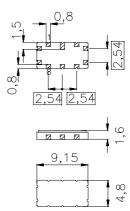


B4822 225,01 MHz

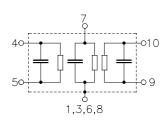
Data Sheet


Ceramic package QCC10B

Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN, PCS systems
- Ceramic SMD package
- Balanced and unbalanced operation possible

Terminals


Gold-plated Ni

Dimensions in mm, approx. weight 0,23 g

Pin configuration

5	Input
4	Input ground or balanced input
10	Output
9	Output ground or balanced output
7	External Coil
1, 3, 6, 8	Case – ground
2	To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B4822	B39231-B4822-Z710	C61157-A7-A49	F61074-V8035-Z000

Electrostatic Sensitive Device (ESD)

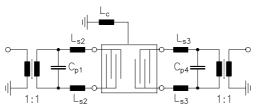
Maximum ratings

Operable temperature range	Т	- 25/+ 75	°C
Storage temperature range	$T_{\rm stg}$	– 25/+ 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

B4822 225,01 MHz

Data Sheet

Characteristics


Operating temperature: $T = 25 \,^{\circ}\text{C}$

Terminating source impedance: $Z_{\rm S}=650\,\Omega\,\|$ -2,1 pF Terminating load impedance: $Z_{\rm L}=650\,\Omega\,\|$ -2,1 pF

		min.	typ.	max.	
Nominal frequency	f _N	_	225,01	_	MHz
Minimum insertion attenuation					
(including losses in matching circuit)	α_{min}	3,0	4,1	5,5	dB
(excluding losses in matching circuit)		2,0	3,2	4,5	dB
Amplitude ripple (p-p)	$\Delta \alpha$				
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz		_	0,5	2,0	dB
$f_{\rm N}$ - 85,0 kHz $f_{\rm N}$ + 80,0 kHz			0,8	3,0	dB
Group delay ripple (p-p)	Δau				
$f_{\rm N}$ - 50,0 kHz $f_{\rm N}$ + 50,0 kHz		_	0,4	1,2	μs
f_{N} - 85,0 kHz f_{N} + 80,0 kHz		_	0,8	2,0	μs
Relative attenuation (relative to α_{min})	$lpha_{rel}$				
f_{N} - 25,00 MHz f_{N} - 3,00 MHz		50	65	_	dB
f_{N} - 3,00 MHz f_{N} - 1,60 MHz		48	55	_	dB
f_{N} - 1,60 MHz f_{N} - 0,60 MHz		38	47	_	dB
f_{N} - 0,60 MHz f_{N} - 0,40 MHz		28	49	_	dB
f_{N} - 0,40 MHz f_{N} - 0,20 MHz		8	15		dB
$f_{\rm N}$ + 0,20 MHz $f_{\rm N}$ + 0,40 MHz		8	15	_	dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		28	34	_	dB
$f_{N} + 0,60 \text{ MHz} \qquad f_{N} + 1,60 \text{ MHz}$		38	44	_	dB
f_{N} + 1,60 MHz f_{N} + 3,00 MHz		48	53	_	dB
$f_{\rm N}$ + 3,00 MHz $f_{\rm N}$ + 25,00 MHz		50	65	_	dB
Impedance at f_N					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	650 2,1	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	650 2,1	_	$\Omega \parallel pF$
Temperature coefficient of frequency 1)	TC_{f}	_	- 0,036	_	ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

Test matching network to 50 Ω (element values depend on PCB layout):

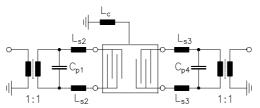
 $\begin{array}{lllll} C_{p1} & = & 8,2 & pF \\ L_{s2} & = & 82 & nH \\ L_{s3} & = & 82 & nH \\ C_{p4} & = & 8,2 & pF \\ L_{c} & = & 120 & nH \\ \end{array}$

Preliminary format of data sheet Terms of delivery and rights to change design reserved Page 2 of 4

OFW EM EU Aug. 7, 1998

B4822 225,01 MHz

Data Sheet

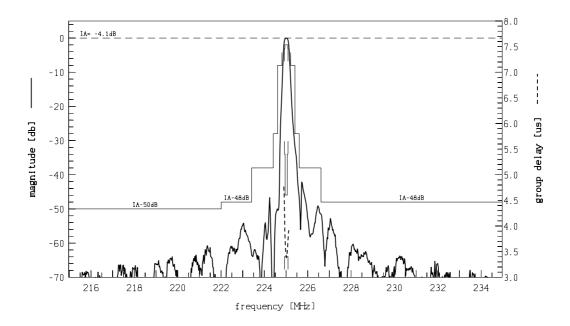

Characteristics

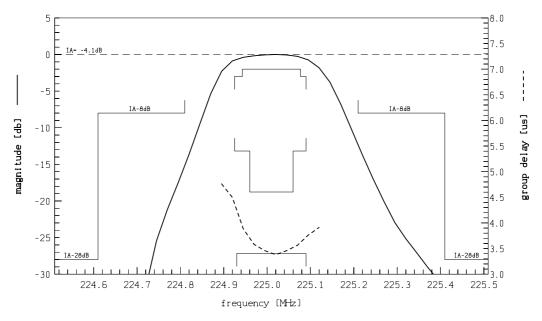
Operating temperature range: $T = -20 \text{ to } +70 \,^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 650 \,\Omega \,\|\, -2,1 \,\text{pF}$ Terminating load impedance: $Z_{\text{L}} = 650 \,\Omega \,\|\, -2,1 \,\text{pF}$

		min.	typ.	max.	
Nominal frequency	f _N	_	225,0	_	MHz
Minimum insertion attenuation					
(including losses in matching circuit)	α_{min}	3,0	4,1	5,5	dB
(excluding losses in matching circuit)		2,0	3,2	4,5	dB
Amplitude ripple (p-p)	$\Delta \alpha$				
f_{N} - 57,5 kHz f_{N} + 62,5 kHz		_	0,5	2,0	dB
f_{N} - 75,0 kHz f_{N} + 75,0 kHz			0,8	3,0	dB
Group delay ripple (p-p)	Δau				
f_{N} - 50,0 kHz f_{N} + 50,0 kHz		_	0,4	1,2	μs
$f_{\rm N}$ - 85,0 kHz $f_{\rm N}$ + 80,0 kHz		_	0,8	2,0	μs
Relative attenuation (relative to α_{min})	α_{rel}				
f_{N} - 25,00 MHz f_{N} - 3,00 MHz		50	65	_	dB
f_{N} - 3,00 MHz f_{N} - 1,60 MHz		48	55	_	dB
f_{N} - 1,60 MHz f_{N} - 0,60 MHz		38	47	_	dB
f_{N} - 0,60 MHz f_{N} - 0,40 MHz		28	49	_	dB
f_{N} - 0,40 MHz f_{N} - 0,20 MHz		6	17	_	dB
f_{N} + 0,20 MHz f_{N} + 0,40 MHz		6	13	_	dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		28	34	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 1,60 MHz		38	44	_	dB
$f_{\rm N}$ + 1,60 MHz $f_{\rm N}$ + 3,00 MHz		48	53	_	dB
f_{N} + 3,00 MHz f_{N} + 25,00 MHz		50	65	_	dB
Impedance at f_N					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	650 2,1	_	Ω pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$			650 2,1		Ω pF
Temperature coefficient of frequency 1)	TC _f	_	- 0,036	_	ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

Test matching network to 50 Ω (element values depend on PCB layout):


Preliminary format of data sheet Terms of delivery and rights to change design reserved Page 3 of 4


B4822 225,01 MHz

Data Sheet

Transfer function:

Transfer function (pass band):

