FEATURES

- · Fully qualified to Class H or K
- · Radiation hardened
- -55° to +125°C operation
- 16 to 40 VDC input
- · Fully Isolated
- · Magnetic feedback
- · Fixed frequency, 600 kHz typical
- Topology Single Ended Forward
- Inhibit function
- Sync function
- · Indefinite short circuit protection
- Up to 30 watts output power
- Trim function on single output models
- Up to 81% efficiency

DC/DC CONVERTERS 28 VOLT INPUT

MODELS VDC OUTPUT							
SINGLE 3.3 5 12 15	DUAL ±5 ±12 ±15						

Size (max.): Non-flanged Case: H2 2.125 x 1.125 x 0.400 inches (53.98 x 28.58 x 10.16 mm)

Flanged Case: K3 2.910 x 1.125 x 0.400 inches (73.79 x 28.58 x 10.16 mm)

See Figures 22 through 25 for dimensions.

Weight: Non-flanged 52 grams max., flanged 55 grams max. Screening: Space prototype, Class H, or Class K (MIL-PRF-38534)

Radiation hardness levels O or R

DESCRIPTION

The SMTR Series[™] of 28 volt DC/DC converters offers up to 30 watts of output power from single or dual output configurations. The operate over the full military temperature range of −55°C to +125°C with up to 84% efficiency. SMTR converters are packaged in hermetically sealed metal enclosures, making them ideal for use in military, aerospace and other high reliability applications.

SCREENING AND REPORTS

SMTR converters offer three screening options (Standard, Class H, or Class K) and two levels of radiation hardness (O or R). See Tables 1, 2, and 3 for more information. Detailed reports on product performance are also available and are listed in Table 4.

CONVERTER DESIGN

The SMTR converters are constant frequency, pulse-width modulated switching regulators which use a quasi-square wave, single ended, forward converter design. Tight load regulation is maintained by using a wide bandwidth magnetic feedback and, on single output models, through use of remote sense. On dual output models, the positive output is independently regulated and the negative output is cross regulated through the use of tightly coupled magnetics.

Indefinite short circuit protection and overload protection are provided by a constant current-limit feature. This protective system senses current in the converter's secondary stage and limits it to approximately 115% of the maximum rated output current.

SMTR converters are provided with internal filtering capacitors that help reduce the need for external components in normal operation. For systems that require compliance with MIL-STD-461C's CE03 standard, Interpoint offers filter/transient suppression modules (including the FMC-461, FMD-461 and FM-704A series filters) which will result in compliance. For the lowest noise performance, connection of the case to input common is recommended. The connection can be hard-wired or AC coupled with a small ceramic bypass capacitor.

SYNCHRONIZATION

Synchronizing the converter with the system clock allows the designer to confine switching noise to clock transitions, minimizing interference and reducing the need for filtering. In sync mode, the converter will run at any frequency between 500 kHz and 675 kHz. The sync control operates with a quasi-TTL signal at any duty cycle between 40% and 60%. The sync pin should be connected to input common pin when not in use.

WIDE VOLTAGE RANGE

SMTR converters are designed to provide full power operation over a full 16 to 40 Vdc voltage range. Operation below 16 volts, including MIL-STD-704D emergency power conditions is possible with derated power.

IMPROVED DYNAMIC RESPONSE

The SMTR Series feed-forward compensation system provides excellent dynamic response and noise rejection. Audio rejection is typically 50 dB. The min. to max. step line transient response is typically less than 4%.

INHIBIT FUNCTION

SMTR converters provide an inhibit terminal that can be used to disable internal switching, resulting in no output and very low quiescent input current. The converter is inhibited when a TTL compatible low (≤0.8V) is applied to the inhibit pin. The unit is enabled when the pin, which is internally connected to a pull-up resistor, is left unconnected or is connected to an open-collector gate. The open circuit output voltage associated with the inhibit pin is 9 to 11 Vdc. In the inhibit mode, a maximum of 8 mA must be sunk from the inhibit pin.

DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Input Voltage

• 16 to 40 VDC

Output Power

- 25 to 30 watts depending on model
- Lead Soldering Temperature (10 sec per pin)

Storage Temperature Range (Case) • -65°C to +135°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range

- 16 to 40 VDC continuous50 V for 50 msec transient

Case Operating Temperature (Tc)

- -55°C to +125°C full power
- -55°C to +135°C absolute
- Derating Output Power/Current
- Linearly from 100% at 125°C to 0% at 135°C

SYNC AND INHIBIT

Sync (500 to 675 kHz)

- Duty cycle 40% min, 60% max
 Logic low 0.8 V max
- Logic high 4.5 V min, 5 V max
- Referenced to input common
- If not used, connect to input common

Inhibit TTL Open Collector

- Logic low (output disabled) Voltage ≤0.8 V Inhibit pin current 8.0 mA max
- Referenced to input common
- Logic high (output enabled)
 Open collector

TYPICAL CHARACTERISTICS

- Output Voltage Temperature Coefficient
 100 ppm/°C typical single and dual outputs
 - 200 ppm/°C main, 300 ppm/°C aux

triple output Input to Output Capacitance

- 50 pF typ (100 pF typ triple outputs)
- Current Limit . 115% of full load typical

Isolation

• 100 megohm minimum at 500 V Audio Rejection

40 dB typ (50 dB typ triple output)I

- Conversion Frequency

 Free run 550 min, 600 typ, 650 max kHz

 External sync 500 to 675 kHz
- Inhibit Pin Voltage (unit enabled)
- 9 to 11 V

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, radiation level O, unless otherwise specified.

SINGLE OUTPUT MODELS		SMTR283R3S		SMTR2805S		SMTR2812S		SMTR2815S						
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.27	3.30	3.33	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
OUTPUT CURRENT ¹	V _{IN} = 16 to 40 VDC	0		5.45	0	_	5.0	0	_	2.5	0	_	2.0	Α
OUTPUT POWER ¹	V _{IN} = 16 to 40 VDC	0	_	18	0	_	25	0	_	30	0	_	30	W
OUTPUT RIPPLE	10 kHz – 2 MHz	_	15	40	_	35	40	_	25	40	_	25	40	
VOLTAGE	Tc = -55°C TO +125°C	_	_	50	_	50	90	_	40	90	_	40	90	mV p-p
LINE REGULATION ²	Vin = 16 to 40 VDC													
	Tc = -55°C TO +125°C	_	_	20	—	15	50	—	15	50	_	15	50	mV
LOAD REGULATION	NO LOAD TO FULL													
	Tc = -55°C TO +125°C	_	_	20	—	15	50	—	15	50	_	15	50	mV
INPUT VOLTAGE ¹	CONTINUOUS	16	28	40	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 ms	_	_	50	-	_	50	-	_	50	_	_	50	V
INPUT CURRENT ¹	NO LOAD	_	30	75	_	35	75	_	35	75	_	35	75	mA
	FULL LOAD	_	0.94	_	_	1.15	_	_	1.30	_	_	1.25	_	A
	INHIBITED	_	7	8	_	3	8	_	3	8	_	3	8	mA
INPUT RIPPLE	10 kHz – 10 MHz													
CURRENT ³	Tc = -55°C TO +125°C	_	25	50	—	20	50	—	20	50	_	20	50	mA p-p
EFFICIENCY		74	76	_	74	78	_	78	83	_	79	84	_	%
LOAD FAULT ⁴	SHORT CIRCUIT													
	POWER DISSIPATION	_	_	10	—	_	10	_	_	10	_	_	10	W
	RECOVERY ^{1, 5}	_	1.4	6	—	1.4	5	_	1.4	5	_	1.4	5	ms
STEP LOAD RESP.	50% - 100% - 50%													
	TRANSIENT	_	±125	±250	_	±200	±300	_	±250	±400	_	±350	±500	mV pk
	RECOVERY ⁵	_	_	200	_	60	200	_	60	200	_	60	200	μs
STEP LINE RESP.	16 - 40 - 16 VDC													
	TRANSIENT ⁶	_	_	±300	_	±200	±300	_	±400	±500	_	±500	±600	mV pk
	RECOVERY ⁵	_	_	300	—	_	300	_	_	300	_	_	300	μs
START-UP ¹	DELAY	_	1.4	5	_	1.4	5	_	1.4	5	_	1.4	5	ms
	OVERSHOOT													
	FULL LOAD	—	0	50	—	0	50	—	0	120	—	0	150	ma\/ m.l.
	NO LOAD	_	33	150	—	50	250	—	120	600	_	150	750	mV pk

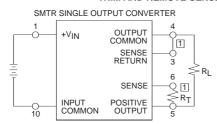
Notes

- 1. Tc = -55°C to +125°C
- 2. Operation is limited below 16V (see Figure 21).
- 3. Tested with 3300 pF ceramic bypass capacitors connected externally from input common to case and output common to case.
- 4. Indefinite short circuit protection not guaranteed above 125°C case.
- ${\bf 5.}\,$ Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 6. Transition time ≥10 µs.

SMTR SERIES 30 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, radiation level O, unless otherwise specified.

DUAL OUTPUT MODELS	DUAL OUTPUT MODELS		SMTR2805D		SMTR2812D			SMTR2815D			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
	-V _{OUT}	4.92	5.00	5.08	11.82	12.00	12.18	14.77	15.00	15.23	VDC
OUTPUT CURRENT ^{1, 2}	V _{IN} = 16 TO 40 VDC	0	2.5	4.5	0	1.25	2.25	0	1.0	1.8	А
OUTPUT POWER ^{1, 2}	V _{IN} = 16 TO 40 VDC	0	_	25	0	_	30	0	_	30	W
OUTPUT RIPPLE	10 kHz - 2 MHz	_	20	50	_	30	80	_	25	80	\/
VOLTAGE +/- V _{OUT}	Tc = -55°C TO +125°C	_	40	80	_	40	120	_	40	120	mV p-p
LINE REGULATION ³	$Tc = -55^{\circ}C$ $+V_{OUT}$	_	10	50	_	10	50	_	10	50	mV
V_{IN} = 16 TO 40 VDC	TO +125°C -V _{OUT}	_	50	100	_	50	150	_	50	180	IIIV
LOAD REGULATION	$Tc = -55^{\circ}C$ $+V_{OUT}$	_	5	50	_	15	50	l —	15	50	mV
NO LOAD TO FULL	TO +125°C -V _{OUT}	_	25	100	_	30	180	_	30	180	IIIV
CROSS REGULATION	SEE NOTE 4	_	7	12	_	4	8.3	_	3	8	%
EFFECT ON -V _{OUT}	SEE NOTE 5	_	4	6	_	4	6	_	4	6	%
INPUT VOLTAGE ¹	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 ms	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOAD	_	35	75	_	50	75	_	50	75	mA
	FULL LOAD	_	1.10		_	1.34		_	1.29	_	Α
	INHIBITED		3	8	_	3	8		3	8	mA
INPUT RIPPLE CURRENT ^{1, 6}	40 111- 40 141-		45	50		00	50	_	00	50	4
EFFICIENCY	10 kHz - 10 MHz	74	15 76	50	77	20 80	50	78	20 81	50	mA p-p %
		74	76		//	80		76	81		70
LOAD FAULT ⁷	POWER DISSIPATION SHORT CIRCUIT ¹			10			10			10	W
	RECOVERY		1.4	5.0		1.4	5.0	-	1.4	5.0	ms
STEP LOAD	50 - 100 - 50% BALANCED		1.4	3.0		1.4	3.0		1.4	3.0	1115
RESPONSE ± V _{OUT}	TRANSIENT	1 _	±200	±300	_	±150	±300	_	±200	±400	mV pk
11201 01102 2 1001	RECOVERY ⁸	_	100	200	_	100	200	_	100	200	μs
STEP LINE	16 – 40 – 16 V _{IN}										
RESPONSE ± V _{OUT}	TRANSIENT ⁹	-	±200	±400	_	±200	±400	-	±400	±500	mV pk
	RECOVERY8	_	_	300	_	_	300	_	_	300	μs
START-UP1	DELAY	-	1.4	5	—	1.4	5	l —	1.4	5	ms
	OVERSHOOT										
	FULL LOAD	_	0	180	-	0	120	_	0	150	ma\/ mlc
	NO LOAD	_	50	250	_	120	600	_	150	750	mV pk
	I	1			I			1			


Notes

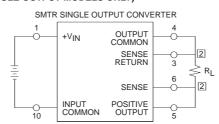
- 1. Tc = -55°C to +125°C.
- 2. Up to 90% of the total output current/power is available from either output providing the positive output is carrying at least 10% of the total output
- 3. Operation is limited below 16 V (see Figure 21).
- 4. Effect on the negative output under the following conditions: +P_{out} 20% to 80%; -P_{out} 80% to 20%
- 5. Effect on the negative output under the following conditions: +P_{out} 50%; -P_{out} 10% to 50%
 6. Tested with 3300 pF ceramic bypass capacitors connected externally from
- input common to case and output common to case
- 7. Indefinite short circuit protection not guaranteed above 125°C case.
- 8. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.
- 9. Transition time \geq 10 $\mu s.$

DC/DC CONVERTERS

EXTERNAL TRIM CONNECTION

1 Make connections at converter.

FIGURE 1: TRIM CONNECTION^{1, 2, 3}


Trim Formulas

Vout = desired output voltage; Rt = trim resistor

3.3V: Rt =
$$\frac{1300 * Vout - 4304}{1.2475}$$

1.2475
12V: Rt =
$$1300 * Vout - 15631$$

1.2475
15V: Rt =
$$1300 * Vout - 19498$$

1.2475

REMOTE SENSE CONNECTION

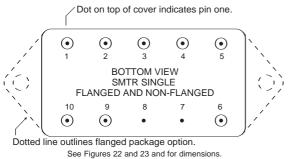

2 Make connections at load.

FIGURE 2: REMOTE SENSE^{2, 3}

Notes for Remote Sense and Trim

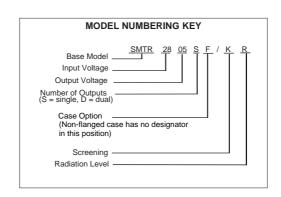
- When trimming output voltage and/or remote sensing, the total output voltage increase must be less than 0.6 volts at the converters pins to maintain specified performance.
- 2. If neither voltage trim nor remote sense will be used, connect pin 3 to pin 4 and pin 5 to pin 6 or the output voltage will increase by 1.2 volts.
- 3. CAUTION: The converter will be permanently damaged if the positive remote sense (pin 6) is shorted to ground. Damage may also result if the output common or positive output is disconnected from the load with the remote sense leads connected to the load.

FIGURE 3: PIN OUT SINGLE OUTPUT MODELS

Dot on top of cover indicates pin one. • • • • • 3 5 **BOTTOM VIEW** SMTR DUAL FLANGED AND NON-FLANGED 10 8 6 (•) • Dotted line outlines flanged package option.

See Figures 24 and 25 for dimensions.

FIGURE 4: PIN OUT DUAL OUTPUT MODELS


Pin	Single Output	Dual Output
1	Positive Input	Positive Input
2	Inhibit	Inhibit
3	Sense Return	Positive Output
4	Output Common	Output Common
5	Positive Output	Negative Output
6	Positive Sense	Case Ground
7	Case Ground	Case Ground
8	Case Ground	Case Ground
9	Sync	Sync
10	Input Common	Input Common

SMTR SERIES 30 WATT

SMD NUMBERS					
STANDARD MICROCIRCUIT DRAWING (SMD)	MTR SERIES SIMILAR PART				
5962-0150102HXC	SMTR283R3S/HO				
5962-9306802HXC	SMTR2805S/HO				
5962-9306902HXC	SMTR2812S/HO				
5962-9307002HXC	SMTR2815S/HO				
IN PROCESS	SMTR2805D/HO				
IN PROCESS	SMTR2812D/HO				
IN PROCESS	SMTR2815D/HO				

To indicate the flanged case option change the "X" to "Z" In the SMD number. The SMD number shown is for Class H screening, non-flanged, and no Radiation Hardness Assurance (RHA) level. See the SMD for the numbers for other screening and radiation levels. For exact specifications for an SMD product, refer to the SMD drawing. Call your Interpoint representative for status on the SMTR SMD releases which are "in process." SMDs can be downloaded from http://www.dscc.dla.mil/programs/smcr

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

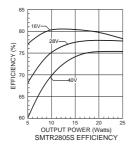


FIGURE 5

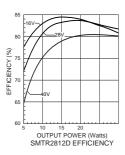


FIGURE 8

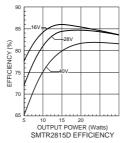


FIGURE 6

10 15 20 OUTPUT POWER (Watts) SMTR2812S EFFICIENCY

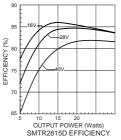


FIGURE 9

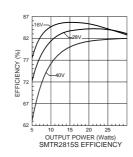


FIGURE 7

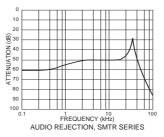
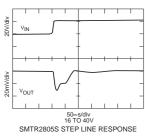



FIGURE 10

DC/DC CONVERTERS

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

 $\begin{array}{c} 50 \& s/div \\ 50\% \leftrightarrow 100\% \\ \\ \text{SMTR2805S STEP LOAD RESPONSE} \end{array}$

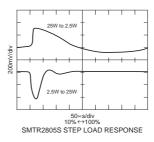
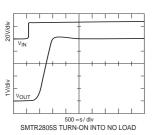



FIGURE 11

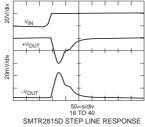


FIGURE 12

FIGURE 13

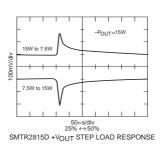


FIGURE 14

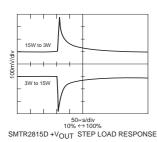


FIGURE 15

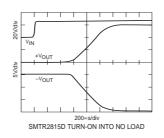


FIGURE 18

FIGURE 16

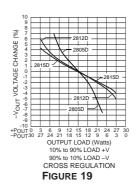
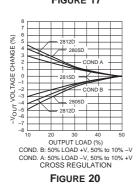
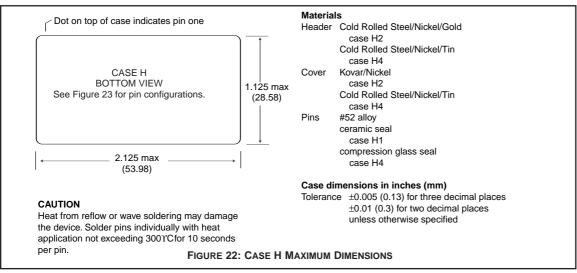



FIGURE 17



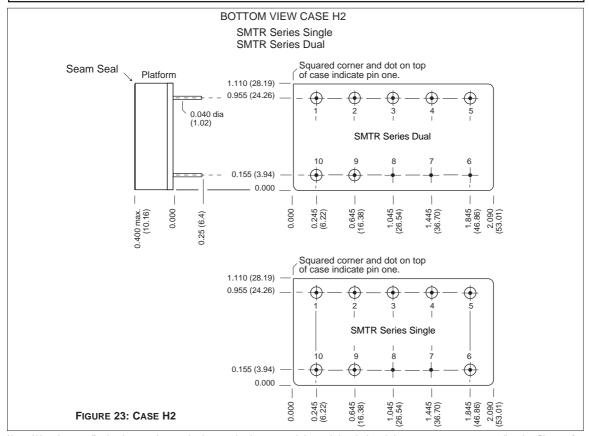
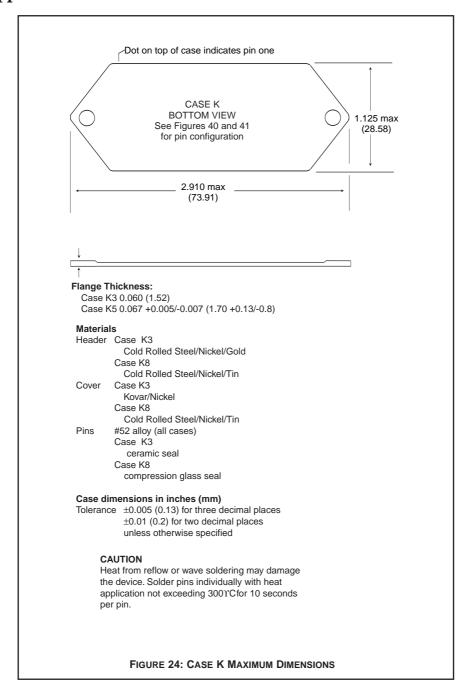
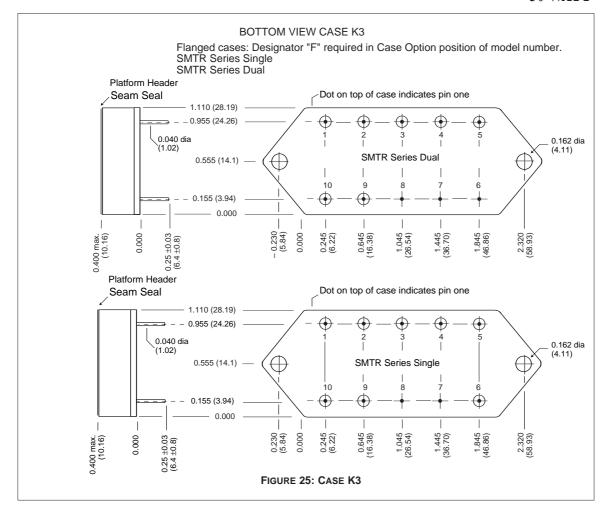

18.0 INPUT VOLTAGE (Volts) 9 12 15 18 21 24 27 30 OUTPUT POWER (Watts) 1% DROP SMTR SINGLES AND DUALS LOW LINE DROPOUT

FIGURE 21

SMTR SERIES 30 WATT



Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.



DC/DC CONVERTERS

SMTR SERIES 30 WATT

DC/DC CONVERTERS

TABLE 1: ELEMENT EVALUATION

ELEMENT EVALUATION	SPA	ACE				
	PROTOTYPE		CLASS		CLASS	
TEST PERFORMED	(0))	H	ł	K	
(COMPONENT LEVEL)	M/S	Р	M/S	Р	M/S	Р
Element Electrical	yes	no	yes	yes	yes	yes
Element Visual	no	no	yes	yes	yes	yes
Internal Visual	no	no	yes	no	yes	no
Temperature Cycling	no	no	no	no	yes	yes
Constant Acceleration	no	no	no	no	yes	yes
Interim Electrical	no	no	no	no	yes	no
Burn-in	no	no	no	no	yes	no
Post Burn-in Electrical	no	no	no	no	yes	no
Steady State Life	no	no	no	no	yes	no
Voltage Conditioning /Aging	no	no	no	no	no	yes
Visual Inspection	no	no	no	no	no	yes
Final Electrical	no	no	yes	yes	yes	yes
Wire Bond Evaluation	no	no	yes	yes	yes	yes
SEM	no	no	no	no	yes	no
SLAM™/C-SAM: Input capacitors only (Add'I test, not req. by H or K)	no	no	no	yes	no	yes

Notes

M/S Active components (Microcircuit and Semiconductor Die) P Passive components

Definitions

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534

SEM: Scanning Electron Microscopy

SLAM™: Scanning Laser Acoustic Microscopy C-SAM: C - Mode Scanning Acoustic Microscopy

SMTR SERIES 30 WATT

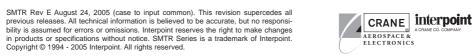
TABLE 2: PRODUCT ENVIRONMENTAL SCREENING

ENVIRONMENTAL SCREENING TEST PERFORMED	SPACE PROTOTYPE	CLASS	CLASS
(END ITEM LEVEL)	(0)	H	K
Non-destruct bond pull	(-)		
Method 2023	no	no	yes
Pre-cap inspection			
Method 2017, 2032	yes	yes	yes
Temperature cycle			
Method 1010, Cond. C	yes	yes	yes
Constant acceleration			
Method 2001, 3000 g	yes	yes	yes
PIND Test			
Method 2020, Cond. B	no	yes	yes
Radiography			
Method 2012	no	no	yes
Pre burn-in test	yes	yes	yes
Burn-in, Method 1015, 125°C			
96 hours	yes	no	no
160 hours	no	yes	no
2 x 160 hour (includes mid BI test)	no	no	yes
Final electrical test			
MIL-PRF-38534, Group A	yes	yes	yes
Hermeticity test			
Fine Leak,			
Method 1014, Cond. A	yes	yes	yes
Gross Leak,			
Method 1014, Cond. C	yes	yes	yes
Final visual inspection			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

DC/DC CONVERTERS

TABLE 3: RADIATION HARDNESS LEVELS


PRODUCT LEVEL AVAILABILITY	ENVIRONMENTAL SCREENING LEVELS					
	SPACE					
	PROTOTYPE	CLASS	CLASS			
RADIATION HARDNESS LEVELS	(O)	Н	K			
O: Standard, no radiation guarantee						
For system evaluation, electrically	00	НО	Not			
and mechanically comparable to	00		available			
H and K level.						
R: Radiation hardened – Tested lots	Not					
Up to 100 k Rads (Si) total dose	available	HR	KR			
SEU guarantee up to 40 MeV	available					

R is referenced to MIL-PRF-38534, appendix G, Radiation Hardness Assurance (RHA) levels.

Contact Information: www.interpoint.com

Interpoint Headquarters USA Interpoint UK Interpoint France

Phone: +44-1252-872266 1-800-822-8782 Phone: +33-134285455 Phone: +425-882-3100 Email: poweruk@intp.com Email: powerfr@intp.com power@intp.com

Email: