PNP MEDIUM POWER TRANSISTOR

- FEATURES
* High current (max. 1 A)
* Low voltage (max. 20 V).
* Complementary to UTC BCP68
- APPLICATIONS
* General purpose switching and amplification
* Power applications such as audio output stages.

*Pb-free plating product number:BCP69L
- ORDERING INFORMATION

Order Number		Package	Pin Assignment			Packing
Normal	Lead Free Plating		4U.co ${ }^{\text {a }}$	2	3	
BCP69-xx-AA3-F-R	BCP69L-xx-AA3-F-R	SOT-223	B	C	E	Tape Reel

BCP69L-xx-AA3-F-R				
	(1)Packing Type (2)Pin Assignment (3)Package Type (4)Rank	(1) R: Tape Reel (2) refer to Pin Assignment (5)Lead Plating		
	(3) AA3: SOT-223 (4) xx: refer to Classification of haE (5) L: Lead Free Plating, Blank: Pb/Sn			

- ABSOLUTE MAXIMUM RATING ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector-Base Voltage (Open Emitter)	$\mathrm{V}_{\text {CBO }}$	-32	V
Collector-Emitter Voltage (Open Base)	$\mathrm{V}_{\text {CEO }}$	-20	V
Emitter-Base Voltage (Open Collector)	$\mathrm{V}_{\text {EBO }}$	-5	V
Collector Current (DC)	I_{C}	-1	A
Peak Collector Current	$\mathrm{I}_{\text {CM }}$	-2	A
Peak Base Current	I_{BM}	-200	mA
Total Power Dissipation, Ta $\leq 25^{\circ} \mathrm{C}$	P_{D}	1.35	W
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\text {OPR }}$	$-45 \sim+150$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance From Junction To Ambient (Note 1)	θ_{JA}	91	K/W

- ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CESAT }}$	$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-100 \mathrm{~mA}$			-500	mV
Base-Emitter Voltage	$V_{\text {be }}$	$\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-10 \mathrm{~V}$		-620		mV
		$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V}$			-1	V
Collector Cut-off Current	$\mathrm{I}_{\text {cbo }}$	$\mathrm{l}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=-25 \mathrm{~V}$			-100	nA
		$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=-25 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}$			-10	$\mu \mathrm{A}$
Emitter Cut-off Current	$\mathrm{I}_{\text {EBO }}$	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\text {EB }}=-5 \mathrm{~V}$			-100	nA
DC Current Gain	$h_{\text {FE }}$	$\mathrm{I}_{\text {C }}=-5 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-10 \mathrm{~V}$	50			
		$\mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-1 \mathrm{~V}$	85		375	
		$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V}$	60			
Collector Capacitance	C_{C}	$\mathrm{I}_{\mathrm{E}}=\mathrm{i}_{\mathrm{e}}=0, \mathrm{~V}_{C B}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		48		pF
Transition Frequency	f_{T}	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$	40			MHz
DC current gain ratio of the complementary pairs	$\begin{aligned} & \hline \frac{\mathrm{h}_{\text {FE1 }}}{\mathrm{h}_{\text {FE2 }}} \end{aligned}$	$\left\|\|\mathrm{Cl}\|=0.5 \mathrm{~A},\left\|\mathrm{~V}_{\mathrm{CE}}\right\|=1 \mathrm{~V}\right.$			1.6	

- CLASSIFICATION OF h_{FE}

RANK	16	25
RANGE	$100 \sim 250$	$160 \sim 375$

- TYPICAL CHARACTERISTICS

Abstract

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

