8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89910 Series

MB89913/915/P915/PV910

■ DESCRIPTION

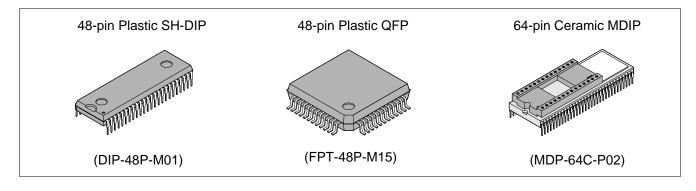
The MB89910 series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, a serial interface, an A/D converter, a buzzer output, a low-voltage detection reset, high-voltage driver, a watch prescaler, and external interrupts. The MB89910 series is applicable to a wide range of applications from consumer products to industrial equipments.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: 0.50 μs/8.0 MHz oscillation
- Interrupt processing time: 4.50 μs/8.0 MHz oscillation
- F2MC-8L family CPU core


Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

Dual-clock control system

(Continued)

■ PACKAGE

- High-voltage ports (built-in a pull-down resistor capable)
 - 8 ports for large current
 - 10 ports for small current
- 8-bit PWM timer: 1 channel
- 16-bit timer/counter: 1 channel
- 21-bit timebase timer
- 8-bit serial I/O: 1 channel
- 8-bit A/D converter: 8 channels
- External interrupt
 - Edge detection function
 - Two channels, including one of which voltage can be applied from -0.3 to +7.0 V
- Low-voltage detection reset (excluding the MB89PV910)
- Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)
- Reset output and power-on reset function
- Watch prescaler

■ PRODUCT LINEUP

Partnumber Parameter	MB89913	MB89915	MB89P915	MB89PV910		
Classification		ction product M product)	One-time PROM product	Piggyback/ evaluation product (for evaluation and development)		
ROM size	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal PROM, programmable with general-purpose EPROM programmer)	32K × 8 bits (Piggyback) (External ROM)		
RAM size	256 × 8 bits	512 ×	< 8 bits	1 K × 8 bits		
CPU functions	Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: Number of instructions: 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.50 μs/8.0 MHz to 8.00 μs/8.0 MHz, or 61 μs/32.768 kHz 4.5 μs/8.0 MHz to 72.0 μs/8.0 MHz, or 549.3 μs/32.768 kHz Note: The above times depend on the gear function.					
Ports	High-voltage output ports (P-ch open-drain): 8 (P10 to P17 for large current) 10 (P20 to P27 and P50 to P51 for small current I/O ports (CMOS): 13 (P00 to P07, P34 to P37, and P40) I/O ports (N-ch open-drain): 6 (P30 to P33, P41, P42) Input ports (CMOS): 2 (P60 and P61 also serve as a subclock pin) Total: 39					
Timebase timer (Timer 1)	Capable of generatin and 524.0 ms	g four different interva	als at 8.0-MHz oscillat	ion: 0.26, 0.51, 1.02,		
8-bit PWM timer (Timer 2)	8-bit timer operation (square wave output capable. Operation clock: 1, 2, 8, or 16 instruction cycles) 8-bit resolution PWM operation (Conversion cycle: 128 µs to 2.0 ms at 8.0 MHz)					
16-bit timer/counter (Timer 3)			ting clock: 1 instructio			
8-bit serial I/O	8 bits LSB first/MSB first selectable Transfer clock (external, 4/8/16 instruction cycles)					
8-bit A/D converter	8-bit resolution × 8 channels A/D conversion mode (conversion time of 22.0 μs/8.0 MHz) Sense mode (conversion time of 6.0 μs/8.0 MHz) Continuous activation enabled by external clock or internal clock Reference voltage input (AVR) is provided.					

(Continued)

Partnumber Parameter	MB89913	MB89915	MB89P915	MB89PPV910		
External interrupt	2 independent channels (edge selection, interrupt vector, factor flag) Rising/ falling/both edges selectable Built-in analog noise canceller Used also for wake-up stop/sleep modes. (Edge detection is also permitted in stop mode.)					
Low-voltage detection reset	(detection power s	Continuous operation upply voltage of 4.0±0 3.3±0.3 V) Intermittent operation watch interrupt under tem)	Not available			
Low-power consumption (Standby mode)	Sleep mode, stop mode, and watch mode					
Process		CM	IOS			
Operating voltage*		3.8 V to 5.5 V 4.5 V to 5.5 V				
EPROM for use		MBM27C256A 20CZ				

^{* :} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") In the case of the MB89PV910, the voltage varies with the ICE or the EPROM to be connected.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89913 MB89915 MB89P915	MB89PV910
DIP-48P-M01	0	×
FPT-48P-M15	○*1	×
MDP-64C-P02	×	○*2

^{○ :} Available ×: Not available

FAX: (81)-3-5396-9106

Note: For more information about each package, see section "■ Package Dimensions."

^{*1:} Under examination for development

^{*2:} Available by conversion from MDIP-64 to SH-DIP-48 64SD-48SD-8L2: For conversion (MDP-64C-P02) → DIP-48P-M01 Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

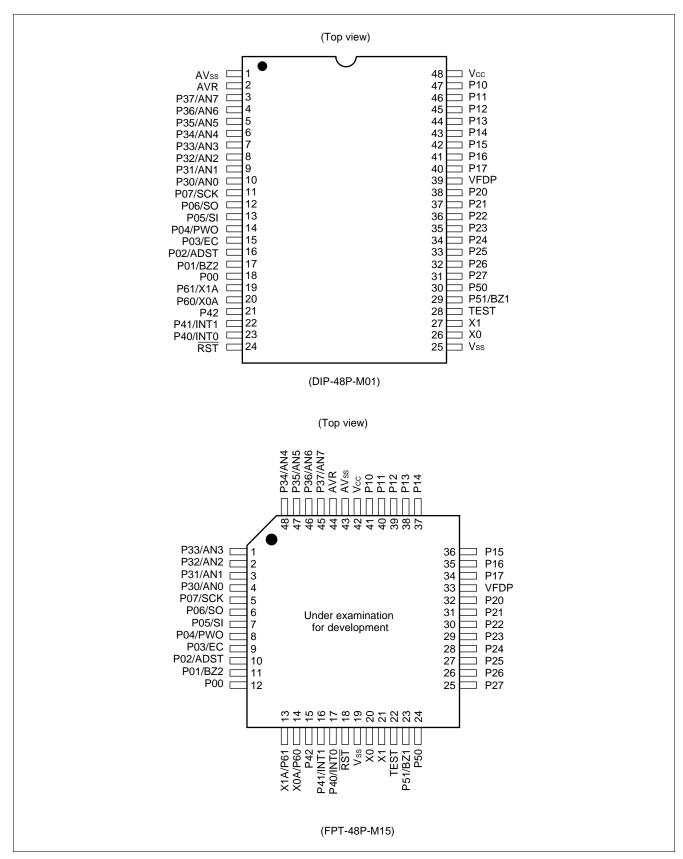
• The stack area, etc., is set at the upper limit of the RAM.

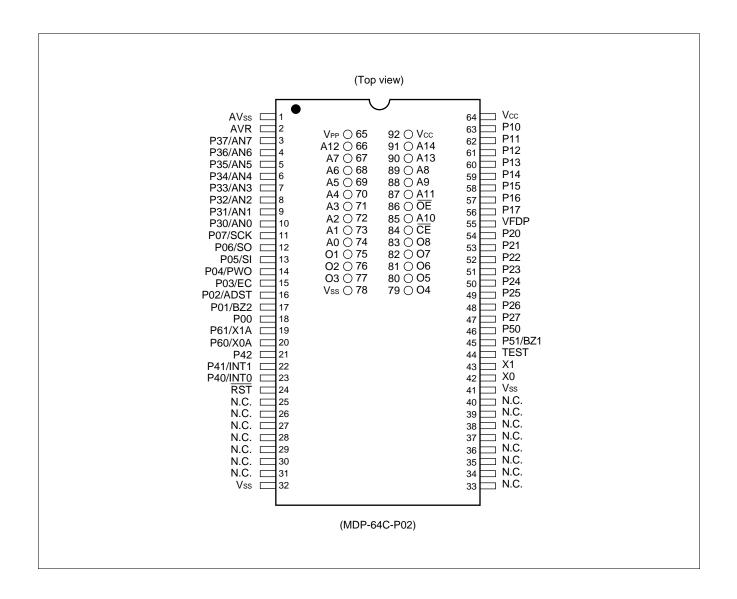
2. Current Consumption

- In the case of the MB89PV910, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options


Functions that can be selected as options and how to designate these options vary by the product.


Before using options check section "■ Mask Options."

Take particular care on the following points:

- A pull-down resistor for P10 to P17, P20 to P27, and for P50 to P51 cannot be set for the MB89P915 and MB89PV910. The MB89915 and MB89913 allow a pull-down resistor to be set for individual pins. Such pins on the MB89P915 and MB89PV910 are fixed to have no pull-down resistor.
- The low-voltage detection reset cannot be used on the MB89PV910. The voltage to be detected by the low-voltage detection reset is set by using a register for the MB89P915 and by using a mask option for the MB89915 and MB89913. If the detection voltage has been set to a lower value than the operating voltage, however, use the gear function to operate the device with the faster clock at a lower speed, or operate the device with the slower clock. Note that the results of operation are unpredictable if the device is attempted to operate at a lower voltage than the operating voltage with the faster clock put in top gear.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

	Pin no.		Cincuit			
SH- DIP*1	QFP*2	MDIP*3	Pin name	Circuit type	Function	
26	20	42	X0	Α	Main clock crystal oscillator pins	
27	21	43	X1			
20	14	20	X0A/P60	I	I These pins can select either general-purpose CMC inputs or subclock oscillator pins by the mask optio When these pins are used as a general-purpose in	
19	13	19	X1A/P61		pin, the pin is a hysteresis input with a built-in noise canceller.	
24	18	24	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with pull-up resistor and a hysteresis input type. "L" is output from this pin by an internal source. The internal circuit is initialized by the input of "L". This pin is with a noise canceller.	
18	12	18	P00	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller.	
17	11	17	P01/BZ2	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as a buzzer output.	
16	10	16	P02/ADST	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as the external activation pin for the A/D converter.	
15	9	15	P03/EC	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as the external clock input for the 16-bit timer/counter.	
14	8	14	P04/PWO	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as the PWM output for the 8-bit PWM timer.	
13, 12	7, 6	13, 12	P05/SI, P06/SO	D	General-purpose CMOS I/O ports These port inputs are a hysteresis input, with a built-in noise canceller. Also serve as serial data outputs for the 8-bit serial interface.	
11	5	11	P07/SCK	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as the serial transfer clock output for the 8-bit serial interface.	
47 to 40	41 to 34	63 to 56	P10 to P17	G	P-ch high-voltage open-drain output ports for large current	

*1: DIP-48P-M01

*2: FPT-48P-M15

*3: MDP-64C-P02

(Continued)

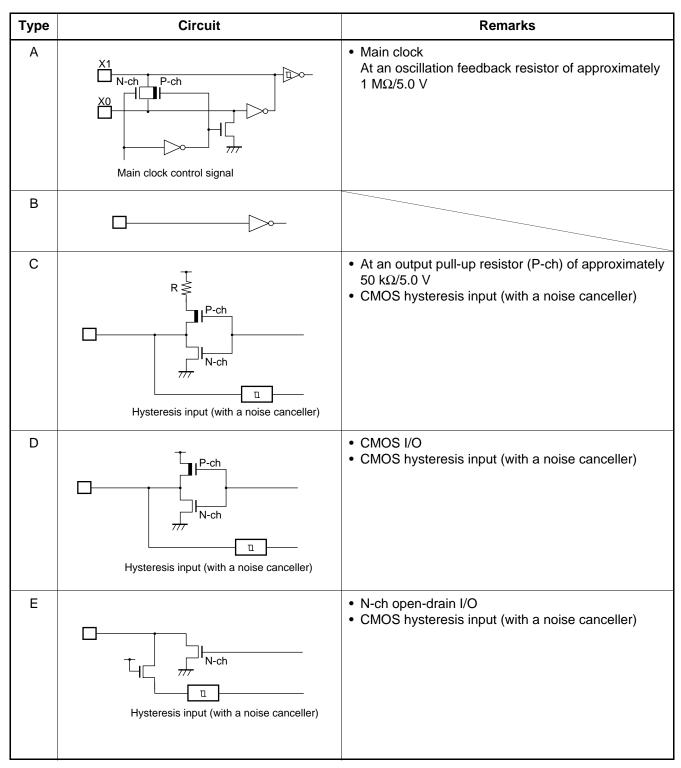
	Pin no.		Din name Circuit				
SH- DIP*1	QFP*2	MDIP*3	Pin name	type	Function		
38 to 31	32 to 25	54 to 47	P20 to P27	G	P-ch high-voltage open-drain output ports for small current		
10 to 7	4 to 1	10 to 7	P30/AN0 to P33/AN3	Н	General-purpose N-ch open-drain I/O ports These port inputs are a hysteresis input, each with a built-in noise canceller. Although the pins are also serve as an analog inputs, an analog input does not pass through their noise cancellers.		
6 to 3	48 to 45	6 to 3	P34/AN4 to P37/AN7	F	General-purpose CMOS I/O ports These port inputs are a hysteresis input, each with a built-in noise canceller. Although the pins are also serve as an analog inputs, an analog input does not pass through their noise cancellers.		
23	17	23	P40/INT0	D	General-purpose CMOS I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as an external interrupt. External interrupt input passes through the noise canceller.		
22	16	22	P41/INT1	E	General-purpose N-ch open-drain I/O port This port input is a hysteresis input, with a built-in noise canceller. Also serves as an external interrupt. Externa interrupt input passes through the noise canceller.		
21	15	21	P42	E	General-purpose N-ch open-drain I/O port This port input is a hysteresis input, with a built-in noise canceller.		
30	24	46	P50	G	P-ch high-voltage open-drain output ports for small current		
29	23	45	P51/BZ1	G	P-ch high-voltage open-drain output port for small current Also serves as a buzzer output.		
28	22	44	TEST	В	Operating mode selection pin Usually, connect to Vss directly. On the product with an EPROM, the pin is the VPP pin.		
39	33	55	VFDP	_	Voltage supply pin connected to a pull-down resistor for ports 1, 2, and 5 In products without a pull-down resistor, in the MB89P915, and in the MB89PV910, this pin should be left open.		

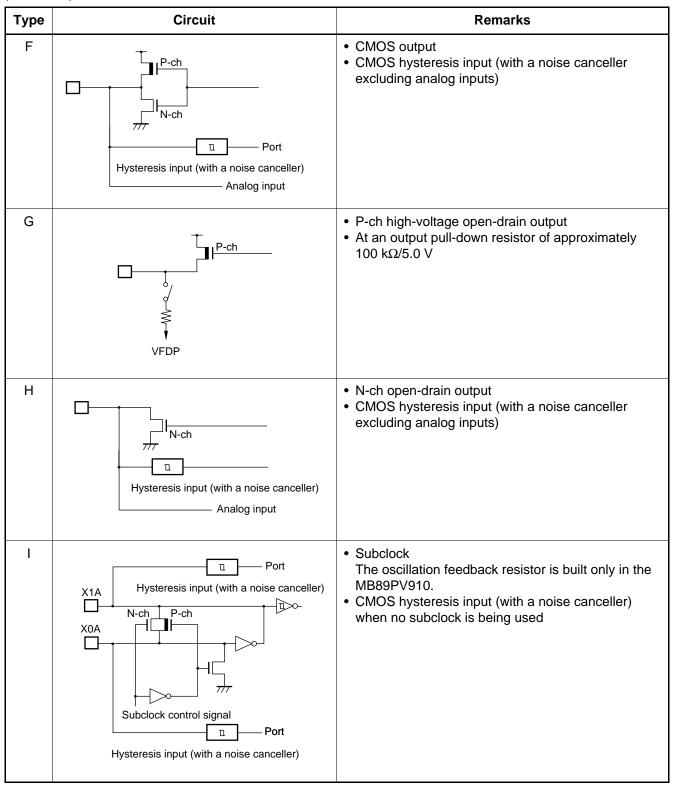
(Continued)

*1: IP-48P-M01 *2: FPT-48P-M15 *3: MDP-64C-P02

(Continued)

	Pin no.			Circuit		
SH- DIP*1	QFP*2	MDIP*3	Pin name	type	Function	
48	42	64	Vcc	_	Power supply pin	
25	19	32,41	Vss	Power supply (GND) pin		
1	43	1	AVss	 A/D converter power supply pin Use this pin at the same voltage as Vss. 		
2	44	2	AVR	_	A/D converter reference voltage input pin	


*1: IP-48P-M01 *2: FPT-48P-M15 *3: MDP-64C-P02


• External EPROM pins (MDIP only)

Pin no.	Din nome	I/O	Firmation
MDIP*	Pin name	1/0	Function
65	V _{PP}	0	"H" level output pin
66 67 68 69 70 71 72 73	A12 A7 A6 A5 A4 A3 A2 A1	0	Address output pins
74 75 76 77	A0 O1 O2 O3	I	Data input pins
78	Vss	0	Power supply (GND) pin
79 80 81 82 83	O4 O5 O6 O7 O8	I	Data input pins
84	CE	0	ROM chip enable pin Outputs "H" during standby.
85	A10	0	Address output pin
86	ŌĒ	0	ROM output enable pin Outputs "L" at all times.
87 88 89	A11 A9 A8	0	Address output pin
90	A13	0	
91	A14	0	
92	Vcc	0	EPROM power supply pin

^{*:} MDP-64C-P02

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{CC} or lower than V_{SS} is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V_{CC} and V_{SS}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

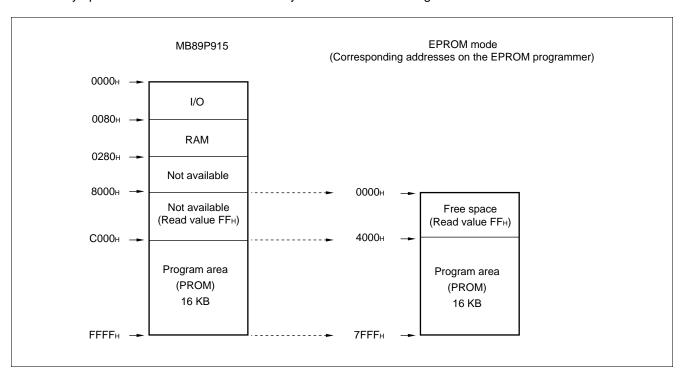
5. Power Supply Voltage Fluctuations

Although $V_{\rm CC}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{\rm CC}$ ripple fluctuations (P-P value) will be less than 10% of the standard $V_{\rm CC}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO EPROM ON THE MB89P915


The MB89P915 is an OTPROM version of the MP89910 series.

1. Features

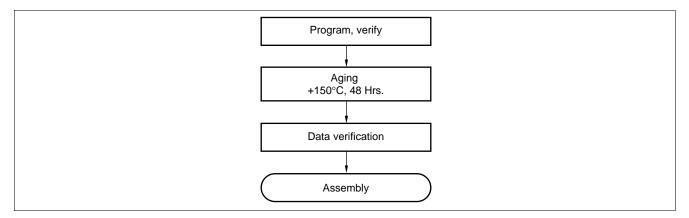
• 16-Kbyte PROM on chip

2. Memory Space

Memory space in each mode such as 16-Kbyte PROM mode is diagrammed below.

3. Programming to the EPROM

Since the MB89P915 requires a special method for programming to its PROM, the types of general-purpose EPROM programmers applicable to the MB89P915 are limited. Programming to the PROM on the MB89P915 requires an EPROM programmer applicable to the MB89P915 and a dedicated adapter.


When the operating ROM area for a single chip is 16 Kbytes (C000_H to FFFF_H) the PROM can be programmed as follows:

• Programming procedure

- (1) Set the EPROM programmer to the MB89P195.
- (2) Load program data into the EPROM programmer at 4000 H to 7FFFH. (note that addresses 0C000 H to 0FFFFH in the operation mode correspond to 4000 H to 7FFFH in EPROM mode.)
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

Part no.	Package	Compatible socket adapter Sun Hayato Co., Ltd.	Recommended programmer manufacturer and programmer name Data I/O Co., Ltd.			
		Guirriayato Goi, Etai	UNISITE (ver.5.0 or later)	3900 (ver.2.8 or later)	2900 (ver.3.8 or later)	
MB89P915P-SH	SH-DIP-48	ROM-48QF2-28DP-8L		Recommended		

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

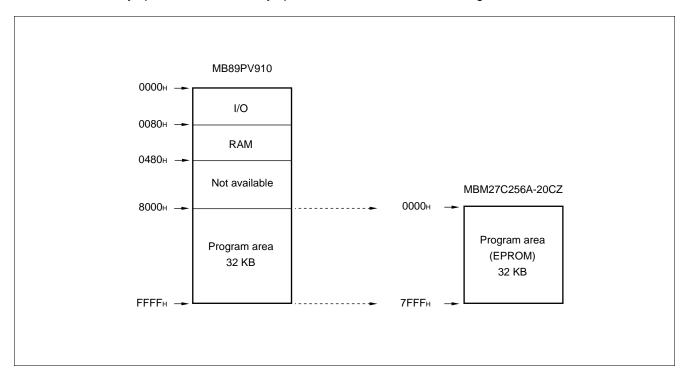
FAX: (81)-3-5396-9106

Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444

EUROPE (49)-8-985-8580

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

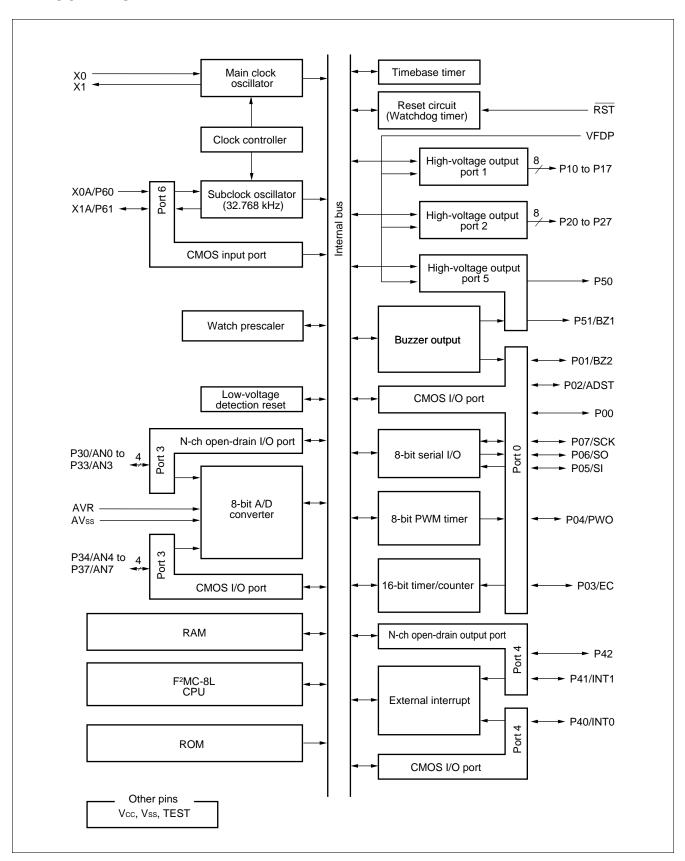
1. EPROM for Use


MBM27C256A-20CZ

2. Programming Socket Adapter

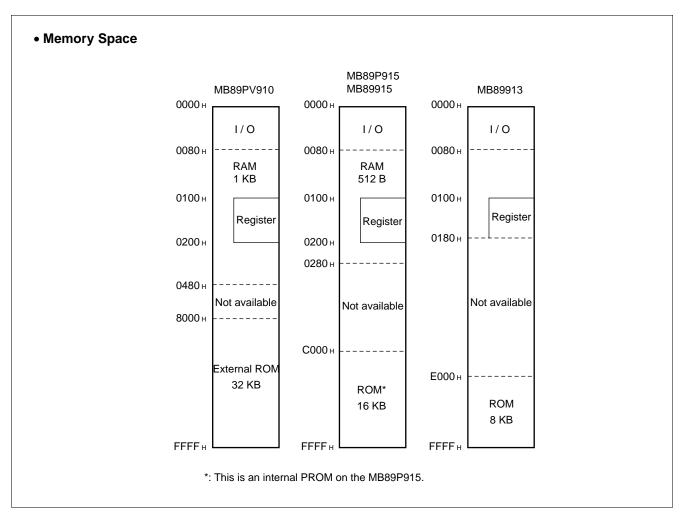
Any special programming adapter is not required since the package for the EPROM to be used is DIP-28.

3. Memory Space


EPROM memory space and the memory space on the MB89PV910 are diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A-20CZ.
- (2) Load program data into the EPROM programmer at 0000H to 7FFFH. (note that addresses 08000H to 0FFFFH in the operation mode correspond to 0000H to 7FFFH in the EPROM mode.)
- (3) Program with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89910 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area.

2. Registers

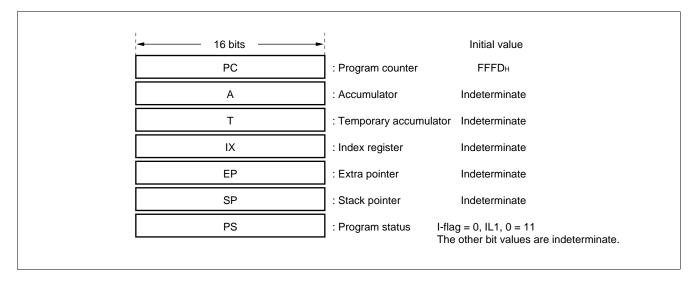
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

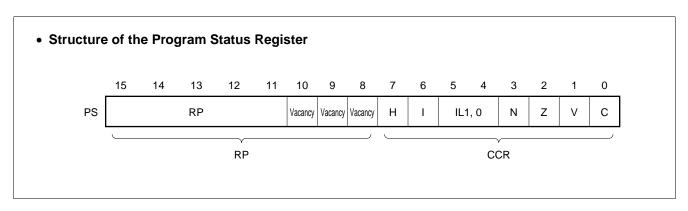
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator

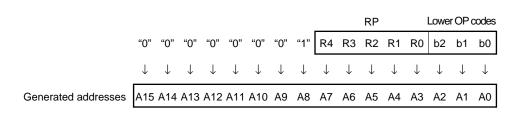

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area

Program status (PS): A 16-bit register for storing a register pointer, a condition code



The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.

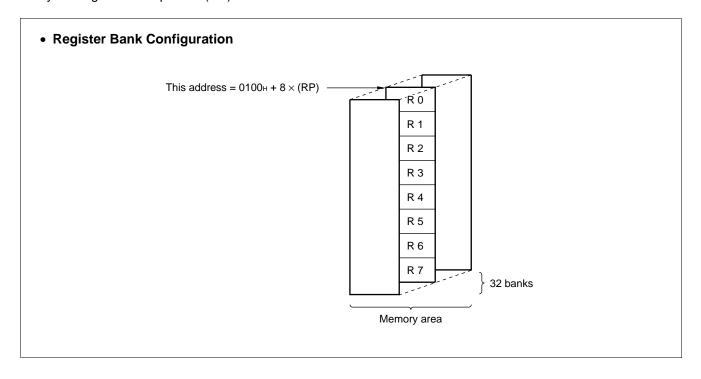
I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	†
1	0	2	
1	1	3	Low

N-flag: Set to '1' if the MSB becomes to '1' as the result of an arithmetic operation. Cleared to '0' when the bit is cleared to '0'.

Z-flag: Set to '1' when an arithmetic operation results in 0. Cleared to '0' otherwise.


V-flag: Set to '1' if the complement on 2 overflows as a result of an arithmetic operation. Cleared to to '0' if the overflow does not occur.

C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit resister for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89915. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н		,	Vacancy
03н			Vacancy
04н			Vacancy
05н			Vacancy
06н			Vacancy
07н	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
0Ан	(R/W)	TBCR	Time-base timer control register
0Вн	(R/W)	WPCR	Watch prescaler control register
0Сн	(R/W)	PDR3 Port 3 data register	
0Dн	(W)	DDR3 Port 3 direction register	
0Ен	(R/W)	BUZR Buzzer register	
0Fн	(R/W)	EIC External interrupt control register	
10н	(R/W)	PDR1	Port 1 data register
11н	(R/W)	PDR2	Port 2 data register
12н	(R/W)	PDR5	Port 5 data register
13н	(R)	PDR6	Port 6 data register
14н	(R/W)	PDR4	Port 4 data register
15н	(W)	DDR4	Port 4 direction register
16н	(W)	COMR	PWM compare register
17н	(R/W)	CNTR	PWM control register
18н	(R/W)	TMCR	16-bit timer control register
19н	(R/W)	TCHR	16-bit timer control register (H)
1Ан	(R/W)	TCLR	16-bit timer control register (L)
1Вн			Vacancy
1Сн	(R/W)	SMR	Serial mode register
1D _H	(R/W)	SDR	Serial data register
1Ен	(R/W)	ADC1	A/D converter control register 1
1F _H	(R/W)	ADC2	A/D converter control register 2

(Continued)

Address	Read/write	Register name Register description		
20н	(R/W)	ADCD	A/D converter data register	
21н			Vacancy	
22н	(W)	PCR	Port input control register	
23н	(R/W)	LVRC	Low-voltage detection reset control register	
24н to 7Вн			Vacancy	
7Сн	(W)	ILR1	Interrupt level setting register 1	
7Dн	(W)	ILR2	Interrupt level setting register 2	
7Ен	(W)	ILR3	Interrupt level setting register 3	
7Fн			Vacancy	

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Devemates	Symbol	Va	lue	Unit	Remarks	
Parameter	Symbol	Min.	Max.	Unit	Remarks	
	Vcc AVR	Vss - 0.3	Vss + 7.0	V	AVR ≤ Vcc + 0.3*1	
Power supply voltage	V _{PP}	- 0.6	13.0	V		
	VFDP	Vcc-40	Vcc + 0.3	V		
Input voltage	VI1	Vss - 0.3	Vcc + 0.3	V	Except P41*2	
input voitage	V _{I2}	Vss - 0.3	7.0	V	P41	
Output voltage	V _{O1}	Vss - 0.3	Vcc + 0.3	V	Except P10 to P17, P20 to P27, P50, P51*2	
Output voltage	V _{O2}	Vcc - 40.0	Vcc + 0.3	V	P10 to P17, P20 to P27 P50, P51	
"H" level total maximum output current	ΣІон	_	-120	mA		
"H" level total average output current	Σ lohav	_	-90	mA	Average value (operating current × operating rate)	
		_	-12	mA	P00 to P07, P34 to P37, P40	
"H" level maximum output current	Іон	_	-20	mA	P20 to P27, P50, P51	
		_	-36	mA	P10 to P17	
		_	-6	mA	P00 to P07, P34 to P37, P40 Average value (operating current × operating rate)	
"H" level average output current	Іонач	_	-10	mA	P20 to P27, P50, P51 Average value (operating current × operating rate)	
		_	-20	mA	P10 to P17 Average value (operating current × operating rate)	
"L" level total maximum output current	Σ loL	_	36	mA		
"L" level total average output current	Σ lolav	_	20	mA	Average value (operating current × operating rate)	
"L" level maximum output current	Іоь	_	10	mA	P00 to P07, P30 to P37,	
"L" level average output current	lolav	_	4	mA	P40 to P47	

(Continued)

(AVss = Vss = 0.0 V)

Parameter	Symbol	Val	lue	Unit	Remarks	
Farameter	Syllibol	Min.	Max.	Oilit		
Power consumption	P _D		440	mW	SH-DIP: DIP-48-M01	
Fower consumption		_	360	mW	QFP: FPT-48-M15	
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	– 55	+150	°C		

^{*1:} Take care so that AVR does not exceed Vcc + 0.3 V and Vcc does not exceed Vcc, such as when power is turned on.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
rarameter	Symbol	Min.	Max.	Ollit	Remarks
Power supply voltage		4.5*	5.5*	V	Normal operation assurance range*(MB89PV910)
	Vcc	3.8*	5.5*	V	Normal operation assurance range*(MB89P915/915/913)
		2.7	5.5	V	Watch mode, sub-RUN mode
		1.5	5.5	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	Vcc	V	
High-voltage pull-down resistor supply voltage	VFDP	Vcc - 35.0	Vcc + 0.3	V	
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

^{*2:} V_I and V_O must not exceed V_{CC} + 0.3 V.

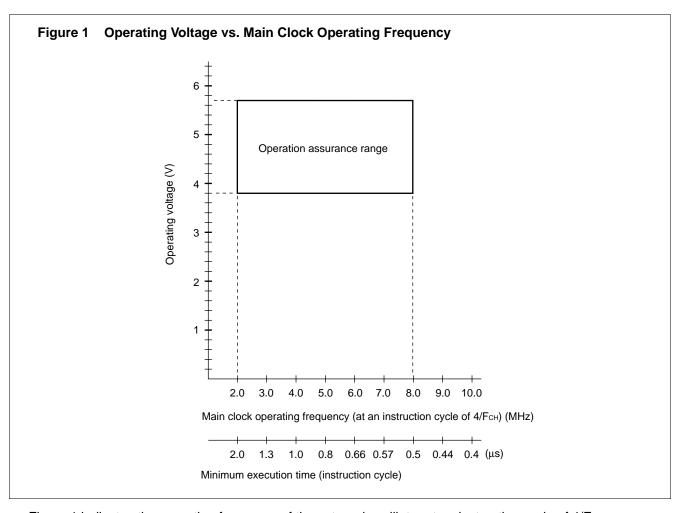


Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fch.

Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(AVR = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Damamatan	Sym-	D:		100-10	Value	0 - 100 - 0.		= -40°C to +85°C
Parameter	bol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level input voltage	Vihs	P00 to P07, P30 to P37, P40 to P42, P60, P61 X0, RST X1, TEST	_	0.8 Vcc	_	Vcc+ 0.3	V	
"L" level input voltage	VILS	P00 to P07, P30 to P37, P40 to P42, P60, P61 X0, RST X1, TEST	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin	V _{D1}	P30 to P33, P42	_	Vss- 0.3		Vcc+ 0.3	V	
application voltage	V _{D2}	P41	_	Vss- 0.3	_	7.0	٧	
"H" level	Vон1	P00 to P07, P30 to P37, P40 to P42, P60, P61	Iон = −2.0 mA	2.4	_	_	V	Excluding P30 to P33 and P41, P42
output voltage	V _{OH2}	P20 to P27, P50, P51	Iон = −10 mA	3.0	_	_	V	
	Vонз	P10 to P17	Iон = −20 mA	3.0		_	V	
"L" level output voltage	Vol1	P00 to P07, P30 to P37, P40 to P42, P60, P61	IoL = 1.8 mA	_	_	0.4	V	
	V _{OL2}	RST,	IoL = 4.0 mA	_	-	0.6	V	
Input leakage current	ILI1	P00 to P07, P30 to P37, P40 to P42, P60, P61	0 < Vı < Vcc	_	_	±5	μА	
Output leakage	ILO1	P20 to P27, P50, P51	Vı = VFDP	_	_	-10	μА	VFDP = Vcc - 35.0 V
current	ILO2	P10 to P17	Vı = VFDP	_	_	-20	μА	VFDP = Vcc - 35.0 V
Pull-up resistance	Rpull	RST,	V _{IN} = 0.0 V	25	50	100	kΩ	
Pull-down resistance	R _{PD}	P10 to P17, P20 to P27, P50, P51	V _{IN} = 5.0 V	50	100	150	kΩ	Assuming the pull-down resistor option selected

(Continued)

 $(AVR = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

	Sym- bol	Pin name	Complition		100 - 101	Value	11:4	D	
Parameter				Condition	Min.	Тур.	Max.	Unit	Remarks
	L		Vcc :	= 8 MHz = 5.0 V	_	10.0	18.0	mA	MB89P915
	Icc1			$t_{inst}^{*2} = 0.5 \mu s$ when A/D conversion is stopped		9	15	mA	MB89913/ 915/PV910
	Icc2		Vcc :	= 8 MHz = 3.8 V = 8.0 μs	_	3.0	6.0	mA	MB89P915
Power supply current*1 When low-voltage detection reset operation is			wher	– 6.0 μs n A/D conversion opped	_	1.8	2.4	mA	MB89913/ 915/PV910
	Ics1		Sleep mode	FcH = 8 MHz Vcc = 5.0 V t_{inst}^{-2} = 0.5 μ s when A/D conversion is stopped	_	3	7	mA	
	Ics2	Vcc	Slee	FcH = 8 MHz Vcc = 3.8 V t_{inst}^{-2} = 8.0 μ s when A/D conversion is stopped	_	1.2	1.8	mA	
enabled, ILVD is added to each	Ісѕв			Fcl = 32 kHz Vcc = 3.0 V Subclock mode		1.2	3.6	mA	MB89P915
power supply current.	ICSB					60	180	μА	MB89913/ 915/PV910
	Ics3		Vcc :	FcL = 32 kHz Vcc = 3.0 V Subclock sleep mode		32	64	μА	
	Ісст		Vcc : • Wa	FcL = 32 kHz Vcc = 3.0 V • Watch mode • Main clock stop mode at dual- clock system		4	20	μА	
	ICCA		T _A = V _{CC} : t _{inst} *2 when	= 8 MHz +25°C = 5.0 V = 0.5 μs n A/D conversion tivated	_	12.5	22.5	mA	

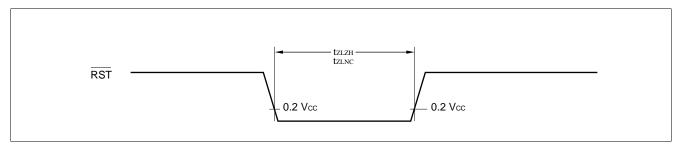
(Continued)

 $(AVR = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Sym-	Pin name	Condition		Value		Unit	Remarks
Parameter	боl		Condition	Min.	Тур.	Max.	Unit	Remarks
Power supply current*1 When low-voltage detection reset operation is enabled, luvo is added to each power supply current.	Іссн	Vcc	FcL = 32.678 kHz, Vcc = 3.0 V TA = +25°C, • Subclock stop mode • Main clock stop mode at single clock system	_	_	10	μА	
	ILVD		Vcc = 5.0 V TA = +25°C, • Subclock stop mode • Main clock stop mode at single clock system	_	60	120	μА	Power consumption of low-voltage detection reset
	IR	AVR	FcH = 8 MHz, T _A = +25°C, when A/D conversion is activated	_	200	_	μА	
	Iгн	AVR	FcH = 8 MHz, TA = +25°C, when A/D conversion is stopped	_	_	10	μА	
Input capacitance	Cin	Other than AVss, AVR, Vcc, and Vss	f = 1 MHz	_	10		pF	

^{*1:} The power supply current is measured at external clock.

^{*2:} For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."

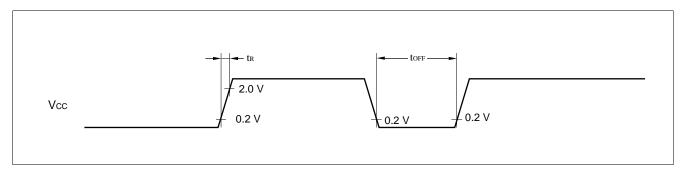

4. AC Characteristics

(1) Reset Timing

(AVR = Vcc = +5.0 V±10%, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Condition		Value	Unit	Remarks	
	Syllibol		Min.	Тур.	Max.	Onne	iveillai ks
RST "L" pulse width	t zlzh	_	48 txcyl	_	_	ns	
RST noise limit width	tzlnc	_	30	50	80	ns	

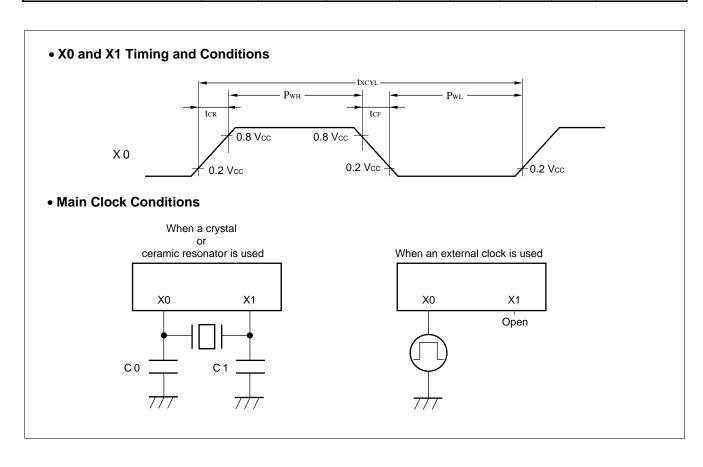
Note: txcyL is the oscillation period (1/FcH) to input to the X0.

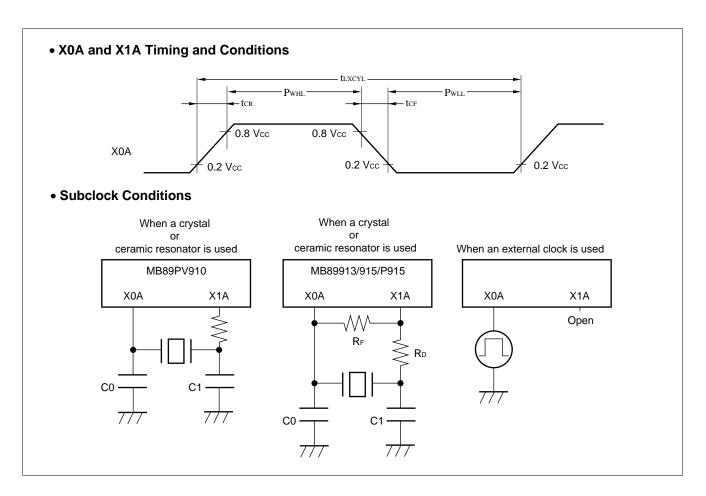

(2) Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Val	ue	Unit	Remarks	
Farameter	Syllibol	Condition	Min.	Max.	Oilit		
Power supply rising time	t R	_	_	50	ms	Power-on reset function only	
Power supply cut-off time	t off	_	1	_	ms	Due to repeated operations	

Note: Make sure that power supply rises within the selected oscillation stabilization time.


If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

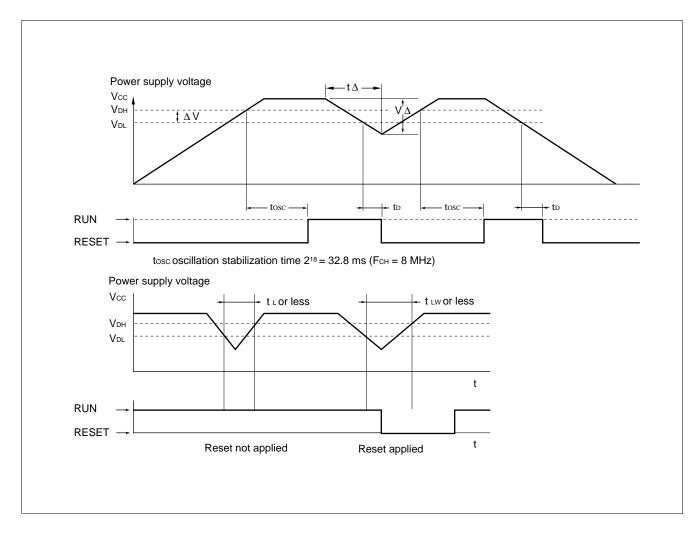


(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

		Pin name	0 II		Value			Pomarks
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
Clock frequency	Fсн	X0, X1	_	2	_	8	MHz	
	FcL	X0A, X1A	_		32.768	_	kHz	
Clock cycle time	txcyL	X0, X1	_	125	-	500	ns	
	t LXCYL	X0A, X1A	_	-	30.5	_	μs	
Input clock pulse width	P _{WH} P _{WL}	X0	_	30	_	_	ns	External clock
Input clock pulse width	P _{WHL} P _{WLL}	X0A	_	_	15.2	_	μs	External clock
Input clock rising/falling time	tcr tcr	X0, X0A	_	_	_	10	ns	External clock

(4) Instruction Cycle

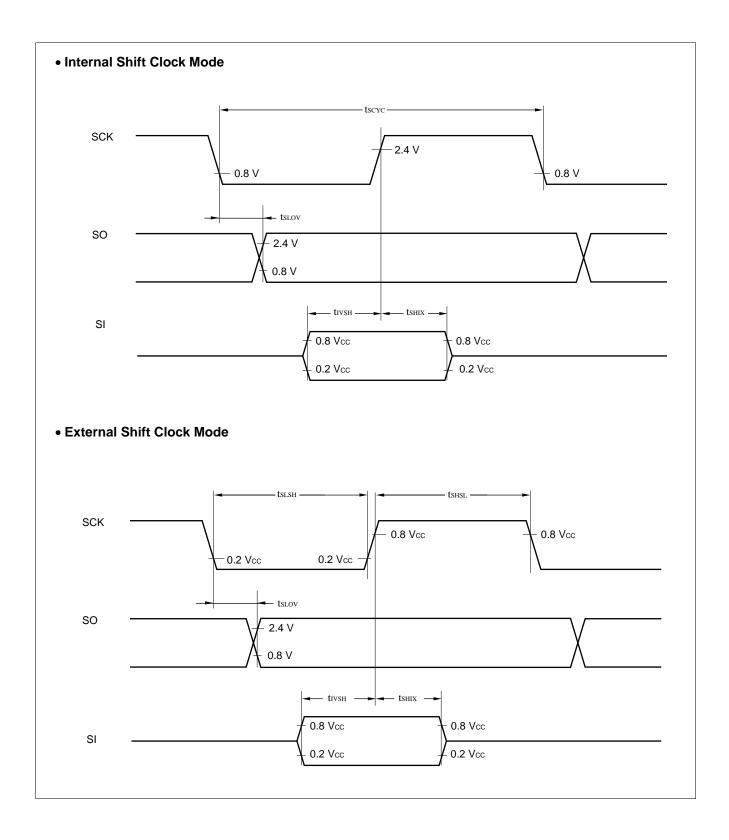

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 32/Fсн	μs	Operation at FcH = 8 MHz; $(4/FcH)t_{inst} = 0.5 \mu s$
	Linst	2/FcL	μs	Operation at F _{CL} = 32.768 kHz; (4/F _{CH})t _{inst} = 61.036 μs

Note: When operating at 8 MHz, the cycle varies with the execution time.

(5) Low-voltage Detection Reset

 $(AVss = Vss \ 0.0 \ V, \ T_A = -40^{\circ}C \ to \ +85^{\circ}C)$

Parameter	Symbol	Condition	Valu	ıe	Unit	Remarks	
Parameter	Syllibol	Condition	Min.	Max.	Offic		
	V _{DL1}	_	3.00	3.60	V		
Detection voltage at power supply voltage fall	V _{DL2}	_	3.30	3.90	V	VDH and VDL are set for	
	V _{DL3}		3.70	4.40	V	the MB89913/915 by mask options and for	
Detection voltage at power supply voltage rise	V _{DH1}	_	3.10	3.80	V	the MB89P915 by a	
	V _{DH2}	_	3.40	4.10	V	register.	
Cuppi) remage nee	V _{DH3}	_	3.80	4.60	V		
Hysteresis width	ΔV	_	0.10	_	V		
Reset insensitive time	t∟	_	0.3	_	μs		
Reset sensitive width	t LW	_	16 txcyl	_	ns		
Reset detection delay time	t□	_	_	2.0	μs		
Voltage regulation (VΔ/tΔ)	VCR	_	_	0.10	V/μs		

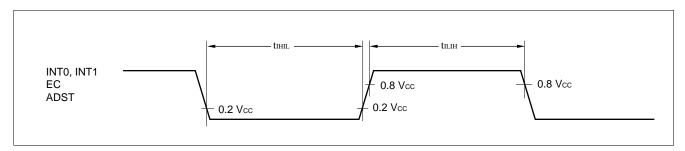


(6) Serial I/O Timing

(AVR = Vcc = +5.0 V±10%, AVss = Vss= 0.0 V, TA = -40°C to +85°C)

Parameter	Symbol	Pin name	Condition	Valu	ıe	Unit	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Ollic	
Serial clock cycle time	tscyc	SCK	Internal shift	2 tinst*	_	μs	
$SCK \downarrow \to SO$ time	tslov	SCK, SO		-200	200	ns	
Valid SI → SCK ↑	tıvsн	SI, SCK	clock mode	1/2 tinst*	_	μs	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst*	_	μs	
Serial clock "H" pulse width	tshsl	SCK		1 t inst*	_	μs	
Serial clock "L" pulse width	tslsh	SCK		1 tinst*	_	μs	
$SCK \downarrow \to SO$ time	tslov	SCK, SO	External shift clock mode	0	200	ns	
Valid SI → SCK ↑	tıvsн	SI, SCK		1/2 tinst*	_	μs	
$SCK \uparrow \to valid \; SI \; hold \; time$	t shix	SCK, SI		1/2 tinst*	_	μs	

^{*:} For information on t_{inst}, see "(4) Instruction Cycle."

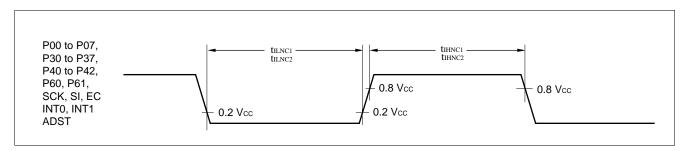


(7) Peripheral Input Timing

 $(AVR = Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
Parameter	Syllibol	Finitianie	Condition	Min.	Max.	Offic	Remarks
Peripheral input "H" level pulse width	t ılıH	EC, ADST INT0, INT1		2 tinst*	_	μs	
Peripheral input "L" level pulse width	t ıнıL	EC, ADST INT0, INT1	_	2 tinst*	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."



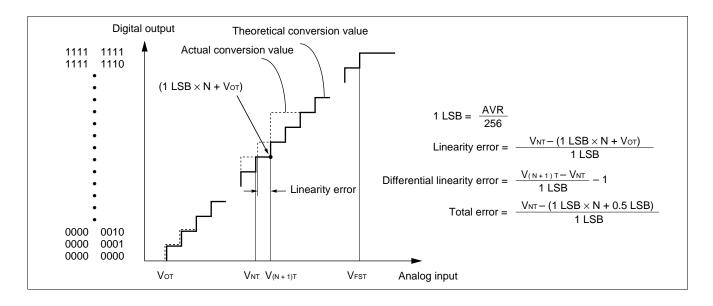
(8) Peripheral input noise limit width

 $(AVR = Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name		Value		Unit	Remarks
Farameter	Syllibol	riii liailie	Min.	Тур.	Max.	5	Remarks
Peripheral input "H" level	tihnc1	All inputs excluding	7	15	30	ns	MB89PV910 MB89P915
noise limit width 1	UHNCT	INT1 and INT0	15	30	60	ns	MB89913/ 915
Peripheral input "L" level	tilnc1	All inputs excluding	7	15	30	ns	MB89PV910 MB89P915
noise limit width 1	ULIVOT	INT1 and INT0	15	30	60	ns	MB89913/ 915
Peripheral input "H" level	tihnc2	INT1, INT0	30	50	100	ns	MB89PV910 MB89P915
noise limit width 2	tinnc2	IIVI I, IIVIO	50	100	250	ns	MB89913/ 915
Peripheral input "L" level	tilnc2	INT1, INT0	30	50	100	ns	MB89PV910 MB89P915
noise limit width 2	tilNC2	HVII, HVIO	50	100	250	ns	MB89913/ 915

Note: The minimum rating is always cancelled, while values equal to or greater than maximum ratings are not cancelled.

5. A/D Converter Electrical Characteristics

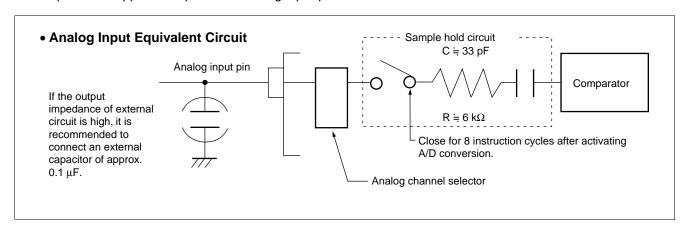

 $(Vcc = +3.8 \text{ V to } +5.5 \text{ V}, F = 8 \text{ MHz}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Sym-	Pin name	Condition		Value		Unit	Remar
Farameter	bol	riii iiaiiie	Condition	Min.	Тур.	Max.	Onit	ks
Resolution				_	_	8	bit	
Total error				_	_	±3.0	LSB	
Linearity error	_	_		_	_	±1.0	LSB	
Differential linearity error				_	_	±0.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	_	AVss – 1.5 LSB	AVss +0.5 LSB	AVss + 2.5 LSB	mV	
Full-scale transition voltage	V _{FST}	AN0 to AN7		AVR – 3.5 LSB	AVR-1.5 LSB	AVR +0.5 LSB	mV	
Interchannel disparity				_	_	1.0	LSB	
A/D mode conversion time	_	_		_	44 tinst*	_	μs	
Sense mode conversion time				_	12 tinst*	_	μs	
Analog port input current	lain	AN0 to AN7	AVR = Vcc = 5.0 V	_	_	10	μΑ	
Analog input voltage	_	AN0 to AN7	_	0.0	_	AVR	V	
Reference voltage		AVR		3.4	_	AVcc	V	
Reference voltage supply current	lR	AVR	AVR = 5.0 V	_	200	_	μΑ	

^{*:} For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

6. A/D Converter Glossary

- Resolution
 - Analog changes that are identifiable with the A/D converter When the number of bits is 8, analog voltage can be divided into $2^8 = 256$.
- Linearity error (unit: LSB)
 - The deviation of the straight line drawn connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics
- Differential linearity error (unit: LSB)
 The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error (unit: LSB)
 The difference between theoretical and actual conversion values

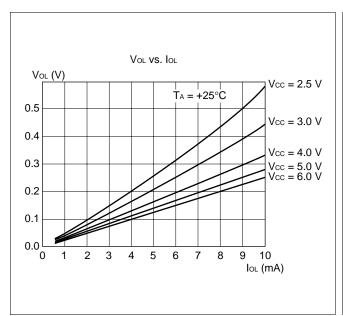

7. Notes on Using A/D Converter

· Input impedance of the analog input pins

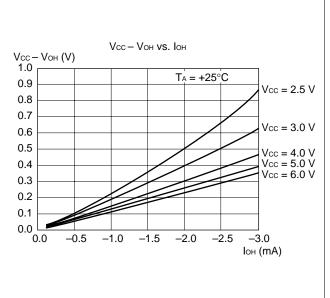
The A/D converter used for the MB89910 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low. If a higher accurancy is required, set the output impedance in this series to $2 \text{ k}\Omega$ or less.

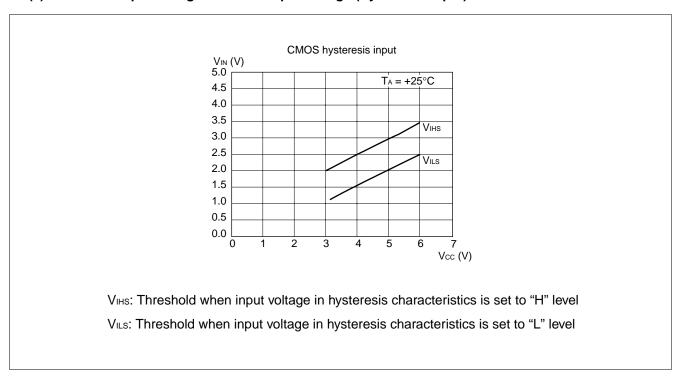
Note that if the impedance cannot be kept low output impedance, it is recommended either to use the software to continuously activate the A/D converter for simulating longer sampling time or to connect an external capacitor of approx. $0.1~\mu F$ to the analog input pin.

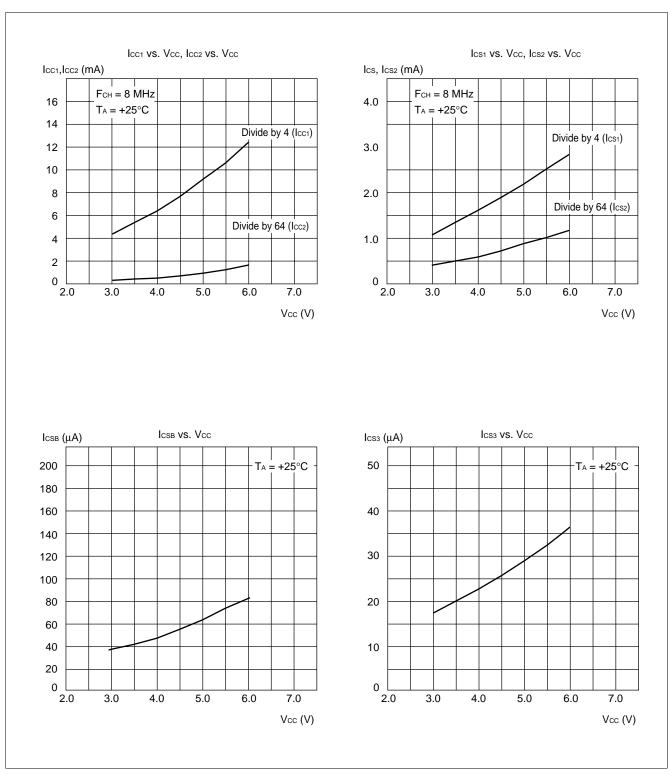


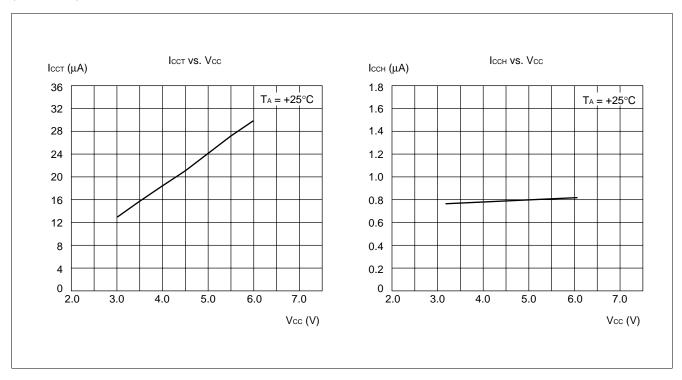
Error

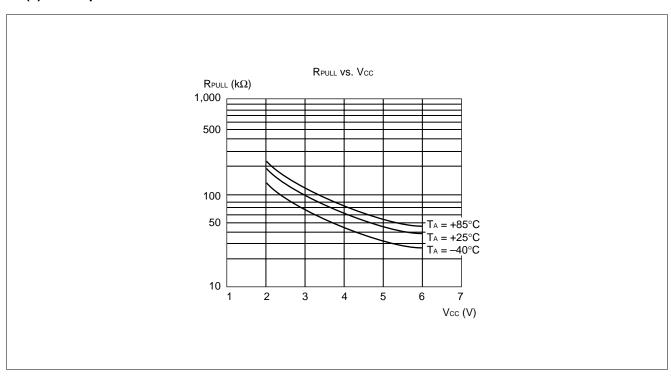

The smaller the | AVR - AVss |, the greater the error would become relatively.

■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage


(2) "H" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)


(4) Power Supply Current (External Clock)

(Continued)

(5) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

 Table 2
 Transfer Instructions (48 instructions)

MOV @IX +off,A 4 2 (dir) ← (A) - </th <th>Mnemonic</th> <th>~</th> <th>#</th> <th>Operation</th> <th>TL</th> <th>TH</th> <th>АН</th> <th>NZVC</th> <th>OP code</th>	Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV @EX.A	MOV dir,A	3	2	$(dir) \leftarrow (A)$	-	_	_		45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV @IX +off,A	4	2		_	_	_		46
MOV R,iAb		4	3		_	_	_		61
MOV R,iAb	MOV @ÉPA	3	1		_	_	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		_	_	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2		AL	_	_	++	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			AL	_	_	++	05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4			AL	_	_	++	06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4			AL	_	_	++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			AL	_	_	++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_	_	++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			_	_	++	
MOV @ IX +off,#d8 5 3 ((IX) +off) ← d8 -			3		_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5			_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOVW ext A	5	3		_	_	_		D4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ΔI	АН	dН	++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	movii, one con		_		,	7	۵.,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOVW A ext	5	3		ΑI	АН	dН	++	C4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-						++	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					_	_	dН		
$\begin{array}{ c c c c c c c c c }\hline MOVW\ A,SP & 2 & 1 & (A) \leftarrow (SP) & - & - & dH & & F1\\ MOV\ @A,T & 3 & 1 & ((A)) \leftarrow (T) & - & - & - & & 82\\ MOVW\ @A,T & 4 & 1 & ((A)) \leftarrow (TH), ((A)+1) \leftarrow (TL) & - & - & - & & 83\\ MOVW\ IX, \#d16 & 3 & 3 & (IX) \leftarrow d16 & - & - & - & & E6\\ MOVW\ A, PS & 2 & 1 & (A) \leftarrow (PS) & - & dH & & 70\\ MOVW\ PS, A & 2 & 1 & (PS) \leftarrow (A) & - & - & ++++ & 71\\ MOVW\ SP, \#d16 & 3 & 3 & (SP) \leftarrow d16 & - & - & - & -++++ & 71\\ MOVW\ SP, \#d16 & 3 & 3 & (SP) \leftarrow d16 & - & - & - & & E5\\ SWAP & 2 & 1 & (AH) \leftrightarrow (AL) & - & - & AL & & 10\\ SETB\ dir\colon b & 4 & 2 & (dir)\colon b \leftarrow 1 & - & - & - & & A8\ to\ AF\\ CLRB\ dir\colon b & 4 & 2 & (dir)\colon b \leftarrow 0 & - & - & - & & A0\ to\ A7\\ XCH\ A, T & 2 & 1 & (AL) \leftrightarrow (TL) & AL & - & - & & 42\\ XCHW\ A, T & 3 & 1 & (A) \leftrightarrow (TI) & AL & AH & dH & & 43\\ \end{array}$					_	_			
$\begin{array}{ c c c c c c c c c }\hline MOV @A,T & 3 & 1 & ((A)) \leftarrow (T) & - & - & - & - & - & - & 82\\ MOVW @A,T & 4 & 1 & ((A)) \leftarrow (TH), ((A)+1) \leftarrow (TL) & - & - & - & - & - & 83\\ MOVW IX, \#d16 & 3 & 3 & (IX) \leftarrow d16 & - & - & - & - & - & - & E6\\ MOVW A, PS & 2 & 1 & (A) \leftarrow (PS) & - & - & dH & - & - & 70\\ MOVW PS, A & 2 & 1 & (PS) \leftarrow (A) & - & - & - & + + + + & 71\\ MOVW SP, \#d16 & 3 & 3 & (SP) \leftarrow d16 & - & - & - & - & - & E5\\ SWAP & 2 & 1 & (AH) \leftrightarrow (AL) & - & - & AL & - & - & 10\\ SETB dir : b & 4 & 2 & (dir) : b \leftarrow 1 & - & - & - & - & A8 to AF\\ CLRB dir : b & 4 & 2 & (dir) : b \leftarrow 0 & - & - & - & - & - & A0 to A7\\ XCH A, T & 2 & 1 & (AL) \leftrightarrow (TL) & AL & - & - & - & - & 42\\ XCHW A, T & 3 & 1 & (A) \leftrightarrow (T) & AL & AH & dH & - & - & 43\\ \end{array}$					_	_	dН		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_	_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_	_	dН		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_		++++	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_	_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_	_	ΑI		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	_		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_			_	_	_		
$XCHWA,T$ 3 1 $(A) \leftrightarrow (T)$ AL AH dH $$ 43					AL	_	_		
						АН	dH		
	XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_		dH		F7
$XCHW A,IX$ $3 \mid 1 \mid (A) \leftrightarrow (IX)$ $- \mid - \mid dH \mid \mid F6 \mid$					_				
$XCHW A,SP$ 3 1 $(A) \leftrightarrow (SP)$ $ dH$ $$ $F5$					_	_			
MOVW A,PC $\begin{vmatrix} 2 & 1 & (A) \leftarrow (PC) \\ \end{vmatrix}$ $\begin{vmatrix} - & - & dH \\ \end{vmatrix}$ $\begin{vmatrix} & FO \\ \end{vmatrix}$					_	_			

Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	-	-	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	-	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_		++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22 20 to 25
SUBC A #do	2	1 2	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F 34
SUBC A,#d8 SUBC A,dir	3	2	$(A) \leftarrow (A) - d8 - C$ $(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - (B) - C$ $(A) \leftarrow (A) - (B) + (B) - C$	_	_		++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - (B) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (A) \cdot (A) - C$	_	_	dH	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0
DEC Ri	4	1	(Rí) ← (Ŕi) – 1	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) – 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	_		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$	_	_	dH		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \land (T)$	_	_	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	-	_	dH	++R-	73
XORW A	3	1	$(A) \leftarrow (A) \ \forall \ (T)$	_	_	dH	+ + R –	53
CMP A	2	1	(TL) - (AL)	_	_	_	++++	12
CMPW A	3	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1	$\rightarrow C \rightarrow A$	_	_	_	++-+	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	-	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) – ((IX) +off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \forall (TL)$	_	_	_	++R-	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \ \forall \ d8$ $(A) \leftarrow (AL) \ \forall \ (dir)$	-	_	_	++R-	54 55
XOR A,dir	3	2	$(A) \leftarrow (AL) \lor (dii)$ $(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R-	55 57
XOR A,@EP	3 4	2	$(A) \leftarrow (AL) \lor ((LF))$ $(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R- ++R-	57 56
XOR A,@IX +off XOR A,Ri	3	1	$(A) \leftarrow (AL) \lor ($	_	_	_	++R- ++R-	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \lor (RL)$ $(A) \leftarrow (AL) \land (TL)$	_	_	_	++R- ++R-	62
AND A AND A,#d8	2	2	$(A) \leftarrow (AL) \wedge d8$	_	_	_	++R-	64
AND A,#do	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_		++R-	65
AND A,uii	J		(· · · · · · · · · · · · · · · · · · ·			_	1 111	00

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	_	_	+ + R –	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R –	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R -	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R -	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R –	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	$(SP) \leftarrow (SP) - 1$	ı	_	_		D1

Table 4 Branch Instructions (17 instructions)

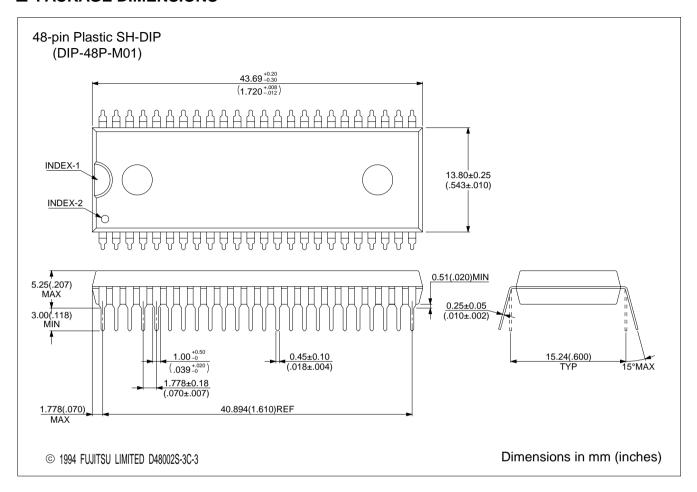
Mnemonic	ı	#	Operation	TL	TH	АН	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	-	_	-		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$		_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	ı	_	1	Restore	30

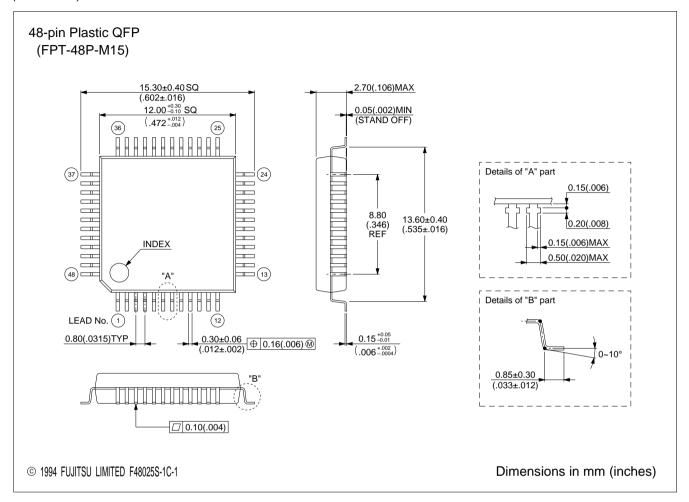
Table 5 Other Instructions (9 instructions)

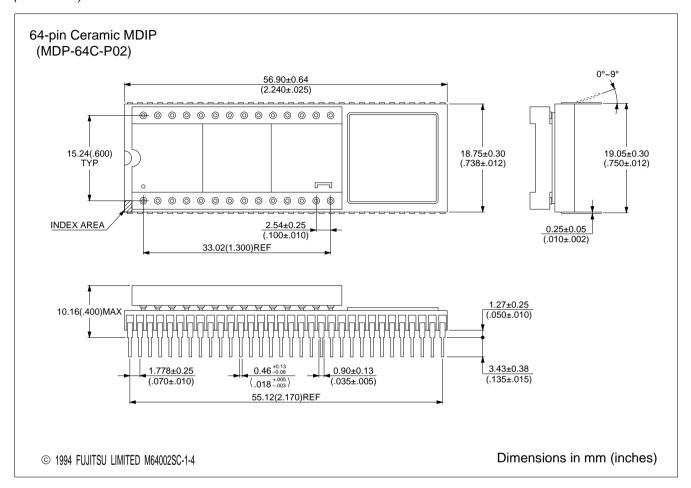
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

o		1	2	3	4	5	9	7	8	6	4	В	ပ	D	В	ч
MOP		SWAP	RET	RETI	PUSHW A	POPW A	MOV A,ext	MOVW A,PS	CLRI	SETI	CLRB dir: 0	BBC dir: 0,rel	INCW A	DECW	JMP @A	MOVW A,PC
MULU	Α	DIVU	JMP addr16	CALL addr16	PUSHW	POPW IX	MOV ext,A	MOVW PS,A	CLRC	SETC	CLRB dir: 1	BBC dir: 1,rel	INCW	DECW	MOVW SP,A	MOVW A,SP
ROLC	Α	CMP	ADDC	SUBC	XCH A, T	XOR A	AND A	OR A	MOV @A,T	MOV A,@A	CLRB dir: 2	BBC dir: 2,rel	INCW	DECW	MOVW IX,A	MOVW A,IX
RORC	<	CMPW	ADDCW A	SUBCW	XCHW A, T	XORW A	ANDW A	ORW A	MOVW @A,T	MOVW A,@A	CLRB dir: 3	BBC dir: 3,rel	INCW	DECW	MOVW EP,A	MOVW A,EP
MOV A,#d8	8	CMP A,#d8	ADDC A,#d8	SUBC A,#d8		XOR A,#d8	AND A,#d8	OR A,#d8	DAA	DAS	CLRB dir: 4	BBC dir: 4,rel	MOVW A,ext	MOVW ext,A	MOVW A,#d16	XCHW A,PC
MOV	V	CMP ,	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	CLRB	BBC	MOVW	MOVW	MOVW	XCHW
A,	A,dir	A,dir	A,dir	A,dir	dir,A	A,dir	A,dir	A,dir	dir,#d8	dir,#d8	dir: 5	dir: 5,rel	A,dir	dir,A	SP,#d16	A,SP
MOV		CMP	ADDC	SUBC	MOV @IX	XOR	AND	OR	MOV	CMP	CLRB	BBC	MOVW	MOVW	MOVW	XCHW
A, @IX +d		A,@IX +d	A, @IX +d	A,@IX+d	+d,A	@A,IX +d	A,@IX +d	A,@IX +d	@IX +d,#d8	@IX+d,#d8	dir: 6	dir: 6,rel	A,@IX+d	@IX+d,A	IX,#d16	A,IX
MOV	EP	CMP	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	CLRB	BBC	MOVW	MOVW	MOVW	XCHW
A,@EP		A,@EP	A,@EP	A,@EP	@EP,A	A,@EP	A,@EP	A,@EP	@EP,#d8	@EP;#d8	dir: 7	dir: 7,rel	A,@EP	@EP,A	EP,#d16	A,EP
MOV	X	CMP	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	SETB	BBS	INC	DEC	CALLV	BNC
A,	A,R0	A,R0	A,R0	A,R0	R0,A	A,R0	A,R0	A,R0	R0,#d8	R0,#d8	dir: 0	dir: 0,rel	R0	R0	#0	
MOV	R1	CMP	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	SETB	BBS	INC	DEC	CALLV	BC
A,		A,R1	A,R1	A,R1	R1,A	A,R1	A,R1	A,R1	R1,#d8	R1,#d8	dir: 1	dir: 1,rel	R1	R1	#1	rel
MOV A,	\mathbb{Z}	CMP A,R2	ADDC A,R2	SUBC A,R2	MOV R2,A	XOR A,R2	AND A,R2	OR A,R2	MOV R2,#d8	CMP R2,#d8	SETB dir: 2	BBS dir: 2,rel	INC R2	DEC R2	CALLV #2	BP rel
MOV	R3	CMP	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	SETB	BBS	INC	DEC	CALLV	BN
A,		A,R3	A,R3	A,R3	R3,A	A,R3	A,R3	A,R3	R3,#d8	R3,#d8	dir: 3	dir: 3,rel	R3	R3	#3	rel
MOV	N	CMP	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	SETB	BBS	INC	DEC	CALLV	BNZ
A,	A,R4	A,R4	A,R4	A,R4	R4,A	A,R4	A,R4	A,R4	R4,#d8	R4,#d8	dir: 4	dir: 4,rel	R4	R4	#4	rel
MOV	N	CMP	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	SETB	BBS	INC	DEC	CALLV	BZ
A,	A,R5	A,R5	A,R5	A,R5	R5,A	A,R5	A,R5	A,R5	R5,#d8	R5,#d8	dir: 5	dir: 5,rel	R5	R5	#5	rel
MOV	N	CMP	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	SETB	BBS	INC	DEC	CALLV	BGE
A,I	A,R6	A,R6	A,R6	A,R6	R6,A	A,R6	A,R6	A,R6	R6,#d8	R6,#d8	dir: 6	dir: 6,rel	R6	R6	#6	rel
MOV	w	CMP	ADDC	SUBC	MOV	XOR	AND	OR	MOV	CMP	SETB	BBS	INC	DEC	CALLV	BLT
A,	A,R7	A,R7	A,R7	A,R7	R7,A	A,R7	A,R7	A,R7	R7,#d8	R7,#d8	dir: 7	dir: 7,rel	R7	R7	#7	rel
I																


■ MASK OPTIONS


	Part number	MB89	PV910	MB89913	MB89	9P915
No.	Part number	-101	-102	MB89915	-101	-102
	Specifying procedure	Setting not possible	Setting not possible	Specify when ordering masking	Setting not possible	Setting not possible
1	Selection either single or dual clock Single-clock mode Dual-clock mode	Single clock	Dual clock	Selectable	Single clock	Dual clock
2	Pull-down resistors P17 to P10 P27 to P20 P51, P50	All pins fixed pull-down res		Can be selected per pin.	All pins fixed pull-down res	
3	$ \begin{array}{c} \mbox{Voltage to be detected for low-} \\ \mbox{voltage detection reset} \\ \mbox{3.3 \pm 0.3 V} \\ \mbox{3.6 \pm 0.3 V} \\ \mbox{4.0 \pm 0.3 V} \end{array} $	Cannot be us	sed.	Selectable	Can be set b	y register.


■ ORDERING INFORMATION

Part number	Package	Remarks
MB89913P-SH MB89915P-SH MB89P915P-101-SH MB89P915P-102-SH	48-pin Plastic SH-DIP (DIP-48P-M01)	
MB89913PF MB89915PF MB89P915PF-101 MB89P915PF-102	48-pin Plastic QFP (FPT-48P-M15)	
MB89PV910C-101-ES-SH MB89PV910C-102-ES-SH	64-pin Ceramic MDIP (MDP-64C-P02)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000

Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741

Tel: (65) 281-0770 Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan