

1.3MHz Step-Up DC/DC Converter in ThinSOT

September 2003

FEATURES

- Integrated Schottky Rectifier
- 1.3MHz Switching Frequency
- High Output Voltage: Up to 38V
- 300mA Integrated Switch
- 12V at 70mA from 5V Input
- 5V at 115mA from 3.3V Input
- Wide Input Range: 2.5V to 16V
- Uses Small Surface Mount Components
- Low Shutdown Current: <1µA
- Soft-Start
- Low Profile (1mm) SOT-23 (ThinSOTTM) Package

APPLICATIONS

- Digital Cameras
- CCD Bias Supply
- XDSL Power Supply
- TFT-LCD Bias Supply
- Local 5V or 12V Supply
- Medical Diagnostic Equipment
- Battery Backup

DESCRIPTION

The LT®3461 is a general purpose step-up DC/DC converter. The device switches at 1.3MHz, allowing the use of tiny, low cost and low height capacitors and inductors. An integrated Schottky rectifier results in lower parts cost and smaller converter footprint. The constant frequency results in low, predictable output noise that is easy to filter. The high voltage switch in the LT3461 is rated at 40V, making the device ideal for boost converters up to 38V. The LT3461 can generate 12V at up to 70mA from a 5V supply.

The LT3461 is available in a low profile (1mm) SOT-23 package.

(T), LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation

TYPICAL APPLICATION

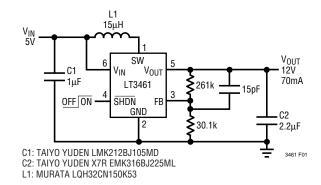
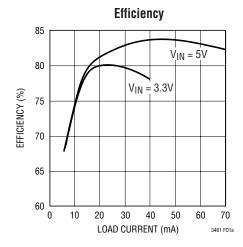
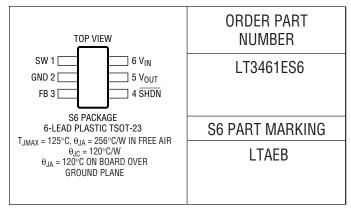



Figure 1. 5V to 12V, 70mA Step-Up DC/DC Converter



ABSOLUTE MAXIMUM RATINGS

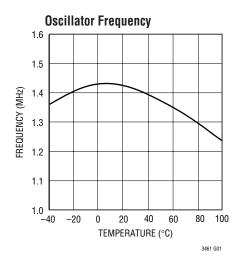
(Note 1)

Input Voltage (V _{IN})	
V _{OUT} , SW Voltage	40V
FB Voltage	5V
SHDN Voltage	16V
Operating Ambient	
Temperature Range (Note 2)	40°C to 85°C
Maximum Junction Temperature	125°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

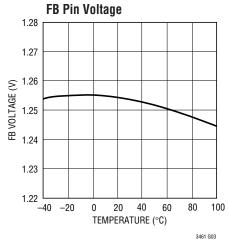
PACKAGE/ORDER INFORMATION

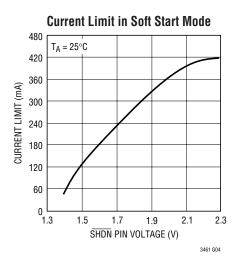
Consult LTC Marketing for parts specified with wider operating temperature ranges.

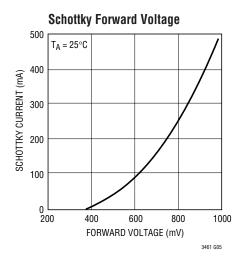
ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$, $V_{IN} = 3V$, $V_{\overline{SHDN}} = 3V$, unless otherwise noted.

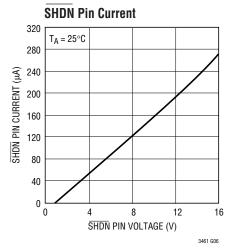

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Operating Voltage			2.5			V
Maximum Operating Voltage					16	V
Feedback Voltage		•	1.235 1.225	1.255	1.275 1.280	V
Feedback Line Regulation				0.005		%/V
FB Pin Bias Current		•		40	100	nA
Supply Current	FB = 1.3V, Not Switching SHDN = 0V			2.8 0.1	3.6 0.5	mA μA
Switching Frequency		•	1.0	1.3	1.7	MHz
Maximum Duty Cycle		•	92			%
Switch Current Limit			300	420	600	mA
Switch V _{CESAT}	I _{SW} = 250mA			260	350	mV
Switch Leakage Current	V _{SW} = 5V			0.01	1	μΑ
Schottky Forward Voltage	I _{SCHOTTKY} = 250mA			800	1100	mV
Schottky Reverse Leakage	$V_{OUT} - SW = 40V$			0.03	4	μΑ
SHDN Voltage High			1.5			V
SHDN Voltage Low					0.4	V
SHDN Pin Bias Current				35	50	μA

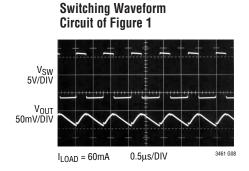
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

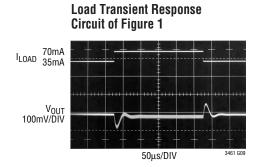

Note 2: The LT3461E is guaranteed to meet specifications from 0° C to 70° C. Specifications over the -40° C to 85° C operating temperature range are assured by design, characterization and correlation with statistical process controls.


LINEAR


TYPICAL PERFORMANCE CHARACTERISTICS







PIN FUNCTIONS

SW (Pin 1): Switch Pin. Connect inductor here. Minimize trace at this pin to reduce EMI.

GND (Pin 2): Ground Pin. Tie directly to local ground plane.

FB (**Pin 3**): Feedback Pin. Reference voltage is 1.255V. Connect resistor divider tap here. Minimize trace area at FB. Set V_{OUT} according to $V_{OUT} = 1.255V$ (1 + R1/R2).

SHDN (**Pin 4**): Shutdown Pin. Tie to 1.5V or higher to enable device; 0.4V or less to disable device. Also functions as soft-start. Use RC filter (47k, 47nF typ) as shown in Figure 2.

V_{OUT} (Pin 5): Output Pin. Connect to resistor divider. Put capacitor close to pin and close to GND plane.

V_{IN} (Pin 6): Input Supply Pin. Must be locally bypassed.

BLOCK DIAGRAM

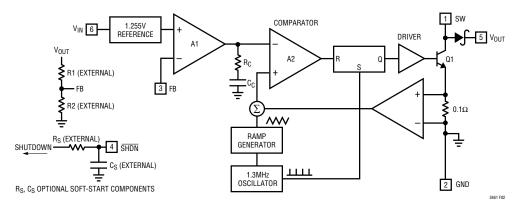


Figure 2. Block Diagram

OPERATION

The LT3461 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the block diagram in Figure 2. At the start of each oscillator cycle, the SR latch is set, which turns on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A2, the SR latch is reset turning off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the reference voltage of 1.255V. In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered.

Layout Hints

The high speed operation of the LT3461 demands careful attention to board layout. You will not get advertised performance with careless layout. Figure 3 shows the recommended component placement.

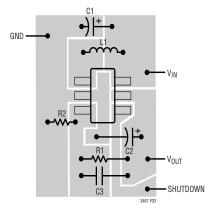


Figure 3. Suggested Layout

LINEAR

APPLICATIONS INFORMATION

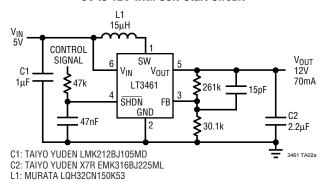
Inrush Current

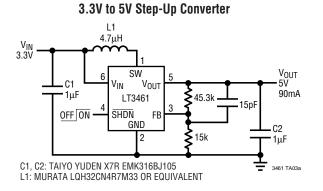
The LT3461 has a built-in Schottky diode. When supply voltage is applied to the V_{IN} pin, the voltage difference between V_{IN} and V_{OUT} generates inrush current flowing from input through the inductor and the Schottky diode to charge the output capacitor to V_{IN} . The maximum nonrepetitive surge current the Schottky diode in the LT3461 can sustain is 1.5A. The selection of inductor and capacitor value should ensure the peak of the inrush current to be below 1.5A. The peak inrush current can be calculated as follows:

$$\begin{split} I_P &= \frac{V_{IN} - 0.6}{L \cdot \omega} \cdot exp \bigg[-\frac{\alpha}{\omega} \cdot tan^{-1} \bigg(\frac{\omega}{\alpha} \bigg) \bigg] \cdot sin \bigg[tan^{-1} \bigg(\frac{\omega}{\alpha} \bigg) \bigg] \\ \alpha &= \frac{r + 1.5}{2 \cdot L} \\ \omega &= \sqrt{\frac{1}{L \cdot C} - \frac{\left(r + 1.5\right)^2}{4 \cdot I^2}} \end{split}$$

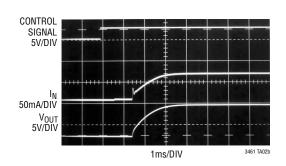
where L is the inductance, r is the resistance of the inductor and C is the output capacitance. For low DCR inductors, which is usually the case for this application, the peak inrush current can be simplified as follows:

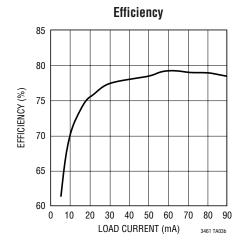
$$I_{P} = \frac{V_{IN} - 0.6}{L \cdot \omega} \cdot exp\left(-\frac{\alpha}{\omega} \cdot \frac{\pi}{2}\right)$$


Table 3 gives inrush peak currents for some component selections.

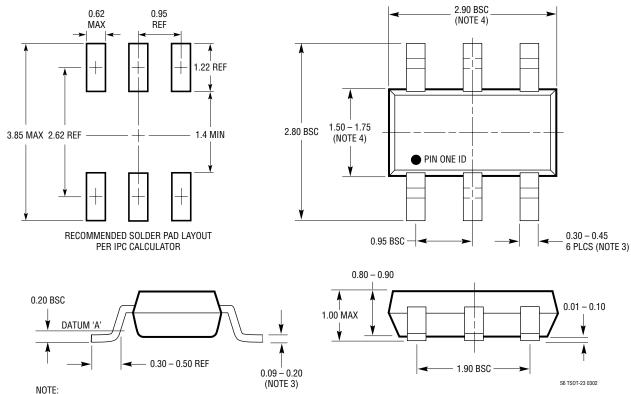

Table 3. Inrush Peak Current

V _{IN} (V)	r (Ω)	L (µH)	C (μF)	I _P (A)
5	0.5	22	1	0.70
5	0.5	33	1	0.60


TYPICAL APPLICATIONS


5V to 12V with Soft-Start Circuit

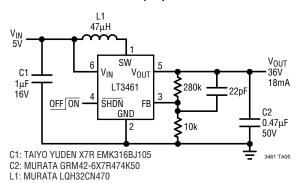
Input Current and Output Voltage

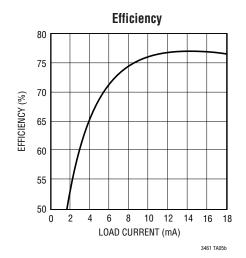


PACKAGE DESCRIPTION

S6 Package 6-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1636)


- NOTE:


 1. DIMENSIONS ARE IN MILLIMETERS
 2. DRAWING NOT TO SCALE
 3. DIMENSIONS ARE INCLUSIVE OF PLATING
 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
 5. MOLD FLASH SHALL NOT EXCEED 0.254mm
 6. JEDEC PACKAGE REFERENCE IS MO-193

TYPICAL APPLICATIONS

5V to 36V Step-Up Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1615/LT1615-1	Constant Off-Time, Step-Up DC/DC Converter	350mA Switch, V _{OUT} to 36V, I _Q = 20μA, ThinSOT Package
LT1944/LT1944-1	Dual Constant Off-Time, Step-Up DC/DC Converter	350mA Switch × 2, V _{OUT} to 36V, I _Q = 20μA, MS10 Package
LTC3400/LTC3400B	1.2MHz, Synchronous Step-Up DC/DC Converter	600mA Switch, V _{IN} : 0.85V to 5V, I _Q = 19μA, ThinSOT Package
LTC3401	3MHz, Synchronous Step-Up DC/DC Converter	1A Switch, V _{IN} : 0.85V to 5V, I _Q = 38μA, MS10 Package
LTC3402	3MHz, Synchronous Step-Up DC/DC Converter	2A Switch, V _{IN} : 0.85V to 5V, I _Q = 38μA, MS10 Package
LT3460	1.3MHz Step-Up DC/DC Converter	350mA Switch, V _{OUT} to 36V, ThinSOT, SC70 Packages
LT3464	Constant Off-Time, Micropower Step-Up DC/DC Converter	85mA Switch, Internal Schottky Diode and Output Disconnect PNP, $I_Q = 25\mu A$
LT3465	1.2MHz White LED Step-Up DC/DC Converter with Built-In Schottky	Drives Up to 6 LEDs, Inherently Matches LED Current