD), provided that the Run  and
RxEnable  bits are set. The RXD pin is sampled at 16 times the rate of the selected baud rate. A
majority decision of the first, second and third samples of the start bit determines the effective bit
value. This avoids erroneous results that may be caused by noise.

If the detected value is not a 0 when the start bit is sampled, the receive circuit is reset and waits
for the next falling edge transition of the RXD pin. If the start bit is valid, the receive circuit
continues sampling and shifts the incoming data frame into the receive shift register. For
subsequent data and parity bits, the majority decision of the seventh, eighth and ninth samples in
each bit time is used to determine the effective bit value.

For 0.5 stop bits, the majority decision of the third, fourth, and fifth samples during the stop bit is
used to determine the effective stop bit value.

For 1 and 2 stop bits, the majority decision of the seventh, eighth, and ninth samples during the
stop bits is used to determine the effective stop bit values.
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For 1.5 stop bits, the majority decision of the fifteenth, sixteenth, and seventeenth samples during
the stop bits is used to determine the effective stop bit value.

When the last stop bit has been received (at the end of the last programmed stop bit period) the
content of the receive shift register is transferred to the receive data buffer register
(ASCRxBuffer ). The receive buffer full flag (RxBufFull ) is set, and the parity (ParityError ) and
framing error (FrameError ) flags are updated, after the last stop bit has been received (at the end
of the last stop bit programmed period), regardless of whether valid stop bits have been received or
not. The receive circuit then waits for the next start bit (falling edge transition) at the RXD pin.

Reception is stopped by clearing the RxEnable  bit. A currently received frame is completed
including the generation of the receive status flags. Start bits that follow this frame will not be
recognized.

Note : In wake-up mode, received frames are only transferred to the receive buffer register if the ninth
bit (the wake-up bit) is 1. If this bit is 0, the receive buffer full (RxBufFull ) flag will not be set and no
data will be transferred.

13.2 Hardware error detection capabilities

To improve the safety of serial data exchange, the ASC provides three error status flags in the
ASCStatus  register which indicate if an error has been detected during reception of the last data
frame and associated stop bits.

The parity error (ParityError ) bit is set when the parity check on the received data is incorrect.

The framing error (FrameError ) bit is set when the RXD pin is not a 1 during the programmed
number of stop bit times, sampled as described in the section above.

The overrun error (OverrunError ) bit is set when the last character received in the ASCRxBuffer
register has not been read out before reception of a new frame is complete.

These flags are updated simultaneously with the transfer of data to the receive buffer.

13.3 Baud rate generation

The ASC has its own dedicated 16-bit baud rate generator with 16-bit reload capability.

The baud rate generator is clocked with the CPU clock. The timer counts downwards and can be
started or stopped by the Run  bit in the ASCControl  register. Each underflow of the timer provides
one clock pulse. The timer is reloaded with the value stored in its 16-bit reload register each time it
underflows. The ASCBaudRate  register is the dual-function baud rate generator/reload register. A
read from this register returns the content of the timer, writing to it updates the reload register.

An auto-reload of the timer with the content of the reload register is performed each time the
ASCBaudRate  register is written to. However, if the Run  bit is 0 at the time the write operation to
the ASCBaudRate  register is performed, the timer will not be reloaded until the first CPU clock
cycle after the Run  bit is 1.
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13.3.1 Baud rates

The baud rate generator provides a clock at 16 times the baud rate. The baud rate and the required
reload value for a given baud rate can be determined by the following formulas:

where: <ASCBaudRate> represents the content of the ASCBaudRate  register, taken as unsigned
16-bit integer,
fCPU is the frequency of the CPU.

Note that altering the CPU speed selection pins will thus change the baud rate. Software can
accommodate this by reading the SysRatio  register, see section 10.3, in calculating the CPU
frequency.

The table below lists various commonly used baud rates together with the required reload values
and the deviation errors for the ST20-GP1 using a CPU clock of 33.736 MHz.

Note:  The deviation errors given in the table above are rounded.

13.4 Interrupt control

The ASC contains two registers that are used to control interrupts, the status register (ASCStatus )
and the interrupt enable register (ASCIntEnable ). The status bits in the ASCStatus  register
determine the cause of the interrupt. Interrupts will occur when a status bit is 1 (high) and the
corresponding bit in the ASCIntEnable  register is 1.

The error interrupt signal (ErrorInterrupt ) is generated by the ASC from the OR of the parity error,
framing error, and overrun error status bits after they have been ANDed with the corresponding
enable bits in the ASCIntEnable  register.

Baud rate Reload value
(exact)

Reload value
(integer)

Reload value
(hex)

Deviation error

38400 53.28125 53 35 -0.53%

28800 71.04167 71 47 -0.06%

19200 106.5625 107 6B 0.41%

14400 142.0833 142 8E -0.06%

9600 213.125 213 D5 -0.06%

4800 426.25 426 1AA -0.06%

2400 852.5 853 355 0.06%

1200 1705 1705 6A9 0.00%

600 3410 3410 D52 0.00%

300 6820 6820 1AA4 0.00%

75 27280 27280 6A90 0.00%

Table 13.1  Baud rates

Baud rate =
16 (<ASCBaudRate>)

<ASCBaudRate> = (
16 x Baud rate

)

fCPU

fCPU
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An overall interrupt request signal (ASC_interrupt ) is generated from the OR of the ErrorInterrupt
signal and the TxEmpty , TxBufEmpty  and RxBufFull  signals.

Note : the status register cannot be written directly by software. The reset mechanism for the status
register is described below.

The transmitter interrupt status bits (TxEmpty , TxBufEmpty ) are reset when a character is written
to the transmitter buffer.

The receiver interrupt status bit (RxBufFull ) is reset when a character is read from the receive
buffer.

The error status bits (ParityError , FrameError , OverrunError ) are reset when a character is read
from the receive buffer.

Figure 13.4 ASC status and interrupt registers
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13.4.1 Using the ASC interrupts

For normal operation (i.e. besides the error interrupt) the ASC provides three interrupt requests to
control data exchange via the serial channel:

• TxBufEmpty  is activated when data is moved from ASCTxBuffer  to the transmit shift reg-
ister.

• TxEmpty  is activated before the last bit of a frame is transmitted.

• RxBufFull  is activated when the received frame is moved to ASCRxBuffer .

The transmitter generates two interrupts. This provides advantages for the servicing software.

For single transfers it is sufficient to use the transmitter interrupt (TxEmpty ), which indicates that
the previously loaded data has been transmitted, except for the last bit of a frame.

For multiple back-to-back transfers it is necessary to load the next data before the last bit of the
previous frame has been transmitted. This leaves just one bit-time for the handler to respond to the
transmitter interrupt request.

Using the transmit buffer interrupt (TxBufEmpty ) to reload transmit data allows the time to transmit
a complete frame for the service routine, as ASCTxBuffer  may be reloaded while the previous
data is still being transmitted.

As shown in Figure 13.5 below, TxBufEmpty  is an early trigger for the reload routine, while
TxEmpty  indicates the completed transmission of the data field of the frame. Therefore, software
using handshake should rely on TxEmpty  at the end of a data block to make sure that all data has
really been transmitted.

Figure 13.5 ASC interrupt generation

13.5 ASC configuration registers

ASCBaudRate register

The ASCBaudRate  register is the dual-function baud rate generator/reload register.

A read from this register returns the content of the timer, writing to it updates the reload register.

An auto-reload of the timer with the content of the reload register is performed each time the
ASCBaudRate  register is written to. However, if the Run  bit of the ASCControl  register, see Table
13.5, is 0 at the time the write operation to the ASCBaudRate  register is performed, the timer will
not be reloaded until the first CPU clock cycle after the Run  bit is 1.
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ASCTxBuffer register

Writing to the transmit buffer register starts data transmission.

ASCRxBuffer register

The received data and, if provided by the selected operating mode, the received parity bit can be
read from the receive buffer register.

ASCBaudRate ASC base address + #00 Read/Write

Bit Bit field Write Function Read Function

15:0 ReloadVal 16-bit reload value 16-bit count value

Table 13.2 ASCBaudRate  register format

ASCTxBuffer ASC base address + #04 Write only

Bit Bit field Function

0 TD0 Transmit buffer data D0

1 TD1 Transmit buffer data D1

2 TD2 Transmit buffer data D2

3 TD3 Transmit buffer data D3

4 TD4 Transmit buffer data D4

5 TD5 Transmit buffer data D5

6 TD6 Transmit buffer data D6

7 TD7/Parity Transmit buffer data D7, or parity bit - dependent on the operating mode (the setting of the
Mode  field in the ASCControl register).

8 TD8/Parity
/Wake/0

Transmit buffer data D8, or parity bit, or wake-up bit or undefined - dependent on the operating
mode (the setting of the Mode  field in the ASCControl register).
Note: If the Mode  field selects an 8-bit frame then this bit should be written as 0.

15:9 RESERVED. Write 0.

Table 13.3 ASCTxBuffer  register format
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ASCControl register

This register controls the operating mode of the ASC and contains control bits for mode and error
check selection, and status flags for error identification.

Note : Programming the mode control field (Mode ) to one of the reserved combinations may result
in unpredictable behavior.

Note : Serial data transmission or reception is only possible when the baud rate generator run bit
(Run ) is set to 1. When the Run  bit is set to 0, TXD will be 1. Setting the Run  bit to 0 will
immediately freeze the state of the transmitter and receiver. This should only be done when the
ASC is idle.

ASCRxBuffer ASC base address + #08 Read only

Bit Bit field Function

0 RD0 Receive buffer data D0

1 RD1 Receive buffer data D1

2 RD2 Receive buffer data D2

3 RD3 Receive buffer data D3

4 RD4 Receive buffer data D4

5 RD5 Receive buffer data D5

6 RD6 Receive buffer data D6

7 RD7/Parity Receive buffer data D7, or parity bit - dependent on the operating mode (the setting of the
Mode  bit in the ASCControl register).
Note: If the Mode  field selects a 7-bit frame then this bit is undefined. Software should ignore
this bit when reading 7-bit frames.

8 RD8/Parity/
Wake/X

Receive buffer data D8, or parity bit, or wake-up bit - dependent on the operating mode (the
setting of the Mode  field in the ASCControl register).
Note: If the Mode  field selects a 7- or 8-bit frame then this bit is undefined. Software should
ignore this bit when reading 7- or 8-bit frames.

15:9 RESERVED. Will read back 0.

Table 13.4 ASCRxBuffer  register format
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ASCIntEnable register

The ASCIntEnable  register enables a source of interrupt.

Interrupts will occur when a status bit in the ASCStatus  register is 1, and the corresponding bit in
the ASCIntEnable  register is 1.

ASCControl ASC base address + #0C Read/Write

Bit Bit field Function

2:0 Mode ASC mode control
Mode2:0 Mode
000 RESERVED
001 8-bit data
010 RESERVED
011 7-bit data + parity
100 9-bit data
101 8-bit data + wake up bit
110 RESERVED
111 8-bit data + parity

4:3 StopBits Number of stop bits selection
StopBits1:0 Number of stop bits
00 0.5 stop bits
01 1 stop bit
10 1.5 stop bits
11 2 stop bits

5 ParityOdd Parity selection
0 Even parity (parity bit set on odd number of ‘1’s in data)
1 Odd parity (parity bit set on even number of ‘1’s in data)

6 LoopBack Loopback mode enable bit
0 Standard transmit/receive mode
1 Loopback mode enabled

7 Run Baud rate generator run bit
0 Baud rate generator disabled (ASC inactive)
1 Baud rate generator enabled

8 RxEnable Receiver enable bit
0 Receiver disabled
1 Receiver enabled

15:9 RESERVED. Write 0, will read back 0.

Table 13.5 ASCControl  register format
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ASCIntEnable ASC base address + #10 Read/Write

Bit Bit field Function

0 RxBufFullIE Receiver buffer full interrupt enable
0 receiver buffer full interrupt disable
1 receiver buffer full interrupt enable

1 TxEmptyIE Transmitter empty interrupt enable
0 transmitter empty interrupt disable
1 transmitter empty interrupt enable

2 TxBufEmptyIE Transmitter buffer empty interrupt enable
0 transmitter buffer empty interrupt disable
1 transmitter buffer empty interrupt enable

3 ParityErrorIE Parity error interrupt enable
0 parity error interrupt disable
1 parity error interrupt enable

4 FrameErrorIE Framing error interrupt enable
0 framing error interrupt disable
1 framing error interrupt enable

5 OverrunErrorIE Overrun error interrupt enable
0 overrun error interrupt disable
1 overrun error interrupt enable

7:6 RESERVED. Write 0, will read back 0.

Table 13.6 ASCIntEnable  register format
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ASCStatus register

The ASCStatus  register determines the cause of an interrupt.

ASCStatus ASC base address + #14 Read Only

Bit Bit field Function

0 RxBufFull Receiver buffer full flag
0 receiver buffer not full
1 receiver buffer full

1 TxEmpty Transmitter empty flag
0 transmitter not empty
1 transmitter empty

2 TxBufEmpty Transmitter buffer empty flag
0 transmitter buffer not empty
1 transmitter buffer empty

3 ParityError Parity error flag
0 no parity error
1 parity error

4 FrameError Framing error flag
0 no framing error
1 framing error

5 OverrunError Overrun error flag
0 no overrun error
1 overrun error

7:6 RESERVED. Write 0, will read back 0.

Table 13.7 ASCStatus  register format
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14 Parallel input/output
The ST20-GP1 device has 6 bits of Parallel Input/Output (PIO), each bit is programmable as an
input or an output.

The input bits can be compared against a register and an interrupt generated when the value is not
equal.

14.1 PIO Port

Each of the bits of the PIO port has a corresponding bit in the PIO registers associated with the
port. These registers hold: output data for the port (POut ); the input data read from the pin (PIn);
PIO bit configuration register (PC1); and the two input compare function registers (PComp  and
PMask ).

All of the registers, except the PIn register, are each mapped onto three separate addresses so
that bits can be set or cleared individually.

The Set_ register allows bits to be set individually. Writing a ‘1’ in this register sets the
corresponding bit in the associated register, a ‘0’ leaves the bit unchanged.

The Clear_  register allows bits to be cleared individually. Writing a ‘1’ in this register resets the
corresponding bit in the associated register, a ‘0’ leaves the bit unchanged.

14.1.1 PIO Data registers

The base addresses for the PIO registers are given in the Memory Map chapter.

POut register

This register holds output data for the port.

POut PIO port base address + #00 Read/Write

Bit Bit field Function

0 POut0 Output data bit 0

1 POut1 Output data bit 1

2 POut2 Output data bit 2

3 POut3 Output data bit 3

4 POut4 Output data bit 4

5 POut5 Output data bit 5

Table 14.1 POut register format
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PIn register

The data read from this register will give the logic level present on an input pin at the start of the
read cycle to this register. The read data will be the last value written to the register irrespective of
the pin configuration selected.

14.1.2 PIO bit configuration register

The PC1 register is used to configure each of the PIO port bits as an input or output. Writing a 0
configures the bit as an input, a 1 configures the bit as an output.

14.1.3 PIO Input compare and Compare mask registers

The input compare (PComp ) register holds the value to which the input data from the PIO port pins
will be compared. If any of the input bits are different from the corresponding bits in the PComp
register, and the corresponding bit in the compare mask (PMask ) register is set to 1, then the
internal interrupt signal for the port will be set to 1.

The compare function is sensitive to changes in levels on the pins and so the change in state on
the input pin must be greater in duration than the interrupt response time for the compare to be
seen as a valid interrupt by an interrupt service routine.

PIn PIO port base address + #10 Read only

Bit Bit field Function

0 PIn0 Input data bit 0

1 PIn1 Input data bit 1

2 PIn2 Input data bit 2

3 PIn3 Input data bit 3

4 PIn4 Input data bit 4

5 PIn5 Input data bit 5

Table 14.2 PIn register format

PC1 PIO port base address + #30 Read/Write

Bit Bit field Function

0 ConfigData0 Configures the PIO bit 0 as an input or an output.

1 ConfigData1 Configures the PIO bit 1 as an input or an output.

2 ConfigData2 Configures the PIO bit 2 as an input or an output.

3 ConfigData3 Configures the PIO bit 3 as an input or an output.

4 ConfigData4 Configures the PIO bit 4 as an input or an output.

5 ConfigData5 Configures the PIO bit 5 as an input or an output.

Table 14.3 PC1 register format
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PComp PIO port base address + #50 Read/Write

Bit Bit field Function

0 PComp0 Value to which input data bit 0 will be compared.

1 PComp1 Value to which input data bit 1 will be compared.

2 PComp2 Value to which input data bit 2 will be compared.

3 PComp3 Value to which input data bit 3 will be compared.

4 PComp4 Value to which input data bit 4 will be compared.

5 PComp5 Value to which input data bit 5 will be compared.

Table 14.4 PComp register format

PMask PIO port base address + #60 Read/Write

Bit Bit field Function

0 PMask0 When set to 1, the compare function for the internal interrupt for the port is enabled.
When enabled, if input data bit 0 is different to PComp0  then an interrupt is generated.

1 PMask1 When set to 1, the compare function for the internal interrupt for the port is enabled.
When enabled, if input data bit 1 is different to PComp1  then an interrupt is generated.

2 PMask2 When set to 1, the compare function for the internal interrupt for the port is enabled.
When enabled, if input data bit 2 is different to PComp2  then an interrupt is generated.

3 PMask3 When set to 1, the compare function for the internal interrupt for the port is enabled.
When enabled, if input data bit 3 is different to PComp3  then an interrupt is generated.

4 PMask4 When set to 1, the compare function for the internal interrupt for the port is enabled.
When enabled, if input data bit 4 is different to PComp4  then an interrupt is generated.

5 PMask5 When set to 1, the compare function for the internal interrupt for the port is enabled.
When enabled, if input data bit 5 is different to PComp5  then an interrupt is generated.

Table 14.5 PMask register format
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15 Byte-wide parallel port
The byte-wide parallel port is provided to drive an external device using 8-bit half-duplex streamed
I/O and two control wires.

The byte-wide parallel port has 2 modes of operation, as follows:

• it can operate as an ASIC interface. In this mode the external data transfer is controlled by
the EMI strobes and addresses.

• it can operate as a byte-wide parallel link (PLink) using an external asynchronous transfer
mechanism to control transfers.

The mode of operation is determined by the setting of the configuration registers, see Section 15.3.

15.1 EMI mode operation

In this mode the EMI is in total control of the PlinkData0-7  pins. The PlinknotAck  output is forced
to its ‘inactive’ state during this mode.

The interface to the external device is controlled by the EMI. The bottom 8 bits of the EMI data bus
(MemData0-7 ) are redirected (copied) to the PlinkData0-7  pins. The direction of these pads is
controlled by the EMI. The external timing and data transfer of this activity is controlled by the
programmed configuration of the EMI bank 2 (see Section 9.5 on page 58).

15.2 Parallel link (DMA) mode operation

In this mode the byte-wide parallel port is a DMA (direct memory access) engine which performs
memory transfers to and from the external links on behalf of a controller (the CPU). The parallel link
is unidirectional and only transfers data in one direction across the memory bus at any given time.

The byte-wide parallel port defaults to input (to the ST20-GP1) when the ST20-GP1 is reset (with
the notRST  pin) to prevent contention, and can be used for DMA functions without interfering with
memory bank 2. However to access external registers via the PlinkData0-7  pins, the bit in the
PlinkEmi  register (see Table 15.1) must be set by software. This results in all accesses to external
memory bank 2 being diverted via the port rather than MemData0-7 , allowing both register and
DMA access to the external peripheral. External memory bank 2 must be dedicated solely for this
use while the register access of this external peripheral is enabled.

Being half-duplex, the direction of the link when in DMA mode must be selected in software by
setting the bit in the PlinkIO  register (see Table 15.2 below). Data transfer for the parallel port (for
DMA transfers) occur by the use of a channel. When the EMI is using these pads the directionality
is controlled by the EMI and not the DMA control register.

15.3 Configuration registers

There are three control registers for the parallel port which are programmed by use of devsw
(device store) and devlw (device load) instructions. The base address for the parallel port
configuration registers is given in the Memory Map chapter.
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PlinkEmi register

The PlinkEmi  register determines the mode of operation of the port.

PlinkIO

The PlinkIO  register determines the direction of the port interactions when in the DMA mode of
operation.

PlinkMode

The PlinkMode  register determines the external protocol used for interactions.

15.4 External data transfer protocols

The byte-wide parallel port has three control pins. PlinknotReq  and PlinknotAck  control data
transfers and the PlinkOut  pin controls external buffers, if required (e.g. an external 3V/5V buffer
device). When the PlinkOut  pin is high it signals the plink is outputting.

The control pins can support three external protocols, as follows:

• Dreq/Dack protocol

• Valid/Ack protocol

• Direct DMA protocol

The protocol used for interactions is programmable via the PlinkMode  register. In addition, the
direction of the link is controlled by the PlinkIO  register (see Table 15.2).

PlinkEmi Parallel port base address + #00 Read/Write

Bit Bit field Function

0 PlinkEmi This bit determines the mode of operation of the port.
PlinkEmi Mode
0 DMA mode (reset state)
1 EMI mode

Table 15.1 PlinkEmi  register format

PlinkIO Parallel port base address + #04 Read/Write

Bit Bit field Function

0 PlinkIO This bit controls the direction of the parallel port interactions when in DMA mode.
PlinkIO Direction
0 inputs (reset state)
1 outputs

Table 15.2 PlinkIO  register format

PlinkMode Parallel port base address + #08 Read/Write

Bit Bit field Function

0 PlinkMode These bits control the external protocol used for interactions.
PlinkMode Protocol
00 Idle (reset state)
01 Dreq/Dack mode
10 Valid/Ack mode
11 Direct mode

Table 15.3 PlinkMode  register format
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15.4.1 Dreq/Dack protocol

In this mode the 2 control pins PlinknotReq  (Dreq) and PlinknotAck  (Dack) are active low. The
initial (inactive) state of the 2 control wires is high.

Dreq/Dack output

The sequence of events for a Dreq/Dack output is outlined below.

1 PlinknotReq  (Dreq), input to ST20, is taken low by the external ASIC.

2 The ST20-GP1 asserts the PlinknotAck  (Dack) output low. The ASIC can then take
PlinknotReq  (Dreq) high.

3 Following PlinknotAck  (Dack) going low, the data in the DMA buffer is applied to the output
pins. PlinknotAck  (Dack) is forced high and the output drivers are tristated. The ASIC can
initiate the next transfer.

Dreq/Dack input

The sequence of events for a Dreq/Dack input is outlined below.

1 PlinknotReq  (Dreq), input to ST20, is taken low by the external ASIC.

2 The ST20-GP1 then asserts the PlinknotAck  (Dack) output low.

3 The external ASIC applies the data to be transferred to the PlinkData0-7  pins. The ASIC
can then return PlinknotReq  (Dreq) high at any time.

4 The data on the input pins is sampled, then PlinknotAck  (Dack) is forced high.

Figure 15.1 Dreq/Dack protocol

ST20 Output

PlinknotReq

PlinknotAck

PlinkData0-7

ST20 Input

PlinknotReq

PlinknotAck

PlinkData0-7

(Dreq)

(Dack)

(Dreq)

(Dack)
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15.4.2 Valid/Ack protocol

In this mode the 2 control pins PlinknotReq  (Qack/Ivalid) and PlinknotAck  (Qvalid/Iack) are active
high. The initial (inactive) state of the 2 control wires is low.

Valid Ack output

An output transaction proceeds as follows.

1 The DMA is programmed to perform an out and the DMA engine receives its first byte in the
buffer from the EMI.

2 The PLink drives the data to the PlinkData0-7  pins and drives PlinknotAck  (Qvalid) high.

3 The external device acknowledges receipt of the data by taking PlinknotReq  (Qack) high.
The PLink can then take PlinknotAck  (Qvalid) low.

4 The external device can take PlinknotReq  (Qack) low ready for the next transaction.

Valid Ack input

An input transaction proceeds as follows.

1 The external device drives the data pins and PlinknotReq (Ivalid) is asserted high.

2 If the DMA engine has empty buffer space PlinkData0-7  is latched and PlinknotAck  (Iack)
is driven high by the PLink. The DMA writes to the appropriate address in memory.

3 The external device can then drive PlinknotReq  (Ivalid) low.

4 PlinknotAck  (Iack) can be taken low. The external device can then initiate the next transac-
tion.

Figure 15.2 Valid/Ack protocol
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15.4.3 Direct DMA protocol

In this mode the PLink becomes an unsynchronized (i.e. direct action) bus. The PlinknotAck
output still behaves as if it were acknowledging a real transfer. The PlinknotReq  signal has no
effect in this mode of operation. In this mode PlinknotAck  is active high. The initial (inactive) state
of the pin is low.

Direct mode output

To drive the output pins the PLink must be programmed to make a single byte DMA. If more than
one byte is output, the PLink will continue to drive the output pins as fast as the output DMA can
feed the data, i.e. once every 8 or more system clock cycles, until the correct number of bytes have
been output. The sequence of events for a single byte read is outlined below. When configured as
an output the drivers are always driven.

1 The PLink forces the PlinknotAck  pin high. The output pins are then driven with the new
data and the PlinknotAck  pin is forced low.

2 The output data remains static and driven to the pads until either a new value is written as
output or until the link direction is changed. If the PLink returns to direct output mode, the
old data is once again driven to the pads.

Note: At reset PlinknotAck  is a logic one, appearing to the outside world as an ‘acknowledge’.
External logic will assume that the data has been read. Therefore after programming the PLink to
direct mode the PlinknotAck  output falls.

Direct mode input

To read the input pins the PLink must be programmed to make a single byte DMA. The sequence
of events for a single byte read is outlined below.

1 The PLink forces the PlinknotAck  pin high. The input pins are then read and the Plinkno-
tAck  pin is forced low.

Figure 15.3 Direct DMA protocol
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16 Configuration register addresses
This chapter lists all the ST20-GP1 configuration registers and gives the addresses of the registers.
The complete bit format of each of the registers and its functionality is given in the relevant chapter.

The registers can be examined and set by the devlw (device load word) and devsw (device store
word) instructions. Note, they cannot be accessed using memory instructions.

Register Address Size Set Clear
Read/
Write

HandlerWptr0 #20000000 32 R/W

HandlerWptr1 #20000004 32 R/W

HandlerWptr2 #20000008 32 R/W

HandlerWptr3 #2000000C 32 R/W

HandlerWptr4 #20000010 32 R/W

TriggerMode0 #20000040 3 R/W

TriggerMode1 #20000044 3 R/W

TriggerMode2 #20000048 3 R/W

TriggerMode3 #2000004C 3 R/W

TriggerMode4 #20000050 3 R/W

Pending #20000080 5 Interrupt trigger Interrupt grant R/W

Set_Pending #20000084 5 W

Clear_Pending #20000088 5 W

Mask #200000C0 17 R/W

Set_Mask #200000C4 17 W

Clear_Mask #200000C8 17 W

Exec #20000100 5 Interrupt valid Interrupt done R/W

Set_Exec #20000104 5 W

Clear_Exec #20000108 5 W

LPTimerLS #20000400 32 R/W

LPTimerMS #20000404 32 R/W

LPTimerStart #20000408 1 By a write to LP-
TimerLS or LP-
TimerMS

R/W

LPAlarmLS #20000410 32 R/W

LPAlarmMS #20000414 8 R/W

LPAlarmStart #20000418 1 R/W

LPSysPll #20000420 2 R/W

SysRatio #20000500 6 R

WdEnable #20000510 1 R/W

Table 16.1  ST20-GP1 configuration register addresses
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WdFlag #20000514 1 R

EmiConfigDataField0 #20002000 32 R/W

EmiConfigDataField1 #20002004 32 R/W

EmiConfigDataField2 #20002008 32 R/W

EmiConfigDataField3 #2000200C 32 R/W

EmiConfigLock #20002010 32 W

EmiConfigStatus #20002020 32 R

EmiConfigStall #20002030 32 W

ASC0BaudRate #20004000 16 R/W

ASC0TxBuffer #20004004 16 W

ASC0RxBuffer #20004008 16 R

ASC0Control #2000400C 16 R/W

ASC0IntEnable #20004010 8 R/W

ASC0Status #20004014 8 R

ASC1BaudRate #20006000 16 R/W

ASC1TxBuffer #20006004 16 W

ASC1RxBuffer #20006008 16 R

ASC1Control #2000600C 16 R/W

ASC1IntEnable #20006010 8 R/W

ASC1Status #20006014 8 R

POut #20008000 6 R/W

Set_POut #20008004 6 W

Clear_POut #20008008 6 W

PIn #20008010 6 R

PC1 #20008030 6 R/W

Set_PC1 #20008034 6 W

Clear_PC1 #20008038 6 W

PComp #20008050 6 R/W

Set_PComp #20008054 6 W

Clear_PComp #20008058 6 W

PMask #20008060 6 R/W

Set_PMask #20008064 6 W

Clear_PMask #20008068 6 W

PlinkEmi #2000A000 1 R/W

PlinkIO #2000A004 1 R/W

PlinkMode #2000A008 2 R/W

Register Address Size Set Clear
Read/
Write

Table 16.1  ST20-GP1 configuration register addresses
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PRNcode0 #2000C000 7 W

PRNcode1 #2000C004 7 W

PRNcode2 #2000C008 7 W

PRNcode3 #2000C00C 7 W

PRNcode4 #2000C010 7 W

PRNcode5 #2000C014 7 W

PRNcode6 #2000C018 7 W

PRNcode7 #2000C01C 7 W

PRNcode8 #2000C020 7 W

PRNcode9 #2000C024 7 W

PRNcode10 #2000C028 7 W

PRNcode11 #2000C02C 7 W

PRNphase0 #2000C040 19 W

PRNphase0WrEn 1 R

PRNphase1 #2000C044 19 W

PRNphase1WrEn 1 R

PRNphase2 #2000C048 19 W

PRNphase2WrEn 1 R

PRNphase3 #2000C04C 19 W

PRNphase3WrEn 1 R

PRNphase4 #2000C050 19 W

PRNphase4WrEn 1 R

PRNphase5 #2000C054 19 W

PRNphase5WrEn 1 R

PRNphase6 #2000C058 19 W

PRNphase6WrEn 1 R

PRNphase7 #2000C05C 19 W

PRNphase7WrEn 1 R

PRNphase8 #2000C060 19 W

PRNphase8WrEn 1 R

PRNphase9 #2000C064 19 W

PRNphase9WrEn 1 R

PRNphase10 #2000C068 19 W

PRNphase10WrEn 1 R

PRNphase11 #2000C06C 19 W

PRNphase11WrEn 1 R

Register Address Size Set Clear
Read/
Write

Table 16.1  ST20-GP1 configuration register addresses
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NCOfrequency0 #2000C080 18 W

NCOfrequency1 #2000C084 18 W

NCOfrequency2 #2000C088 18 W

NCOfrequency3 #2000C08C 18 W

NCOfrequency4 #2000C090 18 W

NCOfrequency5 #2000C094 18 W

NCOfrequency6 #2000C098 18 W

NCOfrequency7 #2000C09C 18 W

NCOfrequency8 #2000C0A0 18 W

NCOfrequency9 #2000C0A4 18 W

NCOfrequency10 #2000C0A8 18 W

NCOfrequency11 #2000C0AC 18 W

NCOphase0 #2000C0C0 7 W

NCO1phase #2000C0C4 7 W

NCOphase2 #2000C0C8 7 W

NCOphase3 #2000C0CC 7 W

NCOphase4 #2000C0D0 7 W

NCOphase5 #2000C0D4 7 W

NCOphase6 #2000C0D8 7 W

NCOphase7 #2000C0DC 7 W

NCOphase8 #2000C0E0 7 W

NCOphase9 #2000C0E4 7 W

NCOphase10 #2000C0E8 7 W

NCOphase11 #2000C0EC 7 W

PRNinitialVal0 #2000C100 10 W

PRNinitialVal1 #2000C104 10 W

DSPControl #2000C140 4 W

Register Address Size Set Clear
Read/
Write

Table 16.1  ST20-GP1 configuration register addresses
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17 Electrical specifications
Absolute maximum ratings

Operation beyond the absolute maximum ratings may cause permanent damage to the device.

All voltages are measured referred to GND.

Notes

1 For a package junction to case thermal resistance of 14°C/W.

2 For reliability reasons the long-term current from any pin may be limited to a lower value
than stated here.

Operating conditions

Notes

1 For a package junction to case thermal resistance of 14°C/W.

2 The nominal input clock frequency must be 16.368 MHz for the DSP module to function cor-
rectly with the GPS satellites.

Symbol Parameter Min Max Units Notes

VDD DC power supply -0.5 4.5 V

VDDrtc Voltage at RTCVDD pin referred to GND -0.5 4.5 V

Ts Storage temperature (ambient) -55 125 °C

Tj Temperature under bias (junction) -40 125 °C 1

Io Continuous DC output current from any output pin. -20 20 mA 2

Vi Applied voltage to all functional pins excluding LPClockIn,
notRST  and test control pins.

-0.5 VDD + 0.5 V

Virtc Applied voltage to LPClockIn, notRST  and test control pins. -0.5 VDDrtc + 0.5 V

Vo Voltage on bi-directional and output pins except notMemCE0 . -0.5 VDD + 0.5 V

Vortc Voltage on the notMemCE0  pin -0.5 VDDrtc + 0.5 V

PDmax Power dissipation in package 2.0 W

Table 17.1  Absolute maximum ratings

Symbol Parameter Min Max Units Notes

Ta Ambient operating temperature of case -40 85 °C

Tj Operating temperature of junction -40 125 °C 1

Vi Applied voltage to all functional input pins and bidirectional pins
excluding LPClockIn , notRST  and test control pins.

0 VDD V

Virtc Applied voltage to LPClockIn, notRST  and test control pins 0 VDDrtc V

fclk ClockIn  frequency
ClockIn  frequency in TimesOneMode

16.5
36

MHz
MHz

2

Cl Load capacitance per pin 50 pF

Table 17.2  Operating conditions
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DC specifications

Notes

1 This is the static specification to ensure low current.

2 Output current of 2mA.

3 Output current of -2mA.

4 Excludes power used to drive external loads. Includes operation of the 32 KHz watch crys-
tal oscillator.

5 Device operation suspended by use of the low power controller with VDD and RTCVDD
within specification. Frequency of system clock (fclk) is 16.368 MHz and frequency of low
power clock is 32768 Hz.

6 With RTCVDD within specification and VDD at 0 V. All inputs static except LowPower-
ClockIn  and LowPowerClockOsc , frequency of low power clock 32768 Hz. All other
inputs must be in the range -0.1 to 0.1 V.

Symbol Parameter Min Typical Max Units Notes

VDD Positive supply voltage during normal operation. 3.0 3.3 3.6 V

VDDoff Positive supply voltage when device is off but real time
clock is running.

-0.3 0 0.3 V

VDDrtc Voltage at RTCVDD pin referred to GND. 3.0 3.3 3.6 V

VDDdiff VDD-VDDrtc during normal operation and notRST  set to
1.

-0.3 0 0.3 V 1

Vih Input logic 1 for LPClockIn , notRST  and test control pins.
Input logic 1 for all other inputs.
PIO pins.

2.0
2.0
2.4

VDDrtc + 0.5
VDD + 0.5
VDD + 0.5

V

Vil Input logic 0 for all inputs. -0.5 0.8

Iin Input current to input pins. -10 10 µA

Ioz Off state digital output current. -50 50 µA

Vohdc Output logic 1 2.4 VDD V 2

Voldc Output logic 0 0 0.4 3

Cin Input capacitance (input only pins). 4 10 pF

Cout Output capacitance and capacitance of bidirectional pins. 6 15 pF

Pop Operational power consumption under heavy device
activity. fclk of 16.368 MHz and SpeedSelect  set to PLL
operation (x1). No external memory used.

0.5 0.8 W 4

Papp Operational power consumption under ‘typical’ device
activity. fclk of 16.368 MHz and SpeedSelect  set to PLL
operation (x2). External memory used.

0.75 1.1 W 4

Pstby Operational power during stand-by. 0.16 0.3 W 5

Prtc Operational power for the real time clock only, supplied
through the RTCVDD pin.

1 mW 6

Table 17.3  DC specification
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AC specifications

Notes

1 The maximum is only a guideline to ensure a low current consumption during the change in
VDD.

2 The transition need not be monotonic, providing that the notRST  pin is forced low during
the whole period while the main VDD voltage is not within limits set in the DC operating
conditions.

Symbol Parameter Min Typical Max Units Notes

tvddr Rise time of VDD during power up (measured
between 0.3 V and 2.7 V).

5 ns 100 ms 1, 2

tvddf Fall time of VDD during power down (measured
between 2.7 V and 0.3 V).

5 ns 100 ms 1, 2

Table 17.4  AC Specification
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18 GPS Performance
This chapter details the performance of a ST20-GP1 based GPS receiver.

Note that the performance is dependent on the quality of the user radio, antenna and software
used to track the signal and to calculate the resultant position.

18.1 Accuracy

18.1.1 Benign site

The accuracy performance of a GPS receiver is dependent on external factors, in particular the
deliberate degradation of the signal by the US DoD, known as Selective Availability (SA). This
results in an error specification of 100m.

If signal errors are corrected by differential GPS, the ST20-GP1 can achieve better than 1m
accuracy with 1-second rate corrections. Note that the ST20-GP1 supports the RTCA-SC159
provided corrections with no additional hardware.

For surveying use, the resolution of the counters used in the phase/frequency tracking allows
resolution down to 1mm.

18.1.2 Under harsh conditions

Under harsh conditions, accuracy degrades due to:

• noise on the weakened signal

• reflected signals from buildings and cliffs

• obstruction of satellites

The ST20-GP1 pays a 2 dB signal/noise ratio penalty by using 1-bit signal coding, there are then
no further losses in the signal processing hardware. The fast sampling rate, with both in-phase and
quadrature channels, results in the subsequent processing being 11 dB better, on a signal to noise
ratio, than earlier systems that sample at 2 MHz. Thus there is a 9 dB overall improvement.

Accuracy

Stand alone
with Selective Availability
without Selective Availability

< 100m
< 30m

Differential < 1m

Surveying < 1cm

Table 18.1  Accuracy performance
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18.2 Time to first fix

Condition Receiver situation
Time to
first fix

autonomous
start

the receiver has no estimate of time/date/position and no recent almanac 90s

cold start the receiver has estimated time/date/position and almanac 45s

warm start the receiver has estimated time/date/position and almanac and still valid ephemeris data 7s

obscuration the receiver has precise time (to µs level) as its calibrated clock is not stopped 1s

Table 18.2  Time to first fix



ST20-GP1

102/116



19 Timing specifications

19.1 EMI timings

The timings are based on a 50 pF load, and are taken at a threshold of 1.5 V.

Table 19.1  EMI cycle timings

Note : The ‘Reference clock’ used in the EMI timings is a virtual clock and is defined as the point at
which all data and address outputs are valid. This is designed to remove process dependent skews
from the datasheet description and highlight the dominant influence of address and data timings on
memory system design.

Symbol Parameter Min Max Units Notes

tCHAV Reference clock high to Address valid -9.0 0.0 ns

tCLSV Reference clock low to Strobe valid -11.0 3.0 ns

tCHSV Reference clock high to Strobe valid -9.0 0.0 ns

tRDVCH Read Data valid to Reference clock high 32.0 - ns

tCHRDX Read Data hold after Reference clock high -9.0 - ns

tCHWDV Reference clock high to Write Data valid -9.0 2.0 ns

tWVCH MemWait valid to Reference clock high 27.0 - ns

tCHWX MemWait hold after Reference clock high -6.0 - ns
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Figure 19.1 EMI timings

MemData0-15

tRDVCH

(Read)

tCHWDV

tCHSV tCLSV

tCHRDX

MemWait

tWVCH tCHWX

tCHAV

Reference clock

MemAddr1-19

notMemCE0-3
notMemOE0-3
notMemWB0-1

MemData0-15
(Write)
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19.2 Link timings

Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receiv-
ers etc., caused by such things as short term variation in supply voltages and differences in
delays for rising and falling edges.

Table 19.2  Link timings

Figure 19.2 Link timings

Figure 19.3 Buffered Link timings

Symbol Parameter Min Nom Max Units Notes

tJQr LinkOut  rise time 20 ns

tJQf LinkOut  fall time 10 ns

tJDr LinkIn  rise time 20 ns

tJDf LinkIn  fall time 20 ns

tJQJD Buffered edge delay 0 ns

∆tJB Variation in tJQJD 20 Mbits/s 3 ns 1

10 Mbits/s 10 ns 1

5 Mbits/s 30 ns 1

CLIZ LinkIn  capacitance @ f=1MHz 10 pF

CLL LinkOut  load capacitance 50 pF

tJQf

90%

10%
tJQr

tJDf

90%

10%
tJDr

LinkOut

LinkIn

1.5 V

Latest tJQJD

LinkOut

LinkIn 1.5 V

∆tJB

Earliest tJQJD
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19.3 Reset and Analyse timings

Table 19.3  Reset and Analyse timings

Figure 19.4 Reset and Analyse timings

Symbol Parameter Min Nom Max Units Notes

tRHRL notRST  pulse width low 8 ClockIn

tRHRL CPUReset  pulse width high 1 ClockIn

tAHRH CPUAnalyse setup before CPUReset 3 ms

tRLAL CPUAnalyse  hold after CPUReset end 1 ClockIn

CPUAnalyse

CPUReset

tRHRL tRHRL

tRLALtAHRH

notRST

tRSTHRSTL
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19.4 ClockIn timings

Notes

1 Measured between corresponding points on consecutive falling edges.
2 Variation of individual falling edges from their nominal times.
3 Clock transitions must be monotonic within the range VIH to VIL (see Electrical Specifica-

tions).

Table 19.4 ClockIn  timings

Figure 19.5 ClockIn timings

19.4.1 ClockIn frequency

Nominal ClockIn  frequency is 16.36800 Mhz ±50 ppm tolerance. This tolerance relates to the GPS
system requirements and not for the device to function.

Symbol Parameter Min Nom Max Units Notes

tDCLDCH ClockIn pulse width low for PLL operation 18 42.5 ns

tDCHDCL ClockIn  pulse width high for PLL operation 18 42.5 ns

tDCr ClockIn  rise time for PLL operation 20 ns 3

tDCf ClockIn  fall time for PLL operation 20 ns 3

tGDVCH GPSIF valid before clock rising edge 20 ns

tCHGDX GPSIF valid after clock rising edge 0 ns

90%

10%
tDCr

2.0V

0.8V
1.5V

tDCLDCH tDCHDCL

tDCf

90%

10%

tGDVCH tCHGDX

GPSIF
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19.5 Parallel port timings

19.5.1 Dreq/Dack protocol

In this mode the two control pins PlinknotReq  (Dreq) and PlinknotAck  (Dack) are active low. The
initial (inactive) state of the two control wires is high.

Notes:

1 This will be a maximum of 200 ns if the port is already programmed either to accept another
byte or to write another byte and the port has the data available. In the extreme case for a
PLink output this value could be very large if the link has to wait for other external accesses
to complete before it can read the data to write out through the PLink.

Figure 19.6 Byte-wide parallel port timings when using the Dreq/Dack protocol

Symbol Parameter Min Max Units

PLink is output tPALPDV PlinknotAck  falling transition to PlinkData  valid 100 ns

tPAHDOX PlinkData  hold time after rising edge of PlinknotAck 10 ns

tPAHDOZ PlinkData  output tristate time from PlinknotAck  rising edge 90 ns

PLink is input tPAHDIX PlinkData  hold after PlinknotAck  rising edge 0 ns

tPALDIV PlinkData  valid after PlinknotAck  falling edge 20 ns

PLink is input
or output

tPAHPRL PlinknotAck  rising edge to succeeding PlinknotReq  falling edge 0 ns

tPALPAH PlinknotAck  low time 55 340 ns

tPRLPAL Time between the input PlinknotReq  falling and the output Plin-
knotAck  falling

25 see
note 1

ns

Table 19.5  Timings for Dreq/Dack protocol

PlinknotReq

PlinknotAck

PlinkData0-7

tPALDOV

tPALPAH

tPAHDOX

tPRLPAL

PlinkData0-7

tPAHDOZ

tPAHPRL

(Dreq)

(Dack)

tPALDIV

tPAHDIX

(Output)

(Input)
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19.5.2 Valid/Ack protocol

In this mode the two control pins PlinknotReq  (Qack/Ivalid) and PlinknotAck  (Qvalid/Iack) are
active high. The initial (inactive) state of the two control wires is low.

Figure 19.7 Byte-wide parallel port timings when using the Valid/Ack protocol

Symbol Parameter Min Max Units

PLink is output tPAHPRH PlinknotAck  rising transition to PlinknotReq  rising 0 ns

tDOVPAH PlinkData0-7  setup time before rising edge of PlinknotAck 0 ns

tPRHPAL PlinknotReq  rising edge to PlinknotAck  falling edge 0 ns

tPALPRL PlinknotReq falling edge after PlinknotAck falling edge 0 ns

tPRLDOX PlinkData0-7  hold time after PlinknotReq  falling edge
(i.e. before new data may be put onto bus)

0 ns

PLink is input tDIVPRH PlinkData  setup time before PlinknotReq  rising edge 0 ns

tPAHDIX PlinkData  hold after PlinknotAck  rising edge 0 ns

tPAHPRL PlinknotReq  falling edge after PlinknotAck rising edge 0 ns

tPRLPAH PlinknotReq  falling edge to PlinknotAck rising edge 0 ns

tPRLPAL PlinknotAck  falling edge after PlinknotReq falling edge 40 300 ns

tPALPRH PlinknotReq  rising edge after PlinknotAck  falling edge 0 ns

Table 19.6  Timings for Valid/Ack protocol

ST20 Output

PlinknotAck

PlinknotReq

PlinkData0-7

tDOVPAH

tPAHPRH

tPRLPAH

tPAHDIX

ST20 Input

PlinknotReq

PlinknotAck

PlinkData0-7

tPALPRH

tPAHPRL

tPRLPAL

valid dataold data

tPALPRL

tDOVPRH

tPRHPAL

tPRLDOX

(Qvalid)

(Qack)

(Ivalid)

(Iack)
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19.5.3 Direct DMA protocol

In this mode PlinknotAck  is active high. The initial (inactive) state of the pin is low.

Figure 19.8 Byte-wide parallel port timings when using the Direct DMA protocol

Symbol Parameter 16.4 Mhz 32.7 Mhz Units

Min Max Min Max

PLink is output tPALDOX PlinkData  hold after PlinknotAck
falling edge

330 160 ns

tDOVPAL PlinkData valid to PlinknotAck  fall-
ing transition

100 40 ns

PLink is input tPALDIX PlinkData  hold after PlinknotAck
falling edge

0 0 ns

tDIVPAL PlinkData valid to PlinknotAck  fall-
ing transition

100 70 ns

PLink is input or
output

tPAHPAL PlinknotAck  high time 220 270 100 140 ns

tPALPAH PlinknotAck  low time 220 270 100 140 ns

Table 19.7  Timings for Direct mode

(Output)

(Input)

PlinknotAck

PlinkData0-7

tDOVPAL

tPAHPAL

tPALDIX

PlinkData0-7

tPALPAH

tPALDOX

tDIVPAL
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20 Pin list
Signals names are prefixed by not  if they are active low, otherwise they are active high.

Supplies

Clocks

System services

Links

Interrupts

Pin In/Out Function

VDD Power supply

GND Ground

Table 20.1  ST20-GP1 supply pins

Pin In/Out Function

LowPowerClockIn in Low power input clock

LowPowerClockOsc in/out Low power clock oscillator

LowPowerStatus out Low power status

notWdReset out Watchdog timer reset

RTCVDD in Real time clock supply

Table 20.2  ST20-GP1 low power controller and real time clock pins

Pin In/Out Function

ClockIn in System input clock – PLL or TimesOneMode

SpeedSpeed0-1 in Speed selectors

notRST in Reset

CPUReset in System reset

CPUAnalyse in Error analysis

ErrorOut out Error indicator

Table 20.3  ST20-GP1 system services pins

Pin In/Out Function

LinkIn in Serial data input channel

LinkOut out Serial data output channel

Table 20.4  ST20-GP1 link pins

Pin In/Out Function

Interrupt0-1 in Interrupts

Table 20.5  ST20-GP1 interrupt pins
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Memory

UART

Parallel IO

Byte wide parallel port

Application specific

Miscellaneous

Pin In/Out Function

MemAddr1-19 out Address bus

MemData0-15 in/out Data bus. Data0 is the least significant bit (LSB) and
Data15 is the most significant bit (MSB).

MemWait in Memory cycle extender

notMemOE0-3 out Output enable strobes – one per bank

notMemCE0-3 out Chip enable strobes – one per bank

notMemWB0-1 out Used as write strobe, or MemAddr0  on 8-bit bus.

BootSource0-1 in Boot from ROM or from link

Table 20.6  ST20-GP1 memory pins

Pin In/Out Function

TXD0-1 out UART serial data output

RXD0-1 in UART serial data input

Table 20.7  ST20-GP1 UART pins

Pin In/Out Function

PIO0-5 in/out PIO

Table 20.8  ST20-GP1 parallel IO pins

Pin In/Out Function

PlinkData0-7 in/out Bidirectional data bus

PlinknotReq in Data transfer request

PlinknotAck out Data transfer acknowledge

PlinkOut out Controls external buffers. When high signals the PLink is
outputting.

Table 20.9  ST20-GP1 byte wide parallel port pins

Pin In/Out Function

GPSIF in GPS IF input

Table 20.10  ST20-GP1 application specific pins

Pin In/Out Function

ConnectToGND Must be connected to GND

Table 20.11  ST20-GP1 miscellaneous pins
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21 Package specifications
The ST20-GP1 is available in a 100 pin plastic quad flat pack (PQFP) package.

21.1 ST20-GP1 package pinout

Figure 21.1 ST20-GP1 100 pin PQFP package pinout
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21.2 100 pin PQFP package dimensions

Notes

1 Lead finish to be 60 Sn/40 Pb solder plate.

2 Maximum lead displacement from the notional centre line will be no greater than
±0.125 mm.

Table 21.1  100 pin PQFP package dimensions

REF. CONTROL DIM. mm
MIN

ALTERNATIVE DIM. INCHES
MIN

NOTES

A - - 3.400 - - 0.134

A1 0.100 - - 0.004 - -

A2 2.540 2.800 3.050 0.096 0.110 0.120

B 0.220 - 0.380 0.009 - 0.015

C 0.130 - 0.230 0.005 - 0.009

D 22.950 - 24.150 0.904 - 0.951

D1 19.900 20.000 20.100 0.783 0.787 0.791

D3 - 18.850 - - 0.742 - REF

E 16.950 - 18.150 0.667 - 0.715

E1 13.900 14.000 14.100 0.547 0.551 0.555

E3 - 12.350 - - 0.486 - REF

e - 0.650 - - 0.026 - BSC

G - - 0.100 - - 0.004

K 0° - 7° 0° - 7°

L 0.650 0.800 0.950 0.026 0.031 0.037

Zd - 0.580 - - 0.23 - REF

Ze - 0.830 - - 0.033 - REF
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Figure 21.2 100 pin PQFP package dimensions
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22 Device ID
The identification code for the ST20-GP1 is #m5191011, where m is a manufacturing revision
number reserved by SGS-THOMSON. See Table 22.1.

The identification code is returned by the lddevid instruction, see Table 6.4.

23 Ordering information

For further information contact your local SGS-THOMSON sales office.

a. 0 indicates SGS-THOMSON part, 1 indicates customer part.
b. Defined as 1 in IEEE 1149.1 standard.

bit 31 bit 0

Mask rev a ST20 family Variant
SGS-THOMSON
manufacturers id

b

0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

5 1 9 1 0 1 1

Table 22.1  Identification code

Device Package

ST20GP1X33S 100 pin plastic quad flatpack (PQFP)

reserved
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Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the conse-
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics
products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON
Microelectronics.

© 1996 SGS-THOMSON Microelectronics - All Rights Reserved
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