TL431 family Adjustable precision shunt regulator Rev. 3 — 5 November 2010 Product data sheet ### 1. **General description** Three-terminal shunt regulator family with an output voltage range between V_{ref} and 36 V, to be set by two external resistors. - The TL431xDBZR types feature an enhanced stability area with a very low load capacity requirement. - The TL431xFDT types offer an enhanced stability area and a higher ElectroMagnetic Interference (EMI) ruggedness, e.g. for Switch Mode Power Supply (SMPS) applications. - The TL431xSDT types are designed for standard requirements and linear applications. Table 1. **Product overview** | Reference voltage | Temperature ran | nge (T _{amb}) | | Pinning | |-------------------------------|-----------------|-------------------------|---------------|-------------------------------------| | tolerance (V _{ref}) | 0 to 70 °C | –40 to 85 °C | –40 to 125 °C | configuration (see <u>Table 5</u>) | | 2 % | TL431CDBZR | TL431IDBZR | TL431QDBZR | normal pinning | | | | | TL431FDT | normal pinning | | | | | TL431MFDT | mirrored pinning | | | | | TL431SDT | normal pinning | | | | | TL431MSDT | mirrored pinning | | 1 % | TL431ACDBZR | L431ACDBZR TL431AIDBZR | TL431AQDBZR | normal pinning | | | | | TL431AFDT | normal pinning | | | | | TL431AMFDT | mirrored pinning | | | | | TL431ASDT | normal pinning | | | | | TL431AMSDT | mirrored pinning | | 0.5 % | TL431BCDBZR | TL431BIDBZR | TL431BQDBZR | normal pinning | | | | | TL431BFDT | normal pinning | | | | | TL431BMFDT | mirrored pinning | | | | | TL431BSDT | normal pinning | | | | | TL431BMSDT | mirrored pinning | # 2. Features and benefits Programmable output voltage up to 36 V ■ Three different reference voltage tolerances: ◆ Standard grade: 2 % ◆ A-Grade: 1 %◆ B-Grade: 0.5 % Typical temperature drift: 6 mV (in a range of 0 °C up to 70 °C) Low output noise ■ Typical output impedance: 0.2 Ω Sink current capability: 1 mA to 100 mA ■ AEC-Q100 qualified (grade 1) # 3. Applications - Shunt regulator - Precision current limiter - Precision constant current sink - Isolated feedback loop for Switch Mode Power Supply (SMPS) # 4. Quick reference data Table 2. Quick reference data | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|-----------------------|---|-----------|------|------|------| | V_{KA} | cathode-anode voltage | | V_{ref} | - | 36 | V | | I _K | cathode current | | 1 | - | 100 | mA | | V _{ref} | reference voltage | $V_{KA} = V_{ref};$ $I_K = 10 \text{ mA}$ | | | | | | | Standard-Grade (2 %) | | 2440 | 2495 | 2550 | mV | | | A-Grade (1 %) | | 2470 | 2495 | 2520 | mV | | | B-Grade (0.5 %) | | 2483 | 2495 | 2507 | mV | # 5. Ordering information Table 3. Ordering information | Type number | Package | | | |-------------|---------|--|---------| | | Name | Description | Version | | TL431CDBZR | - | plastic surface-mounted package; 3 leads | SOT23 | | TL431IDBZR | | | | | TL431QDBZR | | | | | TL431FDT | | | | | TL431MFDT | | | | | TL431SDT | | | | | TL431MSDT | | | | | TL431ACDBZR | | | | | TL431AIDBZR | | | | | TL431AQDBZR | | | | | TL431AFDT | | | | | TL431AMFDT | | | | | TL431ASDT | | | | | TL431AMSDT | | | | | TL431BCDBZR | | | | | TL431BIDBZR | | | | | TL431BQDBZR | | | | | TL431BFDT | | | | | TL431BMFDT | | | | | TL431BSDT | | | | | TL431BMSDT | | | | # 6. Marking Table 4. Marking codes | Type number | Marking code ^[1] | Type number | Marking code ^[1] | |-------------|-----------------------------|-------------|-----------------------------| | TL431CDBZR | CA* | TL431ASDT | RL* | | TL431IDBZR | CB* | TL431AMSDT | LQ* | | TL431QDBZR | CC* | TL431BCDBZR | CG* | | TL431FDT | AR* | TL431BIDBZR | CH* | | TL431MFDT | AU* | TL431BQDBZR | CJ* | | TL431SDT | RM* | TL431BFDT | AT* | | TL431MSDT | LR* | TL431BMFDT | AW* | | TL431ACDBZR | CD* | TL431BSDT | MA* | | TL431AIDBZR | CE* | TL431BMSDT | MB* | | TL431AQDBZR | CF* | - | - | | TL431AFDT | AS* | - | - | | TL431AMFDT | AV* | - | - | ^{[1] * =} placeholder for manufacturing site code # 7. Functional diagram The TL431 family comprises a range of 3-terminal adjustable shunt regulators, with specified thermal stability over applicable automotive and commercial temperature ranges. The output voltage may be set to any value between V_{ref} (approximately 2.5 V) and 36 V with two external resistors (see Figure 8). These devices have a typical output impedance of 0.2 Ω . Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications like on-board regulation, adjustable power supplies and switching power supplies. # 8. Pinning information Table 5. **Pinning** Pin **Symbol Description** Simplified outline **Graphic symbol** Normal pinning: All types without MFDT and MSDT ending 1 cathode REF 2 REF reference 3 а anode 006aab355 Mirrored pinning: All types with MFDT and MSDT ending REF reference REF 2 cathode anode 3 а 006aab355 # 9. Limiting values **Table 6.** Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|---------------------------------------|------------------------------|--------------|------|------| | V_{KA} | cathode-anode voltage | | - | 37 | V | | I _K | cathode current | | -100 | 150 | mA | | I _{ref} | reference current | | -0.05 | 10 | mA | | P _{tot} | total power dissipation | $T_{amb} \leq 25 ^{\circ}C$ | <u>[1]</u> _ | 350 | mW | | | | | [2] - | 580 | mW | | | | | [3] _ | 950 | mW | | Tj | junction temperature | | - | 150 | °C | | T _{amb} | ambient temperature | | | | | | | TL431XCDBZR | | 0 | +70 | °C | | | TL431XIDBZR | | -40 | +85 | °C | | | TL431XQDBZR
TL431XFDT
TL431XSDT | | -40 | +125 | °C | | T _{stg} | storage temperature | | -65 | +150 | °C | ^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint. ^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for anode 1 cm². ^[3] Device mounted on a ceramic PCB, Al₂O₃, standard footprint. - (1) Ceramic PCB, Al₂O₃, standard footprint - (2) FR4 PCB, mounting pad for anode 1 cm² - (3) FR4 PCB, standard footprint Fig 2. Power derating curves Table 7. ESD maximum ratings $T_{amb} = 25$ °C unless otherwise specified. | Symbol | Parameter | Conditions | Min | Max | Unit | |-----------|---------------------------------|-----------------------------------|-----|-----|------| | V_{ESD} | electrostatic discharge voltage | MIL-STD-883
(human body model) | - | 4 | kV | # 10. Recommended operating conditions Table 8. Operating conditions | Symbol | Parameter | Conditions | Min | Max | Unit | |----------------|-----------------------|------------|-----------|-----|------| | V_{KA} | cathode-anode voltage | | V_{ref} | 36 | V | | I _K | cathode current | | 1 | 100 | mA | # 11. Thermal characteristics Table 9. Thermal characteristics | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |----------------------|--|-------------|-----|-----|-----|-----|------| | R _{th(j-a)} | thermal resistance from | in free air | [1] | - | - | 360 | K/W | | | junction to ambient | | [2] | - | - | 216 | K/W | | | | | [3] | - | - | 132 | K/W | | $R_{th(j-sp)}$ | thermal resistance from junction to solder point | | [4] | - | - | 50 | K/W | - [1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. - [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for anode 1 cm². - [3] Device mounted on a ceramic PCB, Al₂O₃, standard footprint. - [4] Soldering point of anode. # 12. Characteristics Table 10. Characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------------------|--|--|--------------|----------|------|------| | Standard-C | Grade (2 %): | | | | | | | TL431CDB | ZR; TL431IDBZR; TL431QD | BZR; TL431FDT; TL431MFDT; T | TL431SDT; TI | L431MSDT | | | | V_{ref} | reference voltage | $V_{KA} = V_{ref}$; $I_K = 10 \text{ mA}$ | 2440 | 2495 | 2550 | mV | | ΔV_{ref} | reference voltage variation | $V_{KA} = V_{ref}$; $I_K = 10 \text{ mA}$ | | | | | | | TL431CDBZR | $T_{amb} = 0 ^{\circ}C \text{ to } 70 ^{\circ}C$ | - | 6 | 16 | mV | | | TL431IDBZR | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$ | - | 14 | 34 | mV | | | TL431QDBZR TL431FDT TL431MFDT TL431SDT TL431MSDT | $T_{amb} = -40 ^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$ | | | | | | $\Delta V_{ref}/\Delta V_{KA}$ | reference voltage variation
to cathode-anode voltage
variation ratio | I _K = 10 mA | | | | | | | | ΔV_{KA} = 10 V to V_{ref} | - | -1.4 | -2.7 | mV/V | | | | ΔV_{KA} = 36 V to 10 V | - | -1 | -2 | mV/V | | I _{ref} | reference current | I_K = 10 mA;
R1 = 10 kΩ; R2 = open | - | 2 | 4 | μΑ | | ΔI_{ref} | reference current variation | I_K = 10 mA;
R1 = 10 kΩ; R2 = open | | | | | | | TL431CDBZR | $T_{amb} = 0 ^{\circ}C$ to 70 $^{\circ}C$ | - | 0.4 | 1.2 | μΑ | | | TL431IDBZR | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$ | - | 0.8 | 2.5 | μΑ | | | TL431QDBZR TL431FDT TL431MFDT TL431SDT TL431MSDT | $T_{amb} = -40 ^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$ | | | | | | I _{K(min)} | minimum cathode current | $V_{KA} = V_{ref}$ | - | 0.4 | 1 | mA | Table 10. Characteristics ... continued | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--|---|--|---------------------|------------|-------|------| | I _{off} | off-state current | $V_{KA} = 36 \text{ V}; V_{ref} = 0$ | - | 0.1 | 1 | μΑ | | Z _{KA} | dynamic cathode-anode impedance | $I_K = 1$ mA to 100 mA;
$V_{KA} = V_{ref}$; f < 1 kHz | - | 0.2 | 0.5 | Ω | | A-Grade (1
TL431ACD | • | AQDBZR; TL431AFDT; TL431AM | FDT; TL431 <i>A</i> | SDT; TL431 | AMSDT | | | V _{ref} | reference voltage | $V_{KA} = V_{ref}$; $I_K = 10 \text{ mA}$ | 2470 | 2495 | 2520 | mV | | ΔV_{ref} | reference voltage variation | $V_{KA} = V_{ref}$; $I_K = 10 \text{ mA}$ | | | | | | | TL431ACDBZR | T _{amb} = 0 °C to 70 °C | - | 6 | 16 | mV | | | TL431AIDBZR | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$ | - | 14 | 34 | mV | | | TL431AQDBZR TL431AFDT TL431AMFDT TL431ASDT TL431AMSDT | T _{amb} = -40 °C to 125 °C | | | | | | $\Delta V_{\text{ref}}\!/\!\Delta V_{\text{KA}}$ | reference voltage variation | I _K = 10 mA | | | | | | | to cathode-anode voltage variation ratio | $\Delta V_{KA} = 10 \text{ V to } V_{ref}$ | - | -1.4 | -2.7 | mV/V | | | variation ratio | ΔV_{KA} = 36 V to 10 V | - | -1 | -2 | mV/V | | I _{ref} | reference current | $I_K = 10 \text{ mA};$
R1 = 10 k\O; R2 = open | - | 2 | 4 | μΑ | | ΔI_{ref} | reference current variation | $I_K = 10 \text{ mA};$
R1 = 10 k Ω ; R2 = open | | | | | | | TL431ACDBZR | $T_{amb} = 0 ^{\circ}C$ to 70 $^{\circ}C$ | - | 0.4 | 1.2 | μΑ | | | TL431AIDBZR | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$ | - | 0.8 | 2.5 | μΑ | | | TL431AQDBZR TL431AFDT TL431AMFDT TL431ASDT TL431AMSDT | T _{amb} = -40 °C to 125 °C | | | | | | I _{K(min)} | minimum cathode current | $V_{KA} = V_{ref}$ | | | | | | | TL431ACDBZR | $T_{amb} = 0 ^{\circ}C \text{ to } 70 ^{\circ}C$ | - | 0.4 | 0.6 | mA | | | TL431AIDBZR | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$ | - | 0.4 | 0.7 | mA | | | TL431AQDBZR TL431AFDT TL431AMFDT TL431ASDT TL431AMSDT | T _{amb} = -40 °C to 125 °C | | | | | | I _{off} | off-state current | $V_{KA} = 36 \text{ V}; V_{ref} = 0$ | - | 0.1 | 0.5 | μΑ | | Z _{KA} | dynamic cathode-anode impedance | $I_K = 1$ mA to 100 mA;
$V_{KA} = V_{ref}$; f < 1 kHz | - | 0.2 | 0.5 | Ω | Table 10. Characteristics ... continued | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------------------|---|---|-------------|-------------|---------|------| | B-Grade (0 | | | | | | | | TL431BCD | BZR; TL431BIDBZR; TL431 | BQDBZR; TL431BFDT; TL431B | MFDT; TL431 | IBSDT; TL43 | 31BMSDT | | | V_{ref} | reference voltage | $V_{KA} = V_{ref}$; $I_K = 10 \text{ mA}$ | 2483 | 2495 | 2507 | mV | | ΔV_{ref} | reference voltage variation | $V_{KA} = V_{ref}$; $I_K = 10 \text{ mA}$ | | | | | | | TL431BCDBZR | $T_{amb} = 0 ^{\circ}C$ to 70 $^{\circ}C$ | - | 6 | 16 | mV | | | TL431BIDBZR | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$ | - | 14 | 34 | mV | | | TL431BQDBZR TL431BFDT TL431BMFDT TL431BSDT TL431BMSDT | $T_{amb} = -40 ^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$ | | | | | | $\Delta V_{ref}/\Delta V_{KA}$ | reference voltage variation | I _K = 10 mA | | | | | | | to cathode-anode voltage variation ratio | ΔV_{KA} = 10 V to V_{ref} | - | -1.4 | -2.7 | mV/V | | | variation ratio | ΔV_{KA} = 36 V to 10 V | - | -1 | -2 | mV/V | | I _{ref} | reference current | I_K = 10 mA;
R1 = 10 kΩ; R2 = open | - | 2 | 4 | μΑ | | ΔI_{ref} | reference current variation | I_K = 10 mA;
R1 = 10 kΩ; R2 = open | | | | | | | TL431BCDBZR | $T_{amb} = 0 ^{\circ}C$ to 70 $^{\circ}C$ | - | 0.4 | 1.2 | μΑ | | | TL431BIDBZR | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$ | - | 8.0 | 2.5 | μΑ | | | TL431BQDBZR TL431BFDT TL431BMFDT TL431BSDT TL431BMSDT | $T_{amb} = -40 ^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$ | | | | | | I _{K(min)} | minimum cathode current | $V_{KA} = V_{ref}$ | | | | | | | TL431BCDBZR | $T_{amb} = 0 ^{\circ}C$ to 70 $^{\circ}C$ | - | 0.4 | 0.6 | mA | | | TL431BIDBZR | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$ | - | 0.4 | 0.7 | mA | | | TL431BQDBZR TL431BFDT TL431BMFDT TL431BSDT TL431BMSDT | $T_{amb} = -40$ °C to 125 °C | | | | | | I _{off} | off-state current | $V_{KA} = 36 \text{ V}; V_{ref} = 0$ | - | 0.1 | 0.5 | μΑ | | Z _{KA} | dynamic cathode-anode impedance | $I_K = 1 \text{ mA to } 100 \text{ mA};$
$V_{KA} = V_{ref}; f < 1 \text{ kHz}$ | - | 0.2 | 0.5 | Ω | $I_K = 10 \text{ mA}; V_{KA} = V_{ref}$ Fig 3. Reference voltage as a function of ambient temperature; typical values $V_{KA} = V_{ref}; T_{amb} = 25 \, ^{\circ}C$ Fig 4. Cathode current as a function of cathode-anode voltage; typical values 006aab573 $I_K = 10 \text{ mA}; V_{KA} = V_{ref}$ Fig 5. Test circuit to Figure 3 and Figure 4 $I_K = 10 \text{ mA}$; R1 = 10 k Ω ; R2 = open Fig 6. Reference current as a function of ambient temperature; typical values Fig 7. Reference voltage variation as a function of cathode-anode voltage; typical values 006aab576 $$V_{KA} = V_{ref} \times \left(1 + \frac{RI}{R2}\right) + I_{ref} \times RI$$ Fig 8. Test circuit to Figure 6 and Figure 7 Fig 9. Off-state current as a function of ambient temperature; typical values Fig 10. Off-state current as a function of ambient temperature; test circuit T_{amb} = 25 °C - (1) Input - (2) Output Fig 11. All types except TL431XFDT and TL431XSDT: Input voltage and output voltage as a function of time; typical values T_{amb} = 25 °C - (1) Input - (2) Output Fig 12. TL431XFDT: Input voltage and output voltage as a function of time; typical values $T_{amb} = 25 \, ^{\circ}C$ - (1) Input - (2) Output Fig 13. TL431XSDT: Input voltage and output voltage as a function of time; typical values $T_{amb} = 25 \, ^{\circ}C$ Fig 14. Test circuit to Figure 11, Figure 12 and Figure 13 $I_K = 10 \text{ mA}$; $T_{amb} = 25 \, ^{\circ}\text{C}$ Fig 15. All types except TL431XFDT and TL431XSDT: Voltage amplification as a function of frequency; typical values I_K = 10 mA; T_{amb} = 25 °C Fig 16. TL431XFDT: Voltage amplification as a function of frequency; typical values $I_K = 10 \text{ mA}; T_{amb} = 25 \,^{\circ}\text{C}$ Fig 17. TL431XSDT: Voltage amplification as a function of frequency; typical values I_K = 10 mA; T_{amb} = 25 °C Fig 18. Test circuit to Figure 15, Figure 16 and Figure 17 Fig 19. All types except TL431XFDT and TL431XSDT: Dynamic cathode-anode impedance as a function of frequency; typical values $I_K = 10 \text{ mA}; T_{amb} = 25 \text{ }^{\circ}\text{C}$ Fig 20. TL431XFDT: Dynamic cathode-anode impedance as a function of frequency; typical values $I_K = 10 \text{ mA}$; $T_{amb} = 25 \,^{\circ}\text{C}$ Fig 21. TL431XSDT: Dynamic cathode-anode impedance as a function of frequency; typical values $I_K = 10$ mA; $T_{amb} = 25$ °C Fig 22. Test circuit to Figure 19, Figure 20 and Figure 21 $T_{amb} = 25 \, ^{\circ}C$ (1) $V_{KA} = V_{ref}$ $V_{KA} = 5 \text{ V: no oscillation}$ $V_{KA} = 10 \text{ V: no oscillation}$ $V_{KA} = 15 \text{ V: no oscillation}$ Fig 23. All types except TL431XFDT and TL431XSDT: Cathode current as a function of load capacitance; typical values $V_{KA} = V_{ref}$ $T_{amb} = 25 \, ^{\circ}C$ Fig 24. Test circuit (1) to Figure 23 V_{KA} > 5 V: stable operation $T_{amb} = 25 \, ^{\circ}C$ Fig 25. Test circuit (2) to Figure 23 $T_{amb} = 25 \, ^{\circ}C$ (1) $V_{KA} = V_{ref}$ $V_{KA} = 5 \text{ V: no oscillation}$ V_{KA} = 10 V: no oscillation V_{KA} = 15 V: no oscillation Fig 26. TL431XFDT: Cathode current as a function of load capacitance; typical values $V_{KA} = V_{ref}$ $T_{amb} = 25 \, ^{\circ}C$ Fig 27. Test circuit (1) to Figure 26 V_{KA} > 5 V: stable operation T_{amb} = 25 °C Fig 28. Test circuit (2) to Figure 26 T_{amb} = 25 °C - (1) $V_{KA} = V_{ref}$ - (2) $V_{KA} = 5 V$ V_{KA} = 10 V: no oscillation $V_{KA} = 15 \text{ V: no oscillation}$ Fig 29. TL431XSDT: Cathode current as a function of load capacitance; typical values $V_{KA} = V_{ref}$ $T_{amb} = 25 \, ^{\circ}C$ Fig 30. Test circuit (1) to Figure 29 $V_{KA} = 5 V$ V_{KA} > 10 V: stable operation $T_{amb} = 25 \, ^{\circ}C$ Fig 31. Test circuit (2) to Figure 29 # 13. Application information 006aab592 $$V_{OUT} = \left(I + \frac{RI}{R2}\right) \times V_{rej}$$ Fig 32. Shunt regulator 006aab593 $$V_{OUT} = \left(I + \frac{RI}{R2}\right) \times V_{ref}; \ V_{OUT(min)} = V_{ref} + V_{be}$$ Fig 33. Series pass regulator 006aab594 $$\begin{split} V_{th} &= V_{ref} \\ V_{IN} &< V_{ref} \Longrightarrow V_{OUT} > 0 \\ V_{IN} &> V_{ref} \Longrightarrow V_{OUT} \cong 2V \end{split}$$ Fig 34. Single-supply comparator with temperature-compensated threshold $$I_{OUT} = \frac{V_{ref}}{R_{CL}}$$ # Fig 35. Constant current source 006aab596 $$V_{OUT} = \left(I + \frac{RI}{R2}\right) \times V_{ref}$$ Fig 36. High-current shunt regulator $I_{SINK} = \frac{V_{ref}}{R_S}$ Fig 37. Constant current sink # 14. Test information # 14.1 Quality information This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard *Q100 - Failure mechanism based stress test qualification for integrated circuits*, and is suitable for use in automotive applications. # 15. Package outline # 16. Packing information Table 11. Packing methods The indicated -xxx are the last three digits of the 12NC ordering code.[1] | Type number | Package | Description | Packing | quantity | |-------------|---------|--------------------------------|---------|----------| | | | | 3000 | 10000 | | TL431CDBZR | SOT23 | 4 mm pitch, 8 mm tape and reel | -215 | -235 | | TL431IDBZR | | | | | | TL431QDBZR | | | | | | TL431FDT | | | | | | TL431MFDT | | | | | | TL431SDT | | | | | | TL431MSDT | | | | | | TL431ACDBZR | | | | | | TL431AIDBZR | | | | | | TL431AQDBZR | | | | | | TL431AFDT | | | | | | TL431AMFDT | | | | | | TL431ASDT | | | | | | TL431AMSDT | | | | | | TL431BCDBZR | | | | | | TL431BIDBZR | | | | | | TL431BQDBZR | | | | | | TL431BFDT | | | | | | TL431BMFDT | | | | | | TL431BSDT | | | | | | TL431BMSDT | | | | | ^[1] For further information and the availability of packing methods, see <u>Section 20</u>. # 17. Soldering # 18. Revision history # Table 12. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | | |----------------|---|--------------------|---------------|-------------|--| | TL431_FAM_3 | 20101105 | Product data sheet | - | TL431_FAM_2 | | | Modifications: | Type numbers TL431FDT, TL431MFDT, TL431AFDT, TL431AMFDT, TL431BFDT
and TL431BMFDT added | | | | | | | Section 12 "Characteristics": added Figure 12, Figure 16, Figure 20 and Figure 26 | | | | | | | Section 13 "Application information": added Figure 38 | | | | | | | Section 19 "Legal information": updated | | | | | | TL431_FAM_2 | 20100120 | Product data sheet | - | TL431_FAM_1 | | | TL431_FAM_1 | 20090806 | Product data sheet | - | - | | # 19. Legal information ### 19.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. ### 19.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. **Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. ### 19.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. TL431_FAM NXP Semiconductors TL431 family # Adjustable precision shunt regulator **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. ### 19.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. # 20. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com # 21. Contents | 1 | General description | |------|------------------------------------| | 2 | Features and benefits 2 | | 3 | Applications | | 4 | Quick reference data 2 | | 5 | Ordering information 3 | | 6 | Marking 4 | | 7 | Functional diagram 4 | | 8 | Pinning information 5 | | 9 | Limiting values 5 | | 10 | Recommended operating conditions 6 | | 11 | Thermal characteristics 7 | | 12 | Characteristics 7 | | 13 | Application information 19 | | 14 | Test information | | 14.1 | Quality information 21 | | 15 | Package outline | | 16 | Packing information 23 | | 17 | Soldering | | 18 | Revision history | | 19 | Legal information | | 19.1 | Data sheet status 26 | | 19.2 | Definitions | | 19.3 | Disclaimers | | 19.4 | Trademarks | | 20 | Contact information | | 24 | Contents | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.