Features

- 16-Mbit (x16) Flash and 8-Mbit PSRAM
- 2.7V to 3.3V Operating Voltage
- Low Operating Power
 - 27 mA Operating Current
 - 53 µA Standby Current
- Extended Temperature Range

Flash

- 2.7V to 3.3V Read/Write
- Access Time 70 ns
- Sector Erase Architecture
 - Thirty-one 32K Word (64K Byte) Sectors with Individual Write Lockout
 - Eight 4K Word (8K Byte) Sectors with Individual Write Lockout
- Fast Word Program Time 12 μs
- Suspend/Resume Feature for Erase and Program
 - Supports Reading and Programming from Any Sector by Suspending Erase of a Different Sector
 - Supports Reading Any Word by Suspending Programming of Any Other Word
- Low-power Operation
 - 12 mA Active
 - 13 µA Standby
- Data Polling, Toggle Bit, Ready/Busy for End of Program Detection
- VPP Pin for Write Protection and Accelerated Program/Erase Operations
- RESET Input for Device Initialization
- Sector Lockdown Support
- Top/Bottom Boot Block Configuration
- 128-bit Protection Register
- Minimum 100,000 Erase Cycles

PSRAM

- 8-Mbit (512K x 16)
- 2.7V to 3.3V V_{CC} Operating Voltage
- 70 ns Access Time
- Fully Static Operation and Tri-state Output
- ISB0 < 10 µA when Deep Power-Down

Device Number	Flash Configuration	PSRAM Configuration
AT52BC1661A(T)	16M (1M x 16)	8M (512K x 16)

16-Mbit Flash + 8-Mbit PSRAM Stack Memory

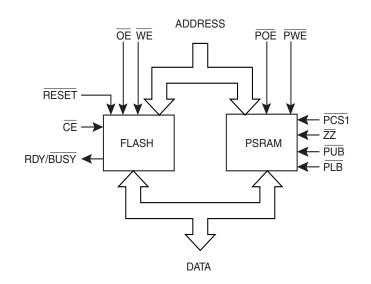
AT52BC1661A AT52BC1661AT

Preliminary

Rev. 3455A-STKD-11/04

CBGA Top View

	1	2	3	4	5	6	7	8	9	10	11	12
	•											
Α		() NC		() A11	() A15	() A14) A13	() A12		⊖ NC	⊖ NC) N
В			〇 A16	() A8	() A10	() A9) 1/015) 1/014	() 1/07		
С					I) 1/013	() 1/06) 1/04	() 1/05		
D							() 1/012) zz		⊖ vcc		
Е			() NC		() A19	() I/011		() 1/010	() 1/02	() 1/03		
F) I/O9	() I/08) 1/00	() /01		
G			() A18	() A17	() A7	() A6	() A3	() A2	() A1			
Н	O NC	() NC		() A5	() A4	() A0) CE) GND	O O E	⊖ NC	O NC	⊖ vc


Pin Configurations

Pin Name	Function
A0 - A18, A19	Common Address Input for 8M PSRAM/Flash, Flash Address Input
CE	Flash Chip Enable
OE/POE	Flash/PSRAM, Output Enable
WE/PWE	Flash/PSRAM, Write Enable
VCC	Flash Power Supply
VPP	Optional Flash Power Supply for Faster Program/Erase Operations
I/O0-I/O15	Data Inputs/Outputs
PCS1	PSRAM Chip Select
RDY/BUSY	Flash Ready/Busy Output
PVCC	PSRAM Power Supply
GND/PGND	Flash/PSRAM GND
PUB	PSRAM Upper Byte
PLB	PSRAM Lower Byte
NC	No Connect
RESET	Flash Reset
ZZ	Low-Power Modes

Description

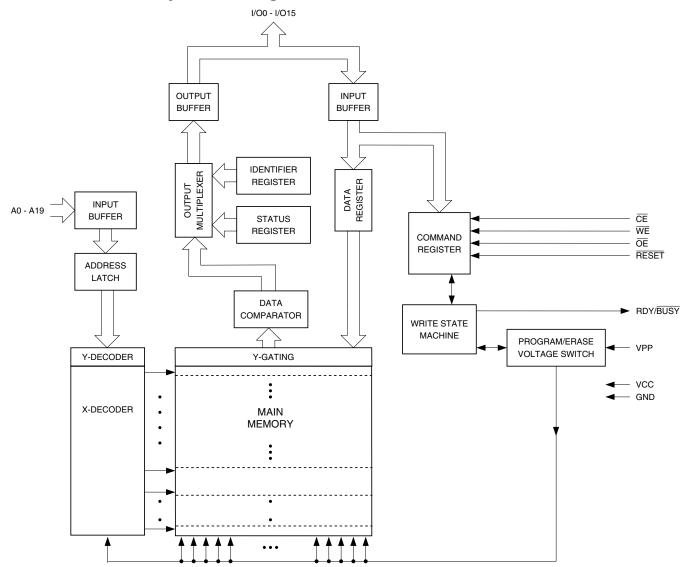
The AT52BC1661A(T) combines a single 16-Mbit Flash and a 8-Mbit PSRAM: both of the devices are offered in a stacked 66-ball CBGA package. The devices operate at 2.7V to 3.3V in the extended temperature range.

Block Diagram

Absolute Maximum Ratings

Temperature under Bias	25°C to +85°C
Storage Temperature	55°C to +150°C
All Input Voltages except V _{PP} (including NC Pins) with Respect to Ground	-0.2V to V _{CC} + 0.3V
Voltage on V _{PP} with Respect to Ground	0.2V to + 12.5V
All Output Voltages with Respect to Ground	-0.2V to V _{CC} + 0.3V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


DC and AC Operating Range

		AT52BC1661A(T)-70
Operating Temperature (Case)	Extended	-25°C to 85°C
V _{CC} Power Supply	2.7V to 3.3V	

16-Mbit Flash Memory Block Diagram

16-Mbit Flash Description

The 16-Mbit Flash is organized as 1,048,576 words of 16 bits each. The x16 data appears on I/O0 - I/O15. The memory is divided into 39 sectors for erase operations. The device has \overline{CE} and \overline{OE} control signals to avoid any bus contention. This device can be read or reprogrammed using a single power supply, making it ideally suited for in-system programming.

The device powers on in the read mode. Command sequences are used to place the device in other operation modes such as program and erase. The device has the capability to protect the data in any sector (see "Sector Lockdown" section).

To increase the flexibility of the device, it contains an Erase Suspend and Program Suspend feature. This feature will put the erase or program on hold for any amount of time and let the user read data from or program data to any of the remaining sectors within the memory. The end of a program or an erase cycle is detected by the READY/BUSY pin, Data Polling or by the toggle bit.

The VPP pin provides data protection. When the V_{PP} input is below 0.4V, the program and erase functions are inhibited. When V_{PP} is at 0.9V or above, normal program and erase operations can be performed.

A six-byte command (Enter Single Pulse Program Mode) sequence to remove the requirement of entering the three-byte program sequence is offered to further improve programming time. After entering the six-byte code, only single pulses on the write control lines are required for writing into the device. This mode (Single Pulse Word Program) is exited by powering down the device, or by pulsing the RESET pin low for a minimum of 500 ns and then bringing it back to V_{CC}. Erase, Erase Suspend/Resume and Program Suspend/Resume commands will not work while in this mode; if entered they will result in data being programmed into the device. It is not recommended that the six-byte code reside in the software of the final product but only exist in external programming code.

Device Operation

READ: The Flash is accessed like an EPROM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins are asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual-line control gives designers flexibility in preventing bus contention.

COMMAND SEQUENCES: When the device is first powered on, it will be reset to the read or standby mode, depending upon the state of the control line inputs. In order to perform other device functions, a series of command sequences are entered into the device. The command sequences are shown in the "Command Definition in Hex" table on page 13 (I/O8 - I/O15 are don't care inputs for the command codes). The command sequences are written by applying a low pulse on the WE or CE input with CE or WE low (respectively) and OE high. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of CE or WE. Standard microprocessor write timings are used. The address locations used in the command sequences are not affected by entering the command sequences.

RESET: A RESET input pin is provided to ease some system applications. When RESET is at a logic high level, the device is in its standard operating mode. A low level on the RESET input halts the present device operation and puts the outputs of the device in a high impedance state. When a high level is reasserted on the RESET pin, the device returns to the read or standby mode, depending upon the state of the control inputs.

ERASURE: Before a word can be reprogrammed, it must be erased. The erased state of memory bits is a logical "1". The entire device can be erased by using the Chip Erase command or individual sectors can be erased by using the Sector Erase command.

CHIP ERASE: The entire device can be erased at one time by using the six-byte chip erase software code. After the chip erase has been initiated, the device will internally time the erase operation so that no external clocks are required. The maximum time to erase the chip is t_{FC} .

If the sector lockdown has been enabled, the chip erase will not erase the data in the sector that has been locked out; it will erase only the unprotected sectors. After the chip erase, the device will return to the read or standby mode.

SECTOR ERASE: As an alternative to a full chip erase, the device is organized into 39 sectors (SA0 - SA38) that can be individually erased. The Sector Erase command is a six-bus cycle operation. The sector address is latched on the falling \overline{WE} edge of the sixth cycle while the 30H data input command is latched on the rising edge of \overline{WE} . The sector erase starts after the rising edge of \overline{WE} of the sixth cycle. The erase operation is internally controlled; it will automatically time to completion. The maximum time to erase a sector is t_{SEC} . When the sector programming lockdown feature is not enabled, the sector will erase (from the same Sector Erase command). An attempt to erase a sector that has been protected will result in the operation terminating immediately.

WORD PROGRAMMING: Once a memory block is erased, it is programmed (to a logical "0") on a word-by-word basis. Programming is accomplished via the internal device command register and is a four-bus cycle operation. The device will automatically generate the required internal program pulses.

Any commands written to the chip during the embedded programming cycle will be ignored. If a hardware reset happens during programming, the data at the location being programmed will be corrupted. Please note that a data "0" cannot be programmed back to a "1"; only erase operations can convert "0"s to "1"s. Programming is completed after the specified t_{BP} cycle time. The Data Polling feature or the Toggle Bit feature may be used to indicate the end of a program cycle. If the erase/program status bit is a "1", the device was not able to verify that the erase or program operation was performed successfully.

VPP PIN: The circuitry of the device is designed so that it cannot be programmed or erased if the V_{PP} voltage is less that 0.4V. When V_{PP} is at 0.9V or above, normal program and erase operations can be performed. The VPP pin cannot be left floating.

PROGRAM/ERASE STATUS: The device provides several bits to determine the status of a program or erase operation: I/O2, I/O3, I/O5, I/O6 and I/O7. The "Status Bit Table" on page 12 and the following four sections describe the function of these bits. To provide greater flexibility for system designers, the Flash contains a programmable configuration register. The configuration register allows the user to specify the status bit operation. The configuration register can be set to one of two different values, "00" or "01". If the configuration register is set to "00", the part will automatically return to the read mode after a successful program or erase operation. If the configuration register is set to a "01", a Product ID Exit command must be given after a successful program or erase operation before the part will return to the read mode. It is important to note that whether the configuration register is set to a "00" or to a "01", any unsuccessful program or erase operation requires using the Product ID Exit command to return the device to read mode. The default value (after power-up) for the configuration register is "00". Using the four-bus cycle Set Configuration Register command as shown in the "Command Definition in Hex" table on page 13, the value of the configuration register can be changed. Voltages applied to the RESET pin will not alter the value of the configuration register. The value of the configuration register will affect the operation of the I/O7 status bit as described below.

DATA POLLING: The 16-Mbit Flash features Data Polling to indicate the end of a program cycle. If the status configuration register is set to a "00", during a program cycle an attempted read of the last word loaded will result in the complement of the loaded data on I/O7. Once the program cycle has been completed, true data is valid on all outputs and the next cycle may begin. During a chip or sector erase operation, an attempt to read the device will give a "0" on I/O7. Once the program or erase cycle has completed, true data will be read from the device. Data Polling may begin at any time during the program cycle. Please see "Status Bit Table" on page 12 for more details.

If the status bit configuration register is set to a "01", the I/O7 status bit will be low while the device is actively programming or erasing data. I/O7 will go high when the device has completed a program or erase operation. Once I/O7 has gone high, status information on the other pins can be checked.

The Data Polling status bit must be used in conjunction with the erase/program and V_{PP} status bit as shown in the algorithm in Figures 1 and 2 on page 10.

TOGGLE BIT: In addition to Data Polling the device provides another method for determining the end of a program or erase cycle. During a program or erase operation, successive attempts to read data from the memory will result in I/O6 toggling between one and zero. Once the program cycle has completed, I/O6 will stop toggling and valid data will be read. Examining the toggle bit may begin at any time during a program cycle. Please see "Status Bit Table" on page 12 for more details.

The toggle bit status bit should be used in conjunction with the erase/program and V_{PP} status bit as shown in the algorithm in Figures 3 and 4 on page 11.

ERASE/PROGRAM STATUS BIT: The device offers a status bit on I/O5, which indicates whether the program or erase operation has exceeded a specified internal pulse count limit. If the status bit is a "1", the device is unable to verify that an erase or a word program operation has been successfully performed. If a program (Sector Erase) command is issued to a protected sector, the protected sector will not be programmed (erased). The device will go to a status read mode and the I/O5 status bit will be set high, indicating the program (erase) operation did not complete as requested. Once the erase/program status bit has been set to a "1", the system must write the Product ID Exit command to return to the read mode. The erase/program status bit is a "0" while the erase or program operation is still in progress. Please see "Status Bit Table" on page 12 for more details.

 V_{PP} STATUS BIT: The device provides a status bit on I/O3, which provides information regarding the voltage level of the VPP pin. During a program or erase operation, if the voltage on the VPP pin is not high enough to perform the desired operation successfully, the I/O3 status bit will be a "1". Once the V_{PP} status bit has been set to a "1", the system must write the Product ID Exit command to return to the read mode. On the other hand, if the voltage level is high enough to perform a program or erase operation successfully, the V_{PP} status bit will output a "0". Please see "Status Bit Table" on page 12 for more details.

SECTOR LOCKDOWN: Each sector has a programming lockdown feature. This feature prevents programming of data in the designated sectors once the feature has been enabled. These sectors can contain secure code that is used to bring up the system. Enabling the lock-down feature will allow the boot code to stay in the device while data in the rest of the device is updated. This feature does not have to be activated; any sector's usage as a write-protected region is optional to the user.

At power-up or reset, all sectors are unlocked. To activate the lockdown for a specific sector, the six-bus cycle Sector Lockdown command must be issued. Once a sector has been locked down, the contents of the sector is read-only and cannot be erased or programmed.

SECTOR LOCKDOWN DETECTION: A software method is available to determine if programming of a sector is locked down. When the device is in the software product identification mode (see "Software Product Identification Entry/Exit" sections on page 23), a read from address location 00002H within a sector will show if programming the sector is locked down. If the data on I/O0 is low, the sector can be programmed; if the data on I/O0 is high, the program lockdown feature has been enabled and the sector cannot be programmed. The software product identification exit code should be used to return to standard operation.

SECTOR LOCKDOWN OVERRIDE: The only way to unlock a sector that is locked down is through reset or power-up cycles. After power-up or reset, the content of a sector that is locked down can be erased and reprogrammed.

ERASE SUSPEND/ERASE RESUME: The Erase Suspend command allows the system to interrupt a sector or chip erase operation and then program or read data from a different sector within the memory. After the Erase Suspend command is given, the device requires a maximum time of 15 µs to suspend the erase operation. After the erase operation has been suspended, the system can then read data or program data to any other sector within the device. An address is not required during the Erase Suspend command. During a sector erase suspend, another sector cannot be erased. To resume the sector erase operation, the system must write the Erase Resume command. The Erase Resume command is a one-bus cycle command. The device also supports an erase suspend during a complete chip erase. While the chip erase is suspended, the user can read from any sector within the memory that is protected. The command sequence for a chip erase suspend and a sector erase suspend are the same.

PROGRAM SUSPEND/PROGRAM RESUME: The Program Suspend command allows the system to interrupt a programming operation and then read data from a different word within the memory. After the Program Suspend command is given, the device requires a maximum of 20 µs to suspend the programming operation. After the programming operation has been suspended, the system can then read data from any other word that is not contained in the sector in which the programming operation was suspended. An address is not required during the program suspend operation. To resume the programming operation, the system must write the Program Resume command. The program suspend and resume are one-bus cycle commands. The command sequence for the erase suspend and program suspend are the same, and the command sequence for the erase resume and program resume are the same.

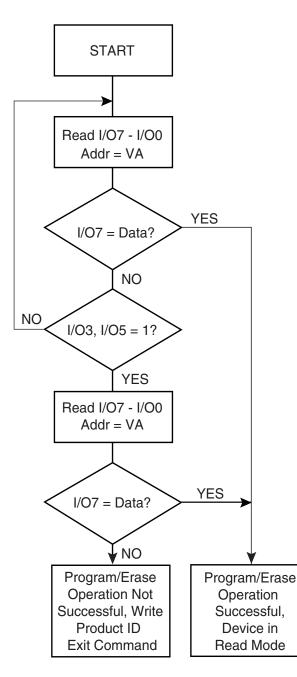
PRODUCT IDENTIFICATION: The product identification mode identifies the device and manufacturer as Atmel. It may be accessed by hardware or software operation. The hardware operation mode can be used by an external programmer to identify the correct programming algorithm for the Atmel product.

For details, see "Operating Modes" on page 16 (for hardware operation) or "Software Product Identification Entry/Exit" sections on page 23. The manufacturer and device codes are the same for both modes.

128-BIT PROTECTION REGISTER: The device contains a 128-bit register that can be used for security purposes in system design. The protection register is divided into two 64-bit blocks. The two blocks are designated as block A and block B. The data in block A is non-changeable and is programmed at the factory with a unique number. The data in block B is programmed by the user and can be locked out such that data in the block cannot be reprogrammed. To program block B in the protection register, the four-bus cycle Program Protection Register command must be used as shown in the "Command Definition in Hex" table on page 13. To lock out block B, the four-bus cycle Lock Protection Register command

must be used as shown in the "Command Definition in Hex" table. Data bit D1 must be zero during the fourth bus cycle. All other data bits during the fourth bus cycle are don't cares. To determine whether block B is locked out, the Product ID Entry command is given followed by a read operation from address 80H. If data bit D1 is zero, block B is locked. If data bit D1 is one, block B can be reprogrammed. Please see the "Flash Protection Register Addressing Table" on page 13 for the address locations in the protection register. To read the protection register, the Product ID Entry command is given followed by a normal read operation from an address within the protection register. After determining whether block B is protected or not, or reading the protection register, the Product ID Exit command must be given prior to performing any other operation.

RDY/BUSY: For the 16-Mbit Flash, an open-drain READY/BUSY output pin provides another method of detecting the end of a program or erase operation. RDY/BUSY is actively pulled low during the internal program and erase cycles and is released at the completion of the cycle. The open-drain connection allows for OR-tying of several devices to the same RDY/BUSY line. Please see "Status Bit Table" on page 12 for more details.


HARDWARE DATA PROTECTION: The Hardware Data Protection feature protects against inadvertent programs to the device in the following ways: (a) V_{CC} sense: if V_{CC} is below 1.8V (typical), the program function is inhibited. (b) V_{CC} power-on delay: once V_{CC} has reached the V_{CC} sense level, the device will automatically time out 10 ms (typical) before programming. (c) Program inhibit: holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits program cycles. (d) Program inhibit: V_{PP} is less than V_{ILPP} . (e) V_{PP} power-on delay: once V_{PP} has reached 1.65V, program and erase operations are inhibited for 100 ns.

INPUT LEVELS: While operating with a 2.7V to 3.3V power supply, the address inputs and control inputs (\overline{OE} , \overline{CE} and \overline{WE}) may be driven from 0 to 5.5V without adversely affecting the operation of the device. The I/O lines can only be driven from 0 to V_{CC} + 0.3V.

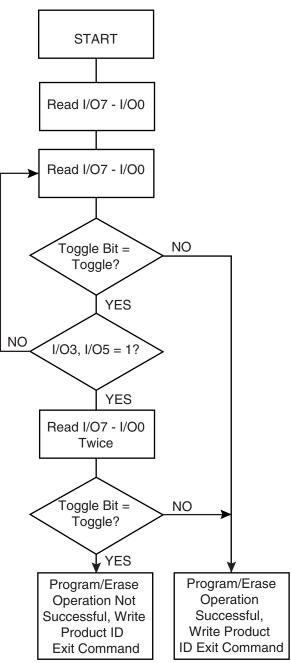


Figure 1. Data Polling Algorithm (Configuration Register = 00)

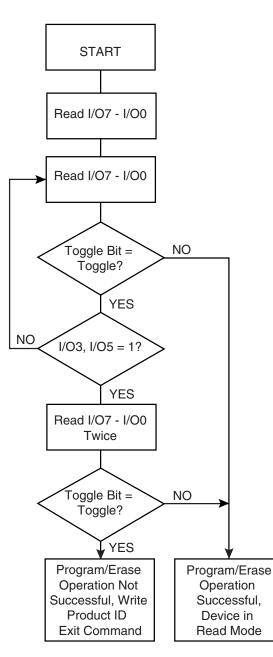

- Notes: 1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid address is any non-protected sector address.
 - I/O7 should be rechecked even if I/O5 = "1" because I/O7 may change simultaneously with I/O5.

Figure 2. Data Polling Algorithm (Configuration Register = 01)

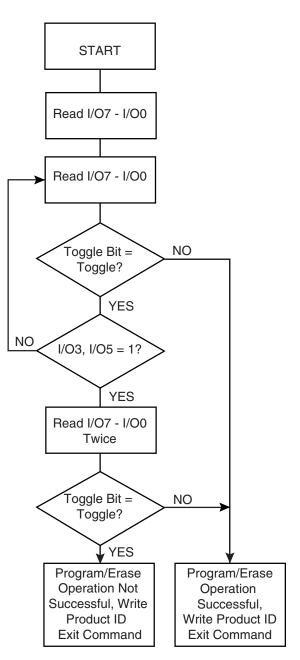

Note: 1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid address is any non-protected sector address.

Figure 3. Toggle Bit Algorithm (Configuration Register = 00)

Note: 1. The system should recheck the toggle bit even if I/O5 = "1" because the toggle bit may stop toggling as I/O5 changes to "1".

Figure 4. Toggle Bit Algorithm (Configuration Register = 01)

Note: 1. The system should recheck the toggle bit even if I/O5 = "1" because the toggle bit may stop toggling as I/O5 changes to "1".

Status Bit Table

	Status Bit								
	I/07	I/07	I/O6	I/O5 ⁽¹⁾	I/O3 ⁽²⁾	I/O2	RDY/BUSY		
Configuration Register	00	01	00/01	00/01	00/01	00/01	00/01		
Programming	1/07	0	TOGGLE	0	0	1	0		
Erasing	0	0	TOGGLE	0	0	TOGGLE	0		
Erase Suspended & Read Erasing Sector	1	1	1	0	0	TOGGLE	1		
Erase Suspended & Read Non-erasing Sector	DATA	DATA	DATA	DATA	DATA	DATA	1		
Erase Suspended & Program Non-erasing Sector	1/07	0	TOGGLE	0	0	TOGGLE	0		
Erase Suspended & Program Suspended and Reading from Non- suspended Sectors	DATA	DATA	DATA	DATA	DATA	DATA	1		
Program Suspended & Read Programming Sector	I/07	1	1	0	0	TOGGLE	1		
Program Suspended & Read Non-programming Sector	DATA	DATA	DATA	DATA	DATA	DATA	1		

Notes: 1. I/O5 switches to a "1" when a program or an erase operation has exceeded the maximum time limits or when a program or sector erase operation is performed on a protected sector.

2. I/O3 switches to a "1" when the V_{PP} level is not high enough to successfully perform program and erase operations.

Command Definition in Hex⁽¹⁾

Command	Bus		Bus cle	2nd Cyc		3rd Cy	Bus cle		Bus /cle	5th I Cyc		6th E Cyc	
Sequence	Cycles	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read	1	Addr	D _{OUT}										
Chip Erase	6	555	AA	AAA ⁽²⁾	55	555	80	555	AA	AAA	55	555	10
Sector Erase	6	555	AA	AAA	55	555	80	555	AA	AAA	55	SA ⁽³⁾⁽⁴⁾	30
Word Program	4	555	AA	AAA	55	555	A0	Addr	D _{IN}				
Dual Word Program ⁽⁹⁾	5	555	AA	AAA	55	555	E0	Addr1	D _{IN1}	Addr2	D _{IN2}		
Enter Single Pulse Program Mode	6	555	AA	AAA	55	555	80	555	AA	AAA	55	555	A0
Single Pulse Word Program	1	Addr	D _{IN}										
Sector Lockdown	6	555	AA	AAA ⁽²⁾	55	555	80	555	AA	AAA	55	SA ⁽³⁾⁽⁴⁾	60
Erase/Program Suspend	1	xxx	B0										
Erase/Program Resume	1	xxx	30										
Product ID Entry	3	555	AA	AAA	55	555	90						
Product ID Exit ⁽⁵⁾	3	555	AA	AAA	55	555	F0 ⁽⁸⁾						
Product ID Exit ⁽⁵⁾	1	XXX	F0 ⁽⁸⁾										
Program Protection Register	4	555	AA	AAA	55	555	C0	Addr	D _{IN}				
Lock Protection Register - Block B	4	555	AA	AAA	55	555	C0	080	X0				
Status of Block B Protection	4	555	AA	AAA	55	555	90	80	D _{OUT} ⁽⁶⁾				
Set Configuration Register	4	555	AA	AAA	55	555	D0	ххх	00/01 ⁽⁷⁾				
CFI Query	1	X55	98										

Notes: 1. The DATA FORMAT shown for each bus cycle is as follows; I/O7 - I/O0 (Hex). I/O15 - I/O8 are don't care. The ADDRESS FORMAT shown for each bus cycle is as follows: A11 - A0 (Hex). Address A19 through A11 are don't care.

2. Since A11 is a Don't Care, AAA can be replaced with 2AA.

3. SA = sector address. Any word address within a sector can be used to designate the sector address (see pages 14 - 16 for details).

4. Once a sector is in the lockdown mode, data in the protected sector cannot be changed unless the chip is reset or power cycled.

5. Either one of the Product ID Exit commands can be used.

6. If data bit D1 is "0", block B is locked. If data bit D1 is "1", block B can be reprogrammed.

7. The default state (after power-up) of the configuration register is "00".

8. Bytes of data other than F0 may be used to exit the Product ID mode. However, it is recommended that F0 be used.

9. This fast programming option enables the user to program two words in parallel only when V_{PP} = 12V. The Addresses, Addr1 and Addr2, of the two words, D_{IN1} and D_{IN2}, must only differ in address A0. This command should be used during manufacturing purposes only.

Flash Protection Register Addressing Table

Word	Use	Block	A7	A6	A5	A4	A3	A2	A1	A0
0	Factory	А	1	0	0	0	0	0	0	1
1	Factory	А	1	0	0	0	0	0	1	0
2	Factory	А	1	0	0	0	0	0	1	1
3	Factory	А	1	0	0	0	0	1	0	0
4	User	В	1	0	0	0	0	1	0	1
5	User	В	1	0	0	0	0	1	1	0
6	User	В	1	0	0	0	0	1	1	1
7	User	В	1	0	0	0	1	0	0	0

Note: All address lines not specified in the above table must be "0" when accessing the protection register, i.e., A19 - A8 = 0.

Bottom Boot– Sector Address Table

		x16
Sector	Size (Words)	Address Range (A19 - A0)
SA0	4K	00000 - 00FFF
SA1	4K	01000 - 01FFF
SA2	4K	02000 - 02FFF
SA3	4K	03000 - 03FFF
SA4	4K	04000 - 04FFF
SA5	4K	05000 - 05FFF
SA6	4К	06000 - 06FFF
SA7	4К	07000 - 07FFF
SA8	32K	08000 - 0FFFF
SA9	32K	10000 - 17FFF
SA10	32K	18000 - 1FFFF
SA11	32K	20000 - 27FFF
SA12	32K	28000 - 2FFFF
SA13	32K	30000 - 37FFF
SA14	32K	38000 - 3FFFF
SA15	32K	40000 - 47FFF
SA16	32K	48000 - 4FFF
SA17	32K	50000 - 57FFF
SA18	32K	58000 - 5FFFF
SA19	32K	60000 - 67FFF
SA20	32K	68000 - 6FFF
SA21	32K	70000 - 77FFF
SA22	32K	78000 - 7FFFF
SA23	32K	80000 - 87FFF
SA24	32K	88000 - 8FFFF
SA25	32K	90000 - 97FFF
SA26	32K	98000 - 9FFFF
SA27	32K	A0000 - A7FFF
SA28	32K	A8000 - AFFFF
SA29	32K	B0000 - B7FFF
SA30	32K	B8000 - BFFFF
SA31	32K	C0000 - C7FFF
SA32	32K	C8000 - CFFFF
SA33	32K	D0000 - D7FFF
SA34	32K	D8000 - DFFFF
SA35	32K	E0000 - E7FFF
SA36	32K	E8000 - EFFFF
SA37	32K	F0000 - F7FFF
SA38	32K	F8000 - FFFF

14 AT52BC1661A(T) [Preliminary]

Top Boot– Sector Address Table

Sector Size (Words) Address Range (A19-A0) SA0 32K 00000-07FFF SA1 32K 00000-07FFF SA2 32K 10000-17FFF SA3 32K 10000-17FFF SA4 32K 10000-17FFF SA4 32K 20000-27FFF SA4 32K 20000-27FFF SA5 32K 30000-37FFF SA6 32K 30000-37FFF SA7 32K 30000-37FFF SA8 32K 30000-37FFF SA9 32K 30000-37FFF SA10 32K 30000-37FFF SA11 32K 30000-37FFF SA12 32K 40000-47FF SA13 32K 50000-57FFF SA14 32K 50000-57FF SA13 32K 50000-57FF SA14 32K 50000-57FF SA15 32K 70000-77FF SA16 32K 00000-07FFF SA17 32K <th>SA0 SA1</th> <th>32K 32K</th> <th>Address Range (A19 - A0) 00000 - 07FFF</th>	SA0 SA1	32K 32K	Address Range (A19 - A0) 00000 - 07FFF
SA1 32K 08000-0FFFF SA2 32K 10000-17FFF SA3 32K 10000-17FFF SA4 32K 20000-27FFF SA6 32K 20000-27FFF SA6 32K 20000-27FFF SA6 32K 30000-37FFF SA7 32K 30000-37FFF SA8 322K 40000-47FFF SA9 32K 40000-47FFF SA9 32K 40000-47FFF SA10 32K 40000-47FFF SA11 32K 60000-67FFF SA12 32K 60000-67FFF SA13 32K 68000-67FFF SA14 32K 7000-77FFF SA15 32K 7000-77FFF SA16 32K 8000-87FFF SA16 32K 8000-87FFF SA14 32K 68000-97FFF SA15 32K 8000-87FFF SA16 32K 8000-87FFF SA17 32K	SA1	32K	
SA2 S3K 1000-17FFF SA3 32K 18000-1FFFF SA4 32K 20000-27FFF SA5 32K 20000-37FFF SA6 32K 30000-37FFF SA7 32K 30000-37FFF SA6 32K 30000-37FFF SA7 32K 38000-37FFF SA8 32K 40000-47FFF SA9 32K 40000-47FFF SA10 32K 58000-57FFF SA11 32K 58000-57FFF SA12 32K 68000-67FFF SA13 32K 68000-67FFF SA14 32K 78000-77FFF SA13 32K 68000-67FFF SA14 32K 78000-77FFF SA15 32K 88000-87FFF SA16 32K 88000-87FFF SA17 32K 88000-87FFF SA18 32K 80000-87FFF SA19 32K 88000-87FFF SA19 32K			08000 - 0FFFF
SA3 32K 18000 - 1FFFF SA4 32K 20000 - 27FFF SA5 32K 20000 - 27FFF SA6 32K 20000 - 27FFF SA6 32K 30000 - 37FFF SA7 32K 30000 - 37FFF SA8 32K 30000 - 37FFF SA9 32K 40000 - 47FFF SA9 32K 40000 - 47FFF SA10 32K 50000 - 57FFF SA11 32K 60000 - 57FFF SA13 32K 60000 - 57FFF SA14 32K 60000 - 57FFF SA13 32K 60000 - 57FFF SA14 32K 7000 - 77FFF SA15 32K 7000 - 77FFF SA16 32K 80000 - 87FFF SA16 32K 80000 - 87FFF SA17 32K 80000 - 97FFF SA18 32K 80000 - 87FFF SA20 32K 80000 - 87FFF SA21 32K 80000 - 87FFF S	SA2	32K	
SA4 32K 2000-27FFF SA5 32K 28000-2FFF SA6 32K 3000-3FFF SA7 32K 3600-3FFF SA7 32K 3600-3FFF SA8 32K 40000-4FFF SA9 32K 4000-4FFF SA10 32K 5000-5FFF SA11 32K 5000-5FFF SA12 32K 66000-6FFF SA13 32K 66000-6FFF SA14 32K 7000-7FFF SA15 32K 7000-7FFF SA14 32K 7000-7FFF SA15 32K 7000-7FFF SA16 32K 7000-7FFF SA16 32K 8000-8FFF SA16 32K 8000-7FFF SA17 32K 8000-9FFF SA20 32K 8000-9FFF SA21 32K 8000-9FFF SA22 32K 8000-0FFF SA23 32K 6000-0FFF		0211	10000 - 17FFF
SA5 32K 2800 - 2FFF SA6 32K 30000 - 37FFF SA7 32K 38000 - 3FFF SA8 32K 40000 - 47FFF SA8 32K 40000 - 47FFF SA9 32K 40000 - 47FFF SA10 32K 5000 - 57FF SA11 32K 58000 - 57FF SA12 32K 66000 - 67FF SA13 32K 66000 - 67FF SA14 32K 7000 - 77FF SA15 32K 7000 - 77FF SA16 32K 7000 - 77FF SA16 32K 7000 - 77FF SA16 32K 8000 - 87FF SA17 32K 8000 - 87FF SA18 32K 9000 - 97FF SA20 32K 8000 - 87FF SA21 32K 9000 - 97FF SA22 32K 9000 - 97FF SA23 32K 6000 - 87FF SA24 32K 6000 - 67FF SA25	SA3	32K	18000 - 1FFFF
SA6 32K 30000-37FFF SA7 32K 38000-3FFF SA8 32K 40000-47FF SA9 32K 46000-4FFF SA10 32K 50000-57FF SA11 32K 50000-57FF SA12 32K 60000-67FF SA13 32K 60000-67FF SA14 32K 60000-67FF SA15 32K 60000-77FF SA16 32K 60000-77FF SA15 32K 70000-77FF SA16 32K 80000-87FF SA16 32K 80000-87FF SA16 32K 80000-87FF SA18 32K 80000-87FF SA19 32K 80000-97FF SA19 32K 80000-97FF SA20 32K 80000-87FF SA21 32K 80000-87FF SA22 32K 80000-87FF SA23 32K 80000-87FF SA24 32K 800	SA4	32K	20000 - 27FFF
SA7 32K 38000 - SFFF SA8 32K 40000 - 47FF SA9 32K 48000 - 4FFF SA10 32K 50000 - 57FF SA11 32K 56000 - 57FF SA12 32K 68000 - 67FF SA13 32K 68000 - 67FF SA14 32K 7000 - 77FF SA15 32K 7000 - 77FF SA16 32K 7000 - 77FF SA16 32K 7000 - 77FF SA16 32K 8000 - 87FF SA16 32K 9000 - 77FF SA18 32K 8000 - 87FF SA19 32K 8000 - 87FF SA19 32K 9000 - 97FF SA19 32K 9000 - 97FF SA20 32K 8000 - 87FF SA21 32K 98000 - 97FF SA22 32K 8000 - 87FF SA23 32K 8000 - 87FF SA24 32K 00000 - 07FF SA25	SA5	32K	28000 - 2FFFF
SA8 32K 4000 - 47FF SA9 32K 4800 - 4FFF SA10 32K 5000 - 57FF SA11 32K 5800 - 57FF SA12 32K 6000 - 67FF SA13 32K 68000 - 67FF SA14 32K 68000 - 67FF SA13 32K 68000 - 67FF SA14 32K 7000 - 77FF SA15 32K 7800 - 7FFF SA16 32K 8000 - 87FF SA16 32K 8000 - 87FF SA16 32K 8000 - 87FF SA17 32K 8000 - 87FF SA18 32K 9000 - 97FF SA19 32K 9000 - 97FF SA20 32K 8000 - 87FF SA21 32K 8000 - 87FF SA22 32K 8000 - 87FF SA23 32K 8000 - 87FF SA24 32K 6000 - 67FF SA25 32K 60000 - 07FF SA26 <	SA6	32K	30000 - 37FFF
SA9 32K 48000 - 4FFF SA10 32K 50000 - 57FFF SA11 32K 58000 - 57FFF SA12 32K 68000 - 67FFF SA13 32K 68000 - 67FFF SA14 22K 70000 - 77FFF SA15 32K 68000 - 67FFF SA14 22K 70000 - 77FFF SA15 32K 88000 - 87FFF SA16 32K 88000 - 87FFF SA17 32K 88000 - 87FFF SA18 32K 90000 - 97FFF SA19 32K 90000 - 97FFF SA20 32K 90000 - 97FFF SA21 32K 90000 - 97FFF SA22 32K 9000 - 97FFF SA23 32K 9000 - 97FFF SA24 32K 9000 - 97FFF SA25 32K 8000 - 87FFF SA26 32K 00000 - 07FFF SA26 32K 00000 - 07FFF SA26 32K 00000 - 07FFF	SA7	32K	38000 - 3FFFF
SA10 32K 50000 - 57FFF SA11 32K 58000 - 5FFFF SA12 32K 68000 - 67FFF SA13 32K 68000 - 67FFF SA14 32K 68000 - 67FFF SA14 32K 78000 - 77FFF SA15 32K 78000 - 77FFF SA16 32K 88000 - 87FFF SA17 32K 88000 - 87FFF SA18 32K 90000 - 97FFF SA19 32K 90000 - 97FFF SA20 32K 90000 - 97FFF SA21 32K 90000 - 97FFF SA22 32K 98000 - 9FFF SA23 32K 98000 - 9FFF SA24 32K 98000 - 07FFF SA25 32K 88000 - 07FFF SA26 32K C8000 - C7FFF SA26 32K C8000 - CFFFF SA26 32K C8000 - CFFFF SA26 32K D8000 - 07FFF SA26 32K D8000 - 07FFF	SA8	32K	40000 - 47FFF
SA11 32K 58000 - 5FFFF SA12 32K 60000 - 67FFF SA13 32K 68000 - 67FFF SA14 32K 70000 - 77FFF SA15 32K 78000 - 77FFF SA16 32K 80000 - 87FFF SA16 32K 80000 - 87FFF SA17 32K 80000 - 87FFF SA18 32K 90000 - 97FF SA19 32K 98000 - 97FFF SA19 32K 98000 - 97FFF SA19 32K 98000 - 97FFF SA20 32K 98000 - 97FFF SA21 32K 98000 - 97FFF SA22 32K 80000 - AFFFF SA23 32K 8000 - 87FFF SA24 32K 8000 - 87FFF SA25 32K C0000 - 07FFF SA26 32K C0000 - 07FFF SA26 32K 00000 - 07FFF SA27 32K 08000 - 0FFFF SA28 32K 08000 - 0FFFF	SA9	32K	48000 - 4FFFF
SA12 32K 60000 - 67FFF SA13 32K 68000 - 6FFFF SA14 32K 70000 - 77FFF SA15 32K 78000 - 7FFF SA16 32K 80000 - 87FFF SA17 32K 88000 - 87FFF SA18 32K 90000 - 97FFF SA19 32K 98000 - 97FFF SA19 32K 98000 - 9FFFF SA20 32K 98000 - 9FFFF SA21 32K 98000 - 8FFFF SA22 32K 80000 - 8FFFF SA23 32K 98000 - 8FFFF SA24 32K 60000 - 8FFFF SA25 32K B0000 - 8FFFF SA24 32K C6000 - CFFFF SA25 32K C8000 - 07FFF SA26 32K D0000 - 07FFF SA27 32K D6000 - DFFFF SA28 32K E8000 - EFFFF SA30 32K E8000 - EFFFF SA30 32K F0000 - F7FFF	SA10	32K	50000 - 57FFF
SA13 32K 6800 - 6FFFF SA14 32K 7000 - 77FFF SA15 32K 7800 - 7FFF SA16 32K 8000 - 87FFF SA17 32K 88000 - 87FFF SA18 32K 9000 - 97FFF SA19 32K 9800 - 97FFF SA20 32K 9800 - 97FFF SA21 32K 9800 - 97FFF SA22 32K 8000 - 87FFF SA23 32K 8000 - 87FFF SA24 32K 0000 - 87FFF SA25 32K 8000 - 87FFF SA24 32K 0000 - 67FFF SA25 32K 8000 - 67FFF SA26 32K 0000 - 07FFF SA26 32K 0000 - 07FFF SA28 32K 0000 - 07FFF SA28 32K 0000 - 07FFF SA29 32K 6000 - 67FFF SA30 32K 6000 - 67FFF SA31 4K F8000 - 78FFF <td< td=""><td>SA11</td><td>32K</td><td>58000 - 5FFFF</td></td<>	SA11	32K	58000 - 5FFFF
SA14 32K 7000 - 77FF SA15 32K 78000 - 7FFF SA16 32K 80000 - 87FFF SA17 32K 88000 - 87FFF SA18 32K 90000 - 97FFF SA19 32K 98000 - 97FFF SA19 32K 98000 - 97FFF SA20 32K 98000 - 97FFF SA21 32K 98000 - 87FFF SA22 32K 88000 - 87FFF SA23 32K 88000 - 87FFF SA24 32K 88000 - 87FFF SA23 32K 88000 - 87FFF SA24 32K C0000 - 7FFF SA25 32K C0000 - C7FFF SA26 32K C8000 - CFFFF SA26 32K C8000 - DFFFF SA26 32K D8000 - DFFFF SA28 32K E8000 - EFFFF SA29 32K E8000 - EFFFF SA30 32K F0000 - FFFFF SA31 4K F8000 - F8FFF	SA12	32K	60000 - 67FFF
SA15 32K 7800 - 7FFF SA16 32K 8000 - 87FFF SA17 32K 88000 - 87FFF SA18 32K 9000 - 97FFF SA19 32K 98000 - 97FFF SA20 32K 98000 - 47FFF SA20 32K 40000 - A7FFF SA21 32K A8000 - AFFFF SA22 32K B8000 - 87FFF SA23 32K A8000 - AFFFF SA24 32K C0000 - 67FFF SA23 32K B8000 - 8FFFF SA24 32K C0000 - C7FFF SA25 32K C0000 - C7FFF SA26 32K C0000 - C7FFF SA26 32K C0000 - CFFFF SA26 32K C0000 - CFFFF SA28 32K E0000 - EFFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF <td>SA13</td> <td>32K</td> <td>68000 - 6FFFF</td>	SA13	32K	68000 - 6FFFF
SA16 32K 80000 - 87FFF SA17 32K 88000 - 87FFF SA18 32K 90000 - 97FFF SA19 32K 98000 - 97FFF SA20 32K 98000 - 97FFF SA20 32K 98000 - 97FFF SA20 32K 98000 - 97FFF SA21 32K A0000 - A7FFF SA22 32K A8000 - AFFFF SA23 32K B0000 - B7FFF SA24 32K B0000 - B7FFF SA23 32K B8000 - B7FFF SA24 32K C0000 - C7FFF SA25 32K C8000 - C7FFF SA26 32K C8000 - CFFFF SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E8000 - E7FFF SA29 32K E8000 - E7FFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA14	32K	70000 - 77FFF
SA17 32K 88000 - 8FFFF SA18 32K 90000 - 97FFF SA19 32K 98000 - 97FFF SA20 32K A0000 - A7FFF SA21 32K A6000 - AFFFF SA22 32K B000 - BFFFF SA23 32K B000 - BFFFF SA24 32K C0000 - C7FFF SA25 32K C0000 - C7FFF SA26 32K D0000 - D7FFF SA26 32K D0000 - D7FFF SA26 32K D0000 - D7FFF SA26 32K D8000 - DFFFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K FFFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA15	32K	78000 - 7FFFF
SA18 32K 90000 - 97FFF SA19 32K 98000 - 9FFFF SA20 32K A0000 - A7FFF SA21 32K A8000 - AFFFF SA22 32K B0000 - B7FFF SA23 32K B0000 - B7FFF SA24 32K B0000 - B7FFF SA23 32K B8000 - BFFFF SA24 32K C0000 - C7FFF SA25 32K C8000 - CFFFF SA26 32K D0000 - D7FFF SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA16	32K	80000 - 87FFF
SA19 32K 98000 - 9FFFF SA20 32K A0000 - A7FFF SA21 32K A8000 - AFFFF SA22 32K B0000 - B7FFF SA23 32K B8000 - B7FFF SA24 32K C0000 - C7FFF SA25 32K C8000 - CFFFF SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - E7FFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF	SA17	32K	88000 - 8FFFF
SA20 32K A0000 - A7FFF SA21 32K A8000 - AFFFF SA22 32K B0000 - B7FFF SA23 32K B8000 - B7FFF SA24 32K C0000 - C7FFF SA25 32K C8000 - C7FFF SA26 32K C8000 - C7FFF SA26 32K C8000 - D7FFF SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA18	32K	90000 - 97FFF
SA21 32K A8000 - AFFFF SA22 32K B0000 - B7FFF SA23 32K B8000 - BFFFF SA24 32K C0000 - C7FFF SA25 32K C8000 - C7FFF SA26 32K D0000 - D7FFF SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA19	32K	98000 - 9FFFF
SA22 32K B0000 - B7FFF SA23 32K B8000 - BFFFF SA24 32K C0000 - C7FFF SA25 32K C8000 - CFFFF SA26 32K D0000 - D7FFF SA27 32K D8000 - D7FFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA20	32K	A0000 - A7FFF
SA23 32K B8000 - BFFFF SA24 32K C0000 - C7FFF SA25 32K C8000 - CFFFF SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F9FFF	SA21	32K	A8000 - AFFFF
SA24 32K C000 - C7FFF SA25 32K C8000 - CFFFF SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA22	32K	B0000 - B7FFF
SA25 32K C8000 - CFFFF SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA23	32K	B8000 - BFFFF
SA26 32K D0000 - D7FFF SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA24	32K	C0000 - C7FFF
SA27 32K D8000 - DFFFF SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA25	32K	C8000 - CFFFF
SA28 32K E0000 - E7FFF SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA26	32K	D0000 - D7FFF
SA29 32K E8000 - EFFFF SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA27	32K	D8000 - DFFFF
SA30 32K F0000 - F7FFF SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA28	32K	E0000 - E7FFF
SA31 4K F8000 - F8FFF SA32 4K F9000 - F9FFF	SA29	32K	E8000 - EFFFF
SA32 4K F9000 - F9FFF	SA30	32K	F0000 - F7FFF
	SA31	4К	F8000 - F8FFF
	SA32	4К	F9000 - F9FFF
	SA33	4К	FA000 - FAFFF
SA34 4K FB000 - FBFFF	SA34	4К	FB000 - FBFFF
SA35 4K FC000 - FCFFF	SA35	4К	FC000 - FCFFF
SA36 4K FD000 - FDFFF	SA36	4К	FD000 - FDFFF
	SA37	4К	FE000 - FEFFF
SA37 4K FE000 - FEFFF	SA38	4К	FF000 - FFFFF

DC and AC Operating Range

		16-Mbit Flash-70				
Operating Temperature (Case)	Operating Temperature (Case) Extended					
V _{CC} Power Supply	2.70V to 3.3V					

Operating Modes

Mode	CE	OE	WE	RESET	V _{PP}	Ai	I/O
Read	V _{IL}	V_{IL}	V _{IH}	V _{IH}	х	Ai	D _{OUT}
Program/Erase ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	V _{IH}	V _{IHPP} ⁽⁶⁾	Ai	D _{IN}
Standby/Program Inhibit	V _{IH}	X ⁽¹⁾	Х	V _{IH}	х	X	High-Z
	Х	Х	V _{IH}	V _{IH}	Х		
Program Inhibit	Х	V _{IL}	Х	V _{IH}	Х		
	Х	Х	Х	V _{IH}	V _{ILPP} ⁽⁷⁾		
Output Disable	Х	V _{IH}	Х	V _{IH}	х		High-Z
Reset	Х	Х	Х	V _{IL}	х	Х	High-Z
Product Identification					·		
		.,	., <i>i</i>			A1 - A19 = V_{IL} , A9 = $V_{H}^{(3)}$, A0 = V_{IL}	Manufacturer Code ⁽⁴⁾
Hardware	V _{IL}	V _{IL} V _{IL} V _{IH}		V _{IH}		A1 - A19 = V_{IL} , A9 = $V_{H}^{(3)}$, A0 = V_{IH}	Device Code ⁽⁴⁾
o (; (5)						A0 = V _{IL} , A1 - A19 = V _{IL}	Manufacturer Code ⁽⁴⁾
Software ⁽⁵⁾				V _{IH}		$A0 = V_{IH}, A1 - A19 = V_{IL}$	Device Code ⁽⁴⁾

Notes: 1. X can be V_{IL} or V_{IH} .

2. Refer to AC programming waveforms on page 21.

3. $V_{\rm H} = 12.0V \pm 0.5V$.

4. Manufacturer Code: 001FH, Device Code: 00C0H – Bottom Boot, 00C2H, Top Boot.

5. See details under "Software Product Identification Entry/Exit" on page 23.

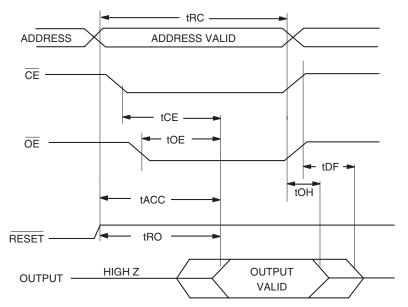
6. V_{IHPP} (min) = 0.9V; V_{IHPP} (max) = 3.6V.

7. V_{ILPP} (max) = 0.4V.

DC Characteristics

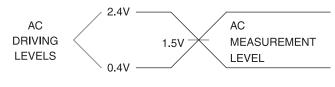
Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{LI}	Input Load Current	$V_{IN} = 0V$ to V_{CC}			2	μA
I _{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μA
I _{SB}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC} - 0.3V$ to V_{CC}		13	25	μA
I _{CC} ⁽¹⁾	V _{CC} Active Read Current	f = 5 MHz; I _{OUT} = 0 mA		12	25	mA
I _{CC1}	V _{CC} Programming Current				40	mA
I _{PP1}	V _{PP} Input Load Current				5	μA
V _{IL}	Input Low Voltage				0.6	V
V _{IH}	Input High Voltage		2.0			V
V _{OL1}	Output Low Voltage	I _{OL} = 2.1 mA			0.45	V
V _{OL2}	Output Low Voltage	I _{OL} = 1.0 mA			0.20	V
V _{OH1}	Output High Voltage	I _{OH} = -400 μA	2.4			V
V _{OH2}	Output High Voltage	I _{OH} = -100 μA	2.5			V

Note: 1. In the erase mode, I_{CC} is 45 mA.

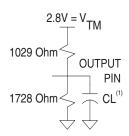


AC Read Characteristics

		16-Mbit Flash-70		
Symbol	Parameter	Min	Мах	Units
t _{RC}	Read Cycle Time	70		ns
t _{ACC}	Address to Output Delay		70	ns
t _{CE} ⁽¹⁾	CE to Output Delay		70	ns
t _{OE} ⁽²⁾	OE to Output Delay	0	20	ns
t _{DF} ⁽³⁾⁽⁴⁾	CE or OE to Output Float	0	25	ns
t _{OH}	Output Hold from \overline{OE} , \overline{CE} or Address, whichever Occurred First	0		ns
t _{RO}	RESET to Output Delay		100	ns


AC Read Waveforms⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

- Notes: 1. \overline{CE} may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} . 2. \overline{OE} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC} . 3. t_{DF} is specified from \overrightarrow{OE} or \overrightarrow{CE} , whichever occurs first (CL = 5 pF).


 - 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

t_R, t_F < 5 ns

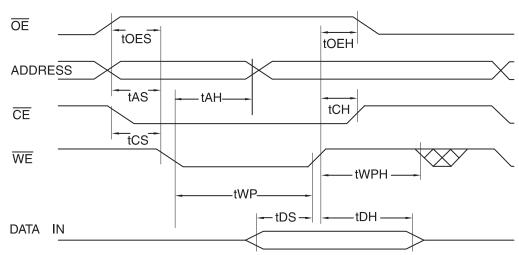
Output Test Load

Pin Capacitance

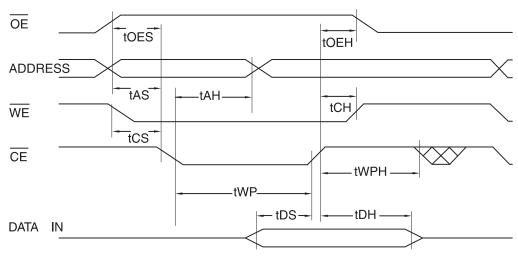
 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Мах	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

Note: This parameter is characterized and is not 100% tested.



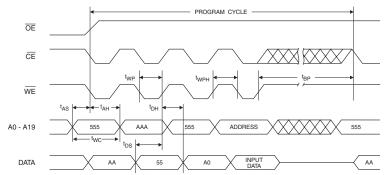
AC Word Load Characteristics


Symbol	Parameter	Min	Max	Units
t _{AS} , t _{OES}	Address, OE Setup Time	0		ns
t _{AH}	Address Hold Time	35		ns
t _{cs}	Chip Select Setup Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{wP}	Write Pulse Width (\overline{WE} or \overline{CE})	35		ns
t _{DS}	Data Setup Time	35		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	0		ns
t _{WPH}	Write Pulse Width High	35		ns

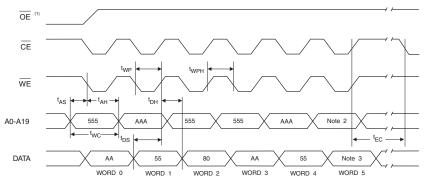
AC Word Load Waveforms

WE Controlled

CE Controlled



20 AT52BC1661A(T) [Preliminary]

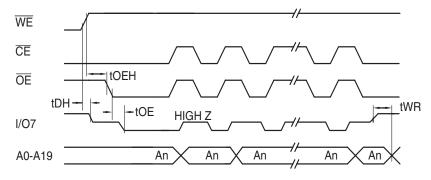

Symbol	Parameter	Min	Тур	Мах	Units
t _{BP}	Word Programming Time		12	200	μs
t _{BPD}	Word Programming Time in Dual Programming Mode		6	100	μs
t _{AS}	Address Setup Time	0			ns
t _{AH}	Address Hold Time	35			ns
t _{DS}	Data Setup Time	35			ns
t _{DH}	Data Hold Time	0			ns
t _{WP}	Write Pulse Width	35			ns
t _{WPH}	Write Pulse Width High	35			ns
t _{wc}	Write Cycle Time	70			ns
t _{RP}	Reset Pulse Width	500			ns
t _{EC}	Chip Erase Cycle Time		25		seconds
t _{SEC1}	Sector Erase Cycle Time (4K Word Sectors)			3.0	seconds
t _{SEC2}	Sector Erase Cycle Time (32K Word Sectors)			5.0	seconds
t _{ES}	Erase Suspend Time			15	μs
t _{PS}	Program Suspend Time			10	μs

Program Cycle Characteristics

Program Cycle Waveforms

Sector or Chip Erase Cycle Waveforms

- Notes: 1. \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.
 - 2. For chip erase, the address should be 555. For sector erase, the address depends on what sector is to be erased. (See note 3 under "Command Definitions in Hex" on page 13.)
 - 3. For chip erase, the data should be 10H, and for sector erase, the data should be 30H.

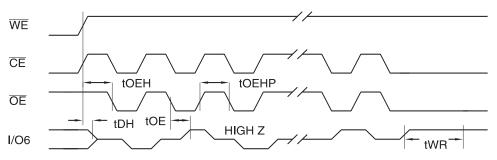

Data Polling Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{WR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See t_{OE} spec in "AC Read Characteristics" on page 18.

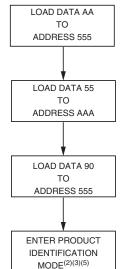
Data Polling Waveforms

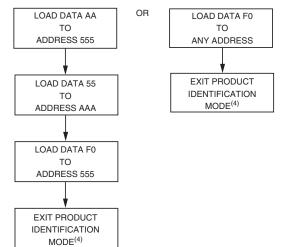


Toggle Bit Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{OEHP}	OE High Pulse	50			ns
t _{wR}	Write Recovery Time	0			ns
lotes: 1.	These parameters are characterized and not 100% tested.				

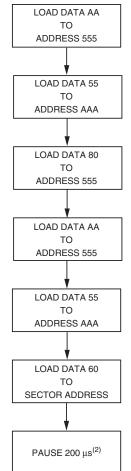
These parameters are characterized and not 100% tested.
 See t_{OE} spec in "AC Read Characteristics" on page 18.


Toggle Bit Waveforms⁽¹⁾⁽²⁾⁽³⁾


- Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit. The t_{OEHP} specification must be met by the toggling input(s).
 - 2. Beginning and ending state of I/O6 will vary.
 - 3. Any address location may be used but the address should not vary.

AT52BC1661A(T) [Preliminary]

Software Product Identification Entry⁽¹⁾

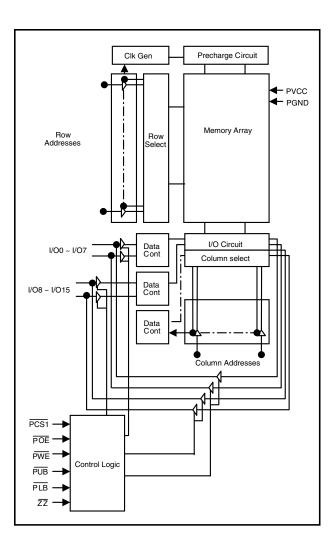


Software Product Identification Exit⁽¹⁾⁽⁶⁾

- Notes: 1. Data Format: I/O15 I/O8 (Don't Care); I/O7 I/O0 (Hex) Address Format: A11 - A0 (Hex), and A11 - A19 (Don't Care).
 - 2. A1 A19 = V_{IL} . Manufacturer Code is read for A0 = V_{IL} ; Device Code is read for A0 = V_{IH} .
 - 3. The device does not remain in identification mode if powered down.
 - 4. The device returns to standard operation mode.
 - 5. Manufacturer Code: 001FH(x16)
 - Device Code: 00C0H (x16) Bottom Boot; 00C2H (x16) - Top Boot.
 - 6. Either one of the Product ID Exit commands can be used.

Sector Lockdown Enable Algorithm⁽¹⁾

- Notes: 1. Data Format: I/O15 I/O8 (Don't Care); I/O7 I/O0 (Hex) Address Format: A11 - A0 (Hex), and A11 - A19 (Don't Care).
 - 2. Sector Lockdown feature enabled.


PSRAM Description

The Pseudo-SRAM (PSRAM) is an integrated memory based on a self-refresh DRAM array. The device is offered with a density of 8-Mbit organized as 512,288 words by 16 bits. It is designed to be identical in operation and interface to the standard 6T SRAMS. The device is designed for low standby, low operating current and includes a user configurable low-power mode. Two chip selects (PCS1 and \overline{ZZ}) and an output enable (POE) is available to allow for easy memory expansion. Byte controls (PUB and PLB) allow the upper and lower bytes to be accessed independently and can also be used to deselect the device. The deep sleep mode reduces standby current drain while not retaining data in the array.

PSRAM Features

- Fast Cycle Times
 - T_{ACC} < 70 ns
- Very Low Standby Current – I_{SB0} < 10 μA @ 3.0V
- Very Low Operating Current
- 1.0 mA at 3.0 and 1 μs (Typical)
- Memory Expansion with PCS1 and POE
- TTL Compatible Three-state Output Driver

Functional Block Diagram

AT52BC1661A(T) [Preliminary]

PCS1	ZZ	POE	PWE	PLB	PUB	I/O0 - 7	I/O8 - 15	Mode	Power
Н	Н	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾	High-Z	High-Z	Deselected	Standby
X ⁽¹⁾	L	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾	High-Z	High-Z	Deselected	Low-power Modes
X ⁽¹⁾	Н	X ⁽¹⁾	X ⁽¹⁾	Н	Н	High-Z	High-Z	Deselected	Standby
	Н	Н	Н	L	X ⁽¹⁾	High-Z	High-Z	Output Disabled	Active
	н	н	Н	X ⁽¹⁾	L	High-Z	High-Z	Output Disabled	Active
				L	Н	D _{OUT}	High-Z	Lower Byte Read	Active
		L	н	н	L	High-Z	D _{OUT}	Upper Byte Read	Active
	н			L	L	D _{OUT}	D _{OUT}	Word Read	Active
				L	н	D _{IN}	High-Z	Lower Byte Write	Active
		X ⁽¹⁾	L	н	L	High-Z	D _{IN}	Upper Byte Write	Active
				L	L	D _{IN}	D _{IN}	Word Write	Active

Functional Description

Note: 1. X means don't care (must be low or high state).

Recommended DC Operating Conditions⁽¹⁾⁽²⁾

Item	Symbol	Min	Max	Unit
Supply Voltage	PV _{CC}	2.7	3.3	V
Ground	PGND	0	0	V
Input High Voltage	V _{IH}	0.8 PV _{CC}	$PV_{CC} + 0.2^{(3)}$	V
Input Low Voltage	V _{IL}	-0.2 ⁽⁴⁾	0.2 PV _{CC}	V

Notes: 1. $T_A = -25^{\circ}C$ to $85^{\circ}C$, otherwise specified.

2. Overshoot and undershoot are sampled, not 100% tested.

3. Overshoot: PV_{CC} + 1.0V in case of pulse width \leq 20 ns.

4. Undershoot: -1.0V in case of pulse width \leq 20 ns.

Capacitance⁽¹⁾ (f = 1 MHz, $T_A = 25^{\circ}C$)

Item	Symbol	Test Condition	Min	Мах	Unit
Input Capacitance	C _{IN}	$V_{IN} = 0V$		8	pF
I/O Capacitance	C _{I/O}	$V_{IN} = 0V$		8	pF

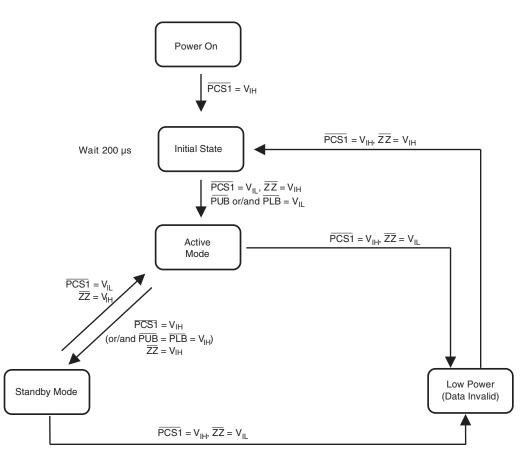
Note: 1. Capacitance is sampled, not 100% tested.

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Leakage Current	I _{LI}	$V_{IN} = PGND$ to PV_{CC}	-1		1	μA
Output Leakage Current	I _{LO}	$\overline{PCS1} = V_{IH}, \overline{ZZ} = V_{IH}, \overline{POE} = V_{IH} \text{ or } \overline{PWE} = V_{IL}, V_{I/O} = PGND \text{ to } PV_{CC}$	-1		1	μA
Average Operating Current	I _{CC1}	$\label{eq:cycle} \begin{array}{l} \hline Cycle \mbox{ time } = 1 \ \mu \mbox{s}, \ 100\% \ duty, \ \mbox{I}_{\ \mbox{I/O}} = 0 \ \mbox{mA}, \\ \hline PCS1 \ \le 0.2 \mbox{V}, \ \hline ZZ \ = \ \mbox{V}_{\ \mbox{IH}}, \ \ \mbox{V}_{\ \mbox{IN}} \ \le 0.2 \ \mbox{or} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		1	3	mA
	I _{CC2}				25	mA
Output Low Voltage	V _{OL}	I _{OL} = 0.5 mA			0.2 PV _{CC}	v
Output High Voltage	V _{OH}	I _{OH} = -0.5 mA	0.8 PV _{CC}			v
Standby Current (TTL)	I _{SB}	$\overline{PCS1} = V_{IH}, \overline{ZZ} = V_{IH}, \text{ other inputs} = V_{IH} \text{ or } V_{IL}$			0.3	mA
Standby Current (CMOS)	I _{SB1}	$\overline{PCS1} \ge PV_{CC} - 0.2V, \overline{ZZ} \ge PV_{CC} - 0.2V,$ other inputs = 0 ~ PV_{CC}			70	μA
Low Power Modes	I _{SB0}	$\overline{ZZ} \leq 0.2V$, other inputs = 0 ~ PV _{CC} , no refresh (DPD)			10	μA

DC and Operating Characteristics

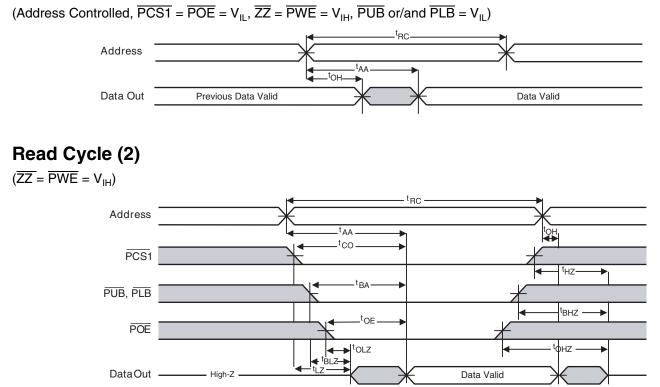
AC Characteristics (PV_{CC} = 2.7V – 3.3V, T_A = -25°C to 85°C)

			Speed	d Bins	
			70	ns	
	Parameter List	Symbol	Min	Мах	Unit
	Read Cycle Time	t _{RC}	70	40K	ns
	Address Access Time	t _{AA}		70	ns
	Chip Select to Output	t _{co}		70	ns
	Output Enable to Valid Output	t _{OE}		25	ns
	PUB, PLB Access Time	t _{BA}		70	ns
Read	Chip Select to Low-Z Output	t _{LZ}	10		ns
neau	PUB, PLB Enable to Low-Z Output	t _{BLZ}	10		ns
	Output Enable to Low-Z Output	t _{oLZ}	5		ns
	Chip Disable to High-Z Output	t _{HZ}	0	5	ns
	PUB, PLB Disable to High-Z Output	t _{BHZ}	0	5	ns
	Output Disable to High-Z Output	t _{OHZ}	0	5	ns
	Output Hold from Address Change	t _{OH}	5		ns
	Write Cycle Time	t _{wc}	70	40K	ns
	Chip Select to End of Write	t _{cw}	60		ns
	Address Set-up Time	t _{AS}	0		ns
	Address Valid to End of Write	t _{AW}	60		ns
	PUB, PLB Valid to End of Write	t _{BW}	60		ns
Write	Write Pulse Width	t _{WP}	50		ns
	Write Recovery Time	t _{WR}	0		ns
	Write to Output High-Z	t _{WHZ}	0	5	ns
	Data to Write Time Overlap	t _{DW}	20		ns
	Data Hold from Write Time	t _{DH}	0		ns
	End Write to Output Low-Z	t _{ow}	5		ns
	PCS1 High Pulse Width	t _{CP}	10		ns



Power Up Sequence

- 1. Apply Power.
- 2. Maintain stable power for a minimum of 200 μs with $\overline{PCS1}$ = V_{IH}

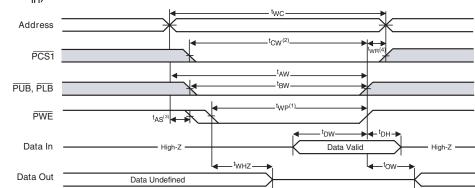

Standby Mode State Machines

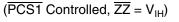
Standby Mode Characteristics

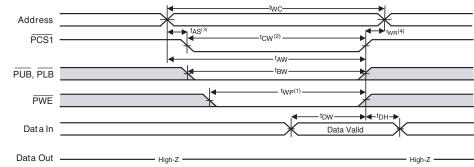
Mode	Memory Cell Data	Standby Current (µA)	Wait Time (µs)
Standby	Valid	70 (ISB1)	0
Low Power Modes	Invalid	10 (ISB0)	200

Read Cycle (1)

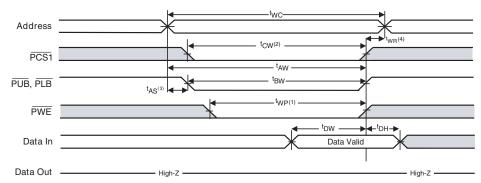
Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.


- 2. At any given temperature and voltage condition, t_{HZ} (max) is less than t_{LZ} (min) both for a given device and from device to device interconnection.
- 3. Do not access device with cycle timing shorter than t_{RC} (t_{WC}) for continuous periods > 40 μ s.

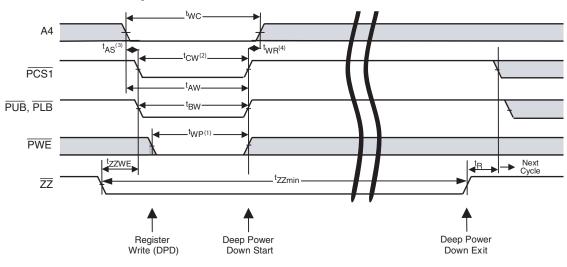



Write Cycle (1)

(\overline{PWE} Controlled, $\overline{ZZ} = V_{IH}$)


Write Cycle (2)

Write Cycle (3)


 $(\overline{PUB}, \overline{PLB} \text{ Controlled}, \overline{ZZ} = V_{IH})$

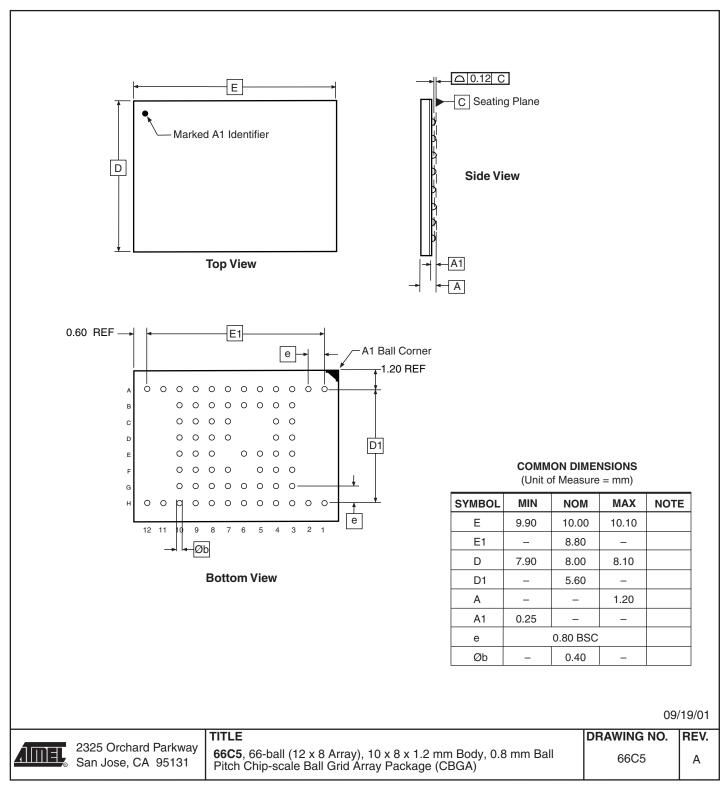
- Notes: 1. A write occurs during the overlap (t_{WP}) of low PCS1 and PWE. A write begins when PCS1 goes low and PWE goes low with asserting PUB or PLB for single byte operation or simultaneously asserting PUB and PLB for double byte operation. A write ends at the earliest transition when PCS1 goes high and PWE goes high. The t_{WP} is measured from the beginning of write to the end of write.
 - 2. t_{CW} is measured from the PCS1 going low to end of write.
 - 3. t_{AS} is measured from the address valid to the beginning of write.
 - 4. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as PCS1 or PWE going high.
 - 5. Do not access device with cycle timing shorter than t_{RC} (t_{WC}) for continuous periods > 40 µs.

30 AT52BC1661A(T) [Preliminary]

Deep Power-down Mode Entry/Exit

Parameter	Description	Min	Max	Units
t _{zzwe}	\overline{ZZ} low to Write Enable Low	0	1	μs
t _R (Deep Power-down Mode Only)	Operation Recovery Time		200	μs
t _{zzmin}	Low Power Mode Time	10		μs

Ordering Information


t _{ACC} (ns)	Voltage Range	Ordering Code	Flash Boot Block	PSRAM Size	Package	Operation Range
70	2.7V - 3.3V	AT52BC1661AT-70CI	Тор	8-Mbit	66C5	Extended (-25° to 85°C)
70	2.7V - 3.3V	AT52BC1661A-70CI	Bottom	8-Mbit	66C5	Extended (-25° to 85°C)

Package Type		
66C5	66-ball, Plastic Chip-scale Ball Grid Array Package (CBGA)	

32 AT52BC1661A(T) [Preliminary]

Packaging Information

66C5 – CBGA

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

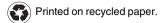
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2004. All rights reserved. Atmel[®], logo and combinations thereof, are registered trademarks, and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

