FEATURES:

- $8 \mathrm{~K} \times 8 \mathrm{~K}$ non-blocking switching at $16.384 \mathrm{Mb} / \mathrm{s}$
- 32 serial input and output streams
- Accepts data streams at $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$
- Per-channel Variable Delay Mode for low-latency applications
- Per-channel Constant Delay Mode for frame integrity applications
- Automatic identification of ST-BUS ${ }^{\circledR}$ and GCl bus interfaces
- Automatic frame offset delay measurement
- Per-stream frame delay offset programming
- Per-channel high-impedance output control
- Direct microprocessor access to all internal memories
- Memory block programming for quick setup
- IEEE-1149.1 (JTAG) Test Port
- 3.3V Power Supply
- Available in 144 -pin (13mm x 13mm) Plastic Ball Grid Array (PBGA) and 144-pin ($20 \mathrm{~mm} \times 20 \mathrm{~mm}$) Thin Quad Flatpack (TQFP) packages
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION:

The IDT72V71650 has a non-blocking switch capacity of $1,024 \times 1,024$ channels at $2.048 \mathrm{Mb} / \mathrm{s}, 2,048 \times 2,048$ channels at $4.096 \mathrm{Mb} / \mathrm{s}$, and $4,096 \mathrm{x}$ 4,096 channels at $8.192 \mathrm{Mb} /$ s and $8,192 \times 8,192$ channels at $16.384 \mathrm{Mb} / \mathrm{s}$. With 32 inputs and 32 outputs, programmable per stream control, and a variety of operating modes the IDT72V71650 is designed for the TDM time slot interchange function in either voice or data applications.
Some of the main features of the IDT72V71650 are low power 3.3 Volt operation, automatic ST-BUS®/GCI sensing, memory block programming, simple microprocessor interface, one cycle direct internal memory accesses, JTAGTestAccess Port(TAP) and perstream programmable input offsetdelay, variable or constantthroughput modes, output enable and processor mode.

The IDT72V71650 is capable of switching up to $8,192 \times 8,192$ channels without blocking. Designed to switch $64 \mathrm{Kbit} / \mathrm{PCM}$ orN $\mathrm{x} 64 \mathrm{Kbit} / \mathrm{s}$ data, the device maintains frame integrity in data applications and minimizes throughput delay for voice applications on a per-channel basis.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

PBGA: 1 mm pitch, $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ (BB144-1, order code: BB)
TOP VIEW
NOTE:

1. NC $=$ No Connect

PIN CONFIGURATIONS (CONTINUED)

TQFP: 0.50 mm pitch, $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ (DA144-1, order code: DA)
TOP VIEW

NOTE:

1. NC = No Connect

PIN DESCRIPTION

SYMBOL	NAME	I/O	DESCRIPTION
A0-14	Address 0 to 14	1	These address lines access all internal memories.
CLK	Clock	1	Serial clock for shifting datain/out on the serial data streams. Depending upon the value programmed, this input accepts a 4.096, 8.192 or 16.384 MHz clock. See the Control Register bits on Table 5 for the values.
$\overline{\mathrm{CS}}$	ChipSelect	1	This active LOW input is used by a microprocessor to activate the microprocessor port of IDT72V71650.
D0-15	Data Bus 0-15	I/O	These pins are the data bits of the microprocessor port.
$\overline{\text { DS }}$	DataStrobe	1	This active LOW input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations and enables the data bus lines (D0-D15).
$\overline{\text { DTA }}$	Data Transfer Acknowledgment	0	Indicates that a data bus transfer is complete. When the bus cycle ends, this pin drives HIGH and then goes high-impedance, allowing for faster bus cycles with a weaker pull-up resistor. A pull-up resistor is required to hold a HIGH level when the pin is in high-impedance.
FE/HCLK	Frame Evaluation/ HCLK Clock	1	When the WFPS pin is LOW, this pin is the frame measurement input. When the WFPS pin is HIGH, the HCLK (4.096 MHz clock) is required for frame alignment in the wide frame pulse mode (WFPS). ${ }^{\text {(1) }}$
FP	FramePulse	1	When the WFPS pin is LOW, this inputaccepts and automatically identifies frame synchronization signals formatted according to ST-BUS ${ }^{\circledR}$ and GCI specifications. When pinWFPS is HIGH, this pin accepts a negative frame pulse, which conforms to the WFPS format.
GND	Ground		Ground Rail.
ODE	OutputDrive Enable	I	This is the output enable control forthe TX serial outputs. When the ODE inputis LOW andthe OutputStand By bitofthe Control RegisterisLOW, all TX outputs are in ahigh-impedance state. Ifthis inputis HIGH, the TX output drivers are enabled. However, eachchannel may still be putintoa high-impedance state by usingthe per-channel control bitintheConnection Memory.
RESET	Device Reset	1	This input puts the IDT72V71650 into a reset state that clears the device internal counters, registers and brings TX0-31 and D0-D15 into a high-impedance state. The $\overline{\text { RESET }}$ pin must be held LOW for a minimum of 20 ns to properly reset the device.
R/W	Read/Write	1	This input controls the direction of the data bus lines (D0-D15) during a microprocessor access.
RX0-31	DataStream	1	Serial data input stream. These streams may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, or $16.384 \mathrm{Mb} / \mathrm{s}$, depending upon the value programmed in the Control Register.
TCK	TestClock	1	Provides the clock to the JTAG testlogic.
TDI	Test Serial Data In	1	JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by an internal pull-up when not driven.
TDO	TestSerial Data Out	0	JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high-impedance state when JTAG scan is not enabled.
TMS	TestModeSelect	1	JTAG signal that controls the state transitions of the TAP controller. This pin is pulled HIGH by an internal pull-up when not driven.
$\overline{\text { TRST }}$	TestReset	1	Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin is pulled by an internal pull-up when not driven. This pin should be pulsed LOW on power-up, or held LOW, to ensure that the IDT72V71650 is in the normal functional mode.
TX0-15	TX Output 0 to 15 (Three-state Outputs)	0	Serial data output stream. These streams may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, or $16.384 \mathrm{Mb} / \mathrm{s}$, depending upon the value programmed in the Control Register.
$\begin{array}{\|l\|} \hline \text { TX16-31/ } \\ \text { OEI0-15 } \end{array}$	TX Output 16 to 31/ OutputEnable Indication 0 to 15 (Three-StateOutputs)	0	When all 32 outputs streams are selected via Control Register, these pins are the outputstreams TX16 to TX31 and may operate at a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, or $16.384 \mathrm{Mb} / \mathrm{s}$. When output enable function is selected, these pins reflect the active orhigh-impedance status for the corresponding outputstream OEI0-31.
Vcc	Vcc		+3.3 Volt Power Supply.
WFPS	Wide Frame Pulse Select	1	When 1, enables the wide frame pulse (WFPS) Frame Alignment interface. When 0, the device operates in ST-BUS ${ }^{\circledR} /$ GCImode. ${ }^{(2)}$

NOTES:

1. For compatibility with the IDT72V73273/63 device, this pin should be logic High.
2. For compatibility with the IDT72V73273/63 device, this pin should be logic Low.

DESCRIPTION (CONTINUED)

The 32 serial input streams (RX) of the IDT72V71650 can run up to $16.384 \mathrm{Mb} / \mathrm{s}$ allowing 256 channels per 125μ s frame. The data rates on the output streams (TX) are identical to those on the input streams (RX).

Withtwo main operating modes, ProcessorModeandConnectionMode, the IDT72V71650 can easily switch data from incoming serial streams (Data Memory) or from the controlling microprocessorviaConnection Memory. As control and status information is critical in datatransmission, the ProcessorMode is especially useful when there are multiple devicessharing the input and output streams.

With data coming from multiple sources and through different paths, data entering the device is often delayed. To handlethis problem, the IDT72V71650 hasaFrame Evaluationfeature to allow individual streams to be offsetfrom the frame pulse in half clock-cycle intervals up to +7.5 clock cycles.

The IDT72V71650 also provides a JTAG test access port, memory block programming, a simple microprocessorinterface andautomaticST-BUS ${ }^{\circledR} / \mathrm{GCl}$ sensing to shorten setup time, aid in debugging and ease use of the device withoutsacrificing capabilities.

FUNCTIONAL DESCRIPTION

DATA AND CONNECTION MEMORY

All data that comes in through the RXinputs go through a serial-to-parallel conversion before being stored into internal Data Memory. The 8 KHz frame pulse (FP) is used to mark the 125μ s frame boundaries and to sequentially address the input channels in Data Memory.

Dataoutputonthe TX streams may come from either the serial inputstreams (DataMemory) orfrom the microprocessor (ConnectionMemory). In the case that RXinputdataisto beoutput, the addresses in ConnectionMemoryareused to specify a stream and channel of the input. The Connection Memory is setup in such a way that each location corresponds to an output channel for each particularstream. Inthatway, morethan onechannel can outputthe same data. InProcessorMode, the microprocessor writes datatothe Connection Memory locations corresponding tothe stream and channel thatisto be output. The lower half (8leastsignificantbits) oftheConnectionMemory is outputeveryframe until the microprocessor changes the data or mode of the channel. By using this Processor Mode capability, the microprocessor can access input and output time-slots on a per-channel basis.

The two mostsignificantbits of the Connection Memory are used to control the per-channel mode ofthe outputstreams. Specifically, the MOD1-0bits are used to selectProcessorMode, ConstantorVariabledelay Mode, and the highimpedance state of outputdrivers. IftheMOD1-0 bits are setto 1-1 accordingly, only that particular output channel (8 bits) will be in the high-impedance state. If however, the ODE inputpinis LOW andthe Output Standby Bitinthe Control Register is LOW, all of the outputs will be in a high-impedance state even if a particular channel in Connection Memory has enabled the output for that channel. Inotherwords, theODEpin and OutputStand By control bitare master output enables for the device (See Table 3).

SERIAL DATA INTERFACE TIMING

When a $16.384 \mathrm{Mb} /$ s serial data rate is required, the master clock frequency will be running at 16.384 MHz resulting in a single-bit per clock. For all other cases, $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}$, and $8.192 \mathrm{Mb} / \mathrm{s}$, the masterclock frequency will be twice the data rate on the serial streams, resulting in two clocks perbit. Use Table 5 to determine clock speed and the DR1-0 bits in the Control Registerto
setup the device. The IDT72V71650 provides two different interface timing modes, ST-BUS ${ }^{\circledR}$ orGCI. The IDT72V71650 automatically detects the presence of an input frame pulse and identifies it as either ST-BUS ${ }^{\oplus}$ or GCl .
InST-BUS ${ }^{\circledR}$, when running at 16.384 MHz , datais clocked out on the falling edge and is clocked in on the subsequent rising-edge. At all other data rates, there are two clock cycles perbitand every second falling edge of the master clock marks a bitboundary and the data is clocked in onthe rising edge of CLK, three quarters of the way into the bit cell. See Figure 13 for timing.
In GCl format, when running at 16.384 MHz , data is clocked out on the rising edge and is clocked in on the subsequent falling edge. At all other data rates, there are two clock cycles perbit and every second rising edge of the master clock marks the bit boundary and data is clocked in on the falling edge of CLK at three quarters of the way into the bit cell. See Figure 14 for timing.

INPUT FRAME OFFSET SELECTION

Input frame offset selection allows the channel alignment of individual input streamsto beoffsetwith respecttotheoutputstreamchannelalignment. Although all input data comes in at the same speed, delays can be caused by variable path serial backplanes and variable path lengths which may be implemented in large centralized and distributed switching systems. Because data is often delayed, this feature is useful in compensating for the skew between input streams.
Each inputstream can have its own delay offset value by programming the frame inputoffsetregisters(FOR, Table8). The maximumallowableskewis +7.5 master clock (CLK) periods forward with a resolution of $1 / 2$ clock period, see Table 9. The output frame cannot be adjusted.

SERIAL INPUT FRAME ALIGNMENT EVALUATION

The IDT72V71650 provides the Frame Evaluation input to determine different datainput delays with respect tothe frame pulse FP. A measurement cycle is started by setting the StartFrame Evaluation bit of the Control Register LOW for atleastone frame. Whenthe Start FrameEvaluationbitintheControl RegisterischangedfromLOWtoHIGH, the evaluationstarts. Twoframes later, the Complete Frame Evaluation bit of the Frame Alignment Registerchanges from LOW to HIGHto signal thata a valid offsetmeasurement is ready to be read frombits 0 to 11 of the Frame Alignment Register. The Start Frame Evaluation bit must be set to zero before a new measurement cycle is started.

InST-BUS ${ }^{\oplus}$ mode, the falling edge of the framemeasurementsignal(Frame Evaluation) is evaluated against the falling edge of the ST-BUS ${ }^{\circledR}$ frame pulse. In GCImode, the rising edge of Frame Evaluation is evaluated againstthe rising edge of the GCI frame pulse. See Table 7 and Figure 1 for the description of the Frame Alignment Register.

MEMORY BLOCK PROGRAMMING

The IDT72V71650 provides users with the capability of initializing the entire Connection Memory block in two frames. To set bits 14 and 15 of every Connection Memory location, first program the desired pattern in the Block Programming DataBits (BPD1-0), located inbits 7 and 8 oftheControl Register.
The block programming mode is enabled by setting the Memory Block ProgrambitoftheControl RegisterHIGH. WhentheBlockProgramming Enable bit of the Control Register is setto HIGH, the Block Programming Data will be loaded intothe bits 14 and 15 of every Connection Memory location. The other Connection Memorybits (bit0to bit 13) areloaded withzeros. Whenthememory block programming is complete, the device resets the Block Programming Enable, BlockProgrammingData 1-0 andMemory BlockProgrambits tozero.

DELAY THROUGH THE IDT72V71650

The switching of informationfrom the input serial streams to the output serial streams results in a throughput delay. The device can be programmed to performtime-slotinterchangefunctionswith differentthroughput delay capabilities on a per-channel basis. Forvoice applications, variable throughput delay is bestasitensures minimum delay between inputand output data. In wideband data applications, constantthroughputdelay is bestas the frame integrity of the information is maintained through the switch.

The delay throughthe device varies according tothe type of throughput delay selected in the MOD bits of the Connection Memory.

VARIABLE DELAY MODE (MOD1-0 = 0-0)

In this mode, the delay is dependent only on the combination of source and destination channels and is independent of input and output streams. The minimum delay achievable in the IDT72V71650 is threetime-slots. If the input channel data is switched tothe sameoutputchannel (channel n, framep), it will be output in the following frame (channeln, frame $p+1$). The same is true if the input channel n is switched to output channel $n+1$ or $n+2$. If the input channel n is switched to outputchannel $n+3, n+4, \ldots$, the new output data will appear in the same frame. Table 2 shows the possible delays for the IDT72V71650 in Variable Delay mode.

CONSTANT DELAY MODE (MOD1-0 = 0-1)

Inthis mode, frame integrity is maintained in all switching configurations by making use of a multiple datamemory buffer. Inputchannel data is written into the data memory buffers during frame n will be read out during frame $n+2$. In theIDT72V71650, the minimumthroughputdelay achievable inConstantDelay mode will be one frame plus one channel. See Table 1.

MICROPROCESSORINTERFACE

The IDT72V71650's microprocessor interface looks like a standard RAM interface to improve integration into a system. With a 15-bit address bus and a 16-bit databus, reads and writes are mapped directly into Data and Connection Memories and require only one clock cycle to access. By allowing the internal memories to be randomly accessed in onecycle, the controllingmicroprocessor has more time to manage other peripheral devices and can more easily and quickly gather information and setup the switch paths. Table 4 shows the mapping of the addresses into internal memory blocks.

MEMORYMAPPING

Theaddressbus onthe microprocessor interface selectsthe internal registers andmemories of the IDT72V71650.

Thetwomostsignificantbits ofthe addressselectbetweenthe registers, Data Memory, and ConnectionMemory. IfA14 andA13areHIGH,A12-A0are used to address the Data Memory. If A14 is HIGH and A13 is LOW, A12-A0 are used to address Connection Memory. If A14 is LOW and A13 is HIGHA12-A0 are usedtoselecttheControl Register, Frame AlignmentRegister, and FrameOffset Registers. See Table 4 for mappings.

Asexplained intheSerial Data InterfaceTiming andSwitching Configurations sections, after system power-up, the Control Register should be programmed immediately to establishthe desired switching configuration.

The datainthe Control Registerconsists ofthe Memory BlockProgramming bit, the Block Programming Data bits, the Begin Block Programming Enable, theOutputStandBy, StartFrameEvaluation, OutputEnable Indication, and Data Rate Selectbits. As explained inthe Memory Block Programming section, the Block Programming Enable begins the programming if the Memory Block Program bitis enabled. This allows the entireConnection Memory block to be programmed withtheBlockProgramming Databits. IftheODEpinisLOW, the OutputStand By bitenables (ifHIGH) ordisables (ifLOW) all TX outputdrivers. IftheODEpinisHIGH, theOutputStandBybitisignored andall TXoutputdrivers are enabled.

SOFTWARE RESET

The Software Reset serves the same function as the hardware reset. As with the hard reset, the Software Reset must also be set HIGH for 20 ns before bringingtheSoftwareResetLOWagainfornormal operation. OncetheSoftware Reset is LOW, internal registers and other memories may be read or written. During Software Reset, the microprocessor port is still able to read from all internal memories. The only write operation allowed during a Software Reset istotheSoftwareResetbitintheControl RegistertocompletetheSoftware Reset.

CONNECTIONMEMORY CONTROL

If the ODE pin and the Output Stand By bitare LOW, all output channels will be in three-state. See Table 3 for detail.

IfMOD1-0 of the ConnectionMemory is 1-0 accordingly, the output channel will be in Processor Mode. In this case the lower eight bits of the Connection Memory are output each frame until the MOD1-0 bits are changed. If MOD
$1-0$ of the Connection Memory are 0-1 accordingly, the channel will be in Constant Delay Mode and bits 12-0 are used to address a location in Data Memory. If MOD1-0 of the Connection Memory are 0-0, the channel will be in Variable Delay Mode and bits 12-0 are used to address a location in Data Memory. If MOD 1-0 of the Connection Memory are 1-1, the channel will be in High-Impedance mode and that channel will be in three-state.

OUTPUT ENABLE INDICATION

TheIDT72V71650hasthe capabilityto indicate the state oftheoutputs (active) orthree-state) by enabling the Output Enable Indication inthe Control Register. In the Output Enable Indication mode however, only half of the output streams are available. If this same capability is desired with all 32 streams, this can be accomplished by using two IDT72V71650 or one IDT72V71660 devices. In onedevice, the All OutputEnablebitissettoa one while in theotherthe All Output Enable is set to zero. In this way, one device acts as the switch and the other asathree-statecontrol device, see Figure4. ItisimportanttonoteiftheTSIdevice is programmed for All Output Enable and the Output Enable Indication is also set, the devicewill beinthe All OutputEnablemodenotOutputEnable Indication.

INITIALIZATION OF THE IDT72V71650

After power up, the state of the Connection Memory is unknown. As such, theoutputs should beputinhigh-impedanceby holdingtheODEpinLOW. While theODE is LOW, the microprocessor can initialize the device by using the Block Programming feature and programtheactive paths viathe microprocessorbus. Once the device is configured, the ODE pin (or Output Stand By bit depending on initialization) can be switched to enable the TSI switch.

TABLE 1-CONSTANT THROUGHPUT

 DELAY VALUE| Input Rate | Delay for Constant Throughput Delay Mode
 (\mathbf{m} - output channel number)
 $(\boldsymbol{n}$ - input channel number) |
| :---: | :---: |
| $2.048 \mathrm{Mb} / \mathrm{s}$ | $32+(32-\mathrm{n})+\mathrm{m}$ time-slots |
| $4.096 \mathrm{Mb} / \mathrm{s}$ | $64+(64-\mathrm{n})+\mathrm{m}$ time-slots |
| $8.192 \mathrm{Mb} / \mathrm{s}$ | $128+(128-\mathrm{n})+\mathrm{m}$ time-slots |
| $16.384 \mathrm{Mb} / \mathrm{s}$ | $256+(256-\mathrm{n})+\mathrm{m}$ time-slots |

TABLE 2-VARIABLE THROUGHPUT DELAY VALUE

Input Rate	Delay for Variable Throughput Delay Mode $(m-$ output channel number; n - input channel number)	
	$m \leq n+2$	$m>n+2$
$2.048 \mathrm{Mb} / \mathrm{s}$	$32-(\mathrm{n}-\mathrm{m})$ time-slots	$(\mathrm{m}-\mathrm{n})$ time-slots
$4.096 \mathrm{Mb} / \mathrm{s}$	$64-(\mathrm{n}-\mathrm{m})$ time-slots	$(\mathrm{m} n)$ time-slots
$8.192 \mathrm{Mb} / \mathrm{s}$	$128-(\mathrm{n}-\mathrm{m})$ time-slots	$(\mathrm{m}-\mathrm{n})$ time-slots
$16.384 \mathrm{Mb} / \mathrm{s}$	$256-(\mathrm{n}-\mathrm{m})$ time-slots	$(\mathrm{m}-\mathrm{n})$ time-slots

TABLE 3-OUTPUT HIGH-IMPEDANCE CONTROL

Bits MOD1-0 Values in Connection Memory	ODE pin	OSB bit in Control Register	Output Status
1 and 1	Don'tCare	Don'tCare	Per-channel High-Impedance
Any, other than 1 and 1	0	0	High-Impedance
Any, other than 1 and 1	0	1	Enable
Any, other than 1 and 1	1	0	Enable
Any, other than 1 and 1	1	1	Enable

TABLE 4 - INTERNAL REGISTER AND ADDRESS MEMORY MAPPING

A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	RW	Location
1	1	STA4	STA3	STA2	STA1	STA0	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0	R	Data Memory
1	0	STA4	STA3	STA2	STA1	STA0	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0	R/W	ConnectionMemory
0	1	0	0	0	0	x	x	x	x	x	x	x	x	x	R/W	Control Register
0	1	0	0	0	1	x	x	x	x	x	x	x	x	x	R	Frame AlignRegister
0	1	1	0	0	0	x	x	x	x	x	x	x	x	x	R/W	Frame OffsetRegister0
0	1	1	0	0	1	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister1
0	1	1	0	1	0	x	x	x	x	x	x	x	x	x	R/W	Frame OffsetRegister2
0	1	1	0	1	1	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister3
0	1	1	1	0	0	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister4
0	1	1	1	0	1	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister5
0	1	1	1	1	0	x	x	x	x	x	x	x	x	x	R/W	Frame OffsetRegister6
0	1	1	1	1	1	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister7

NOTE: Unused STA and CH bits should be set to zero.

TABLE 5-CONTROL REGISTER (CR) BITS

TABLE 6 - CONNECTION MEMORY BITS

	15	14	13	12		11	10	9	8	7	6	5	4	3	2	1	0
	MOD1	MODO	0	SAB		SAB3	SAB2	SAB1	SAB0	CAB7	CAB6	CAB5	CAB4	CAB3	CAB2	CAB1	CABO
Bit	Name				Description												
15, 14	MOD1-0 (SwitchingModeSelection)				MOD1 MOD0 MODE 0 0 Variable Delay mode 1 0 ConstantDelay mode 1 1 Processor mode OutputHigh-impedance												
13	Unused				Mustbezerofornormal operation.												
12-8	SAB4-0 (Source Stream Address Bits)				The binary value is the number of the data stream for the source of the connection.												
7-0	CAB7-0 (SourceChannel Address Bits)				The binary value is the number of the channel for the source of the connection.												

NOTE:

1. Unused SAB and CAB bits should be set to zero.

TABLE 7 - FRAME ALIGNMENT REGISTER (FAR) BITS

(FD[10:0] = 09 H)
(FD11 = 1, sample at CLK HIGH phase)

Figure 1. Example for Frame Alignment Measurement

TABLE 8 -FRAME INPUT OFFSET REGISTER (FOR) BITS

Reset Value:0000Hforall for registers.																
Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FORORegister	OF32	OF31	OF30	DLE3	OF22	OF21	OF20	DLE2	OF12	OF11	OF10	DLE1	OF02	OF01	OFOO	DLE0
FOR1 Register	OF72	OF71	OF70	DLE7	OF62	OF61	OF60	DLE6	OF52	OF51	OF50	DLE5	OF42	OF41	OF40	DLE4
FOR2Register	OF112	OF111	OF110	DLE11	OF102	OF101	OF100	DLE10	OF92	OF91	OF90	DLE9	OF82	OF81	OF80	DLE8
FOR3Register	OF152	OF151	OF150	DLE15	OF142	OF141	OF140	DLE14	OF132	OF131	OF130	DLE13	OF122	OF121	OF120	DLE12
FOR4Register	OF192	OF191	OF190	DLE19	OF182	OF181	OF180	DLE18	OF172	OF171	OF170	DLE17	OD162	OD161	OF160	DLE16
FOR5Register	OF232	OF231	OF230	DLE23	OF2२2	OF221	OF2२0	DLE22	OF212	OF211	OF210	DLE21	OF202	OF201	OF200	DLE20
FOR6Register	OF272	OF271	OF270	DLE27	OF262	OF261	OF260	DLE26	OF252	OF251	OF250	DLE25	OF242	OF241	OF240	DLE24
FOR7Register	OF312	OF311	OF310	DLE31	OF302	OF301	OF300	DLE30	OF292	OF291	OF290	DLE29	OF280	OF281	OF280	DLE28

NOTE:

1. n denotes an input stream number from 0 to 31 .

TABLE 9 - OFFSET BITS (OFn2, OFn1, OFn0, DLEn) \& FRAME DELAY BITS (FD11, FD2-0)

InputStream Offset	Measurement Resultfrom Frame Delay Bits				Corresponding OffsetBits			
	FD11	FD2	FD1	FDO	OFn2	OFn1	OFn0	DLEn
Noclock periodshift (Default)	1	0	0	0	0	0	0	0
+ 0.5 clock period shift	0	0	0	0	0	0	0	1
+ 1.0 clock period shift	1	0	0	1	0	0	1	0
+ 1.5 clock period shift	0	0	0	1	0	0	1	1
+2.0 clock period shift	1	0	1	0	0	1	0	0
+2.5 clock period shift	0	0	1	0	0	1	0	1
+3.0 clock period shift	1	0	1	1	0	1	1	0
+ 3.5 clock period shift	0	0	1	1	0	1	1	1
+4.0 clock period shift	1	1	0	0	1	0	0	0
+4.5 clock period shift	0	1	0	0	1	0	0	1
+5.0 clock period shift	1	1	0	1	1	0	1	0
+5.5 clock period shift	0	1	0	1	1	0	1	1
+6.0 clock period shift	1	1	1	0	1	1	0	0
+6.5 clock period shift	0	1	1	0	1	1	0	1
+7.0 clock period shift	1	1	1	1	1	1	1	0
+7.5 clock period shift	0	1	1	1	1	1	1	1

Figure 2. Examples for Input Offset Delay Timing in $16.384 \mathrm{Mb} / \mathrm{s}$ mode

Figure 2. Examples for Input Offset Delay Timing in $8.192 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} /$ and $2.048 \mathrm{Mb} /$ s mode (Continued)

JTAG SUPPORT

TheIDT72V71650JTAG interface conformstotheBoundary-Scanstandard IEEE-1149.1.This standard specifies a design-for-testability technique called Boundary-Scantest (BST). The operation of the boundary-scan circuitry is controlled by an external test access port (TAP) Controller.

TEST ACCESS PORT (TAP)

The Test Access Port (TAP) provides access to the test functions of the IDT72V71650. It consists of three input pins and one output pin.
-Test Clock Input (TCK)
TCK provides the clock for the test logic. The TCK does not interfere with any on-chip clock and thus remains independent. The TCKpermits shifting of test data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.
-Test Mode Select Input (TMS)
The logic signals received at the TMS input are interpreted by the TAP Controller to control the test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to VCc when it is not driven from an external source.

- Test Data Input (TDI)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to VCC when it is not driven from an external source.
-TestDataOutput(TDO)
Depending on the sequence previously applied to the TMS input, the contents of eitherthe instruction registeror data register are serially shifted out through the TDO pin on the falling edge of each TCK pulse. When no data is shifted through the boundary scan cells, the TDO driver is set to a high-impedancestate.

- Test Reset (TRST)

Reset the JTAG scan structure. This pin is internally pulled to Vcc when it is not driven from an external source.

INSTRUCTION REGISTER

In accordance with the IEEE-1149.1 standard, the IDT72V71650 uses public instructions. The IDT72V71650JTAG interface contains a four-bit instruction register. Instructions are serially loaded into the instruction register from the TDI whentheTAPControlleris initsshift-IR state. Subsequently, the instructionsare decoded to achieve two basic functions: to selectthe test data registerthatmay operate while the instruction is current, and to define the serial test data register path, which is used to shift data between TDI and TDO during data register scanning. See Table 12 below for Instruction decoding.

TESTDATAREGISTER

As specifiedinIEEE-1149.1, the IDT72V71650JTAG Interface contains two testdata registers:
-The Boundary-Scan register
The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the IDT72V71650 core logic.
-The Bypass Register
The Bypass register is asingle stage shift register that provides a one-bitpath from TDI to TDO. The IDT72V71650 boundary scan register bits are shown in Table 14. Bit0is the firstbit clocked out. All three-state enable bits are active HIGH.

ID CODE REGISTER

As specified in IEEE-1149.1, this instruction loads the IDR with the Revision Number, Device ID, and ID Register Indicator Bit. See Table 10.

TABLE 10—IDENTIFICATION REGISTER DEFINITIONS

INSTRUCTION FIELD	VALUE	DESCRIPTION
Revision Number (31:28)	0×0	Reservedforversionnumber
IDT Device ID (27:12)	0×435	Defines IDT partnumber
IDT JEDEC ID (11:1)	0×33	Allows uniqueidentification of device vendoras IDT
ID Register IndicatorBit (Bit0)	1	Indicates the presence of an ID register

TABLE 11 - SCAN REGISTER SIZES

REGISTER NAME	BIT SIZE
Instruction(IR)	4
Bypass (BYR)	1
Identification(IDR)	32
Boundary Scan (BSR)	Note(1)

NOTES:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative.

TABLE 12-SYSTEM INTERFACE PARAMETERS

INSTRUCTION	CODE	
EXTEST	0000	Forces contents oftheboundary scancells ontothe device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDI and TDO.
BYPASS	1111	Places the bypass register (BYR) between TDI and TDO.
IDCODE	0010	Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO.
HIGH-Z	0100	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.
CLAMP	0011	Places the bypass register (BYR) between TDI and TDO. Forces contents of the boundary scan cells onto the device outputs.
SAMPLE/PRELOAD	0001	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.
RESERVED	All other codes	Several combinations are reserved. Do notuse other codes than those identified above.

NOTES:

1. Device outputs $=$ All device outputs except TDO.
2. Device inputs $=$ All device inputs except TDI, TMS and TRST.

TABLE 13 - JTAG AC ELECTRICAL CHARACTERISTICS ${ }^{(1,2,3,4)}$

SYMBOL	PARAMETER	MIN.	MAX.	UNITS
tJCYC	JTAG Clock Input Period	100	-	ns
JJCH	JTAG Clock High	40	-	ns
tJCL	JTAG Clock Low	40	-	ns
tJR	JTAG Clock Rise Time	-	$3^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$3^{(1)}$	ns
tJRST	JTAGReset	50	-	ns
tJRSR	JTAG Reset Recovery	50	-	ns
tJCD	JTAGData Output	-	25	ns
tJDC	JTAGData OutputHold	0	-	ns
tJS	JTAG Setup	15	-	ns
tJH	JTAG Hold	15	-	ns

NOTES:

1. Guaranteed by design.
2. 30 pF loading on external output signals.
3. Refer to $A C$ Electrical Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet.

NOTES:

1. Device inputs $=$ All device inputs except TDI, TMS and TRST.
2. Device outputs $=$ All device outputs except TDO.

Figure 3. JTAG Timing Specifications

TABLE 14 - BOUNDARY SCAN REGISTER BITS

Device Pin	Boundary Scan Bit 0 to bit 168		
	Input Scan Cel	Output Scan Cell	Three-State Control
ODE	0		
$\overline{\text { RESET }}$	1		
CLK	2		
FP	3		
FE(HCLK)	4		
WFPS	5		
$\overline{\text { DS }}$	6		
$\overline{\mathrm{CS}}$	7		
R/W	8		
A0	9		
A1	10		
A2	11		
A3	12		
A4	13		
A5	14		
A6	15		
A7	16		
A8	17		
A9	18		
A10	19		
A11	20		
A12	21		
A13	22		
A14	23		
$\overline{\text { DTA }}$		24	
D15	25	26	27
D14	28	29	30
D13	31	32	33
D12	34	35	36
D11	37	38	39
D10	40	41	42
D9	43	44	45
D8	46	47	48
D7	49	50	51
D6	52	53	54
D5	55	56	57
D4	58	59	60
D3	61	62	63
D2	64	65	66
D1	67	68	69
D0	70	71	72
RX31	73		
RX30	74		
RX29	75		
RX28	76		
RX27	77		
RX26	78		
RX25	79		
RX24	80		
TX31/OEI15		81	82
TX30/OEI14		83	84
TX29/OEI13		85	86

Device Pin	Boundary Scan Bit 0 to bit 168		
	$\begin{gathered} \text { Input } \\ \text { Scan Cell } \end{gathered}$	Output Scan Cell	Three-State Control
TX28/OEI12		87	88
TX27/OE111		89	90
TX26/OEI10		91	92
TX25/OE19		93	94
TX24/OE18		95	96
TX23/0E17		97	98
TX22/OEI6		99	100
TX21/OE15		101	102
TX20/OEI4		103	104
TX19/OEI3		105	106
TX18/OEI2		107	108
TX17/OE11		109	110
TX16/OEI0		111	112
RX23	113		
RX22	114		
RX21	115		
RX20	116		
RX19	117		
RX18	118		
RX17	119		
RX16	120		
RX15	121		
RX14	122		
RX13	123		
RX12	124		
RX11	125		
RX10	126		
RX9	127		
RX8	128		
TX15		129	130
TX14		131	132
TX13		133	134
TX12		135	136
TX11		137	138
TX10		139	140
TX9		141	142
TX8		143	144
TX7		145	146
TX6		147	148
TX5		149	150
TX4		151	152
TX3		153	154
TX2		155	156
TX1		157	158
TX0		159	160
RX7	161		
RX6	162		
RX5	163		
RX4	164		
RX3	165		
RX2	166		
RX1	167		
RXO	168		

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	-0.5	+4.0	V
Vi	VoltageonDigital Inputs	$\mathrm{GND}-0.3$	$\mathrm{Vcc}+0.3$	V
IO	CurrentatDigital Outputs	-50	50	mA
Ts	StorageTemperature	-55	+125	${ }^{\circ} \mathrm{C}$
PD	PackagePowerDissapation	-	2	W

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING

 CONDITIONS ${ }^{(1)}$| Symbol | Parameter | Min. | Typ. | Max. | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| VCC | Positive Supply | 3.0 | 3.3 | 3.6 | V |
| VIH | Input HIGH Voltage | 2.0 | - | VCC | V |
| VIL | InputLOWVoltage | -0.3 | - | 0.8 | V |
| TOP | OperatingTemperature
 Industrial | -40 | 25 | +85 | ${ }^{\circ} \mathrm{C}$ |

NOTE:

1. Voltages are with respect to Ground unless otherwise stated.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter		Min.	Typ.	Max.	Units
IcC ${ }^{(2)}$	Supply Current	@ $2.048 \mathrm{Mb} / \mathrm{s}$	-	-	60	mA
		@ $4.096 \mathrm{Mb} / \mathrm{s}$	-	-	80	mA
		@ 8.192Mb/s			90	mA
		@ 16.384Mb/s	-	-	95	mA
liL ${ }^{(3,4)}$	InputLeakage (inputpins)		-	-	60	$\mu \mathrm{A}$
loz ${ }^{(3,4)}$	High-impedanceLeakage		-	-	60	$\mu \mathrm{A}$
VoH ${ }^{(5)}$	Output HIGH Voltage		2.4	-	-	V
VoL ${ }^{(6)}$	OutputLOW Voltage		-	-	0.4	V

NOTES:

1. Voltages are with respect to ground (GND) unless otherwise stated.
2. Outputs unloaded.
3. $0 \leq \mathrm{V} \leq \mathrm{VCC}$.
4. Maximum leakage on pins (output or I/O pins in high-impedance state) is over an applied voltage (V).
5. $1 O H=10 \mathrm{~mA}$.
6. $1 O L=10 \mathrm{~mA}$.

AC ELECTRICAL CHARACTERISTICS - TIMING PARAMETER MEASUREMENT VOLTAGE LEVELS

Symbol	Rating	Level	Unit
VTT	TLTThreshold	1.5	V
VHM	TTLRise/Fall Threshold VoltageHIGH	2.0	V
VLM	TTLRise/Fall Threshold VoltageLOW	0.8	V
	InputPulse Levels		V
tR,tF	InputRise/FallTimes	1	ns
	InputTiming ReferenceLevels		V
	OutputReferenceLevels		V
$\mathrm{CL}^{(1)}$	OutputLoad	150	pF
Cin $^{(2)}$	InputCapacitance	8	pF

NOTES:

1. JTAG CL is 30 pF .
2. For 144 TQFP

Figure 4. Output Load

Figure 5. Output Load

Figure 6. Lumped Capacitive Load, Typical Derating

AC ELECTRICAL CHARACTERISTICS - FRAME PULSE AND CLOCK

Symbol	Parameter	Min.	Typ.	Max.	Units
tFPW	Frame Pulse Width (ST-BUS ${ }^{\circledR}$, GCI) Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \end{aligned}$	—	$\begin{aligned} & 295 \\ & 145 \\ & 65 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tFPS	Frame Pulse Setup time before CLK falling (ST-BUS® or GCl)	5	-	-	ns
tFPH	Frame Pulse Hold Time from CLK falling (ST-BUS® or GCI)	10	-	-	ns
tcP	CLK Period Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 190 \\ & 110 \\ & 55 \end{aligned}$	$\begin{aligned} & 244 \\ & 122 \\ & 61 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
toh	CLK Pulse Width HIGH Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & 122 \\ & 61 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 75 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tcl	CLK Pulse Width LOW Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & 122 \\ & 61 \\ & 30 \end{aligned}$	$\begin{aligned} & 150 \\ & 75 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
tHFPW	Wide Frame Pulse Width HCLK $=4.096 \mathrm{Mb} / \mathrm{s}$		244		ns
tHFPS	Frame Pulse Setup Time before HCLK @ 4.096 MHz falling	50	-	150	ns
tHFPH	Frame Pulse Hold Time from HCLK @ 4.096 MHz falling	50	-	150	ns
H-CP	HCLK Period @ 4.096 MHz	190	244	300	ns
HCH	HCLK Pulse Width HIGH @ 4.096Mb/s	110	122	150	ns
HCL	HCLK Pulse Width LOW @ 4.096Mb/s	110	122	150	ns
thr, thf	HCLK Rise/Fall Time	-	-	10	ns
tDIF	Delay between falling edge of HCLK and falling edge of CLK	-10	-	10	ns

NOTE:

1. To guarantee $T X$ outputs remain in high-impedance.

Figure 7. RESET and ODE Timing

Figure 8. Serial Output and External Control
Figure 9. Output Driver Enable (ODE)

AC ELECTRICAL CHARACTERISTICS - MICROPROCESSOR INTERFACE TIMING

Symbol	Parameter		Min.	Typ.	Max.	Units
tcss	CS Setup from DS falling		0	-	-	ns
trws	R/W Setup from DS falling		3	-	-	ns
tads	Address Setup from DSfalling		2	-	-	ns
tcsh	CS Hold after DS rising		0	-	-	ns
trwh	R/W Hold after DS Rising		3	-	-	ns
tadh	Address Hold after DS Rising		2	-	-	ns
todr	Data Setup from $\overline{\text { TTA }}$ LOW on Read		1	-	-	ns
tohr	Data Hold on Read		10	15	25	ns
tosw	Data Setup on Write (Register Write)		10	-	-	ns
tswo	Valid Data Delay on Write (Connection Memory Write)		-	-	0	ns
tohw	Data Holdon Write		5	-	-	ns
takd	AcknowledgmentDelay: Reading/WritingRegisters Reading/WritingMemory	@ $2.048 \mathrm{Mb} / \mathrm{s}$ @ $4.096 \mathrm{Mb} / \mathrm{s}$ @ 8.192Mb/s or $16.384 \mathrm{Mb} / \mathrm{s}$			$\begin{aligned} & 32 \\ & 345 \\ & 200 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
takH	AcknowledgmentHold Time		-	-	20	ns
toss	DataStrobeSetup Time		6	-	-	ns

Figure 10. Motorola Non-Multiplexed Bus Timing

Figure 11. Output Enable Indicator Timing (8 Mb/s ST-BUS ${ }^{\circledR}$)

AC ELECTRICAL CHARACTERISTICS - SERIAL STREAM (ST-BUS® and GCI)

Symbol	Parameter	Min.	Typ.	Max.	Units
tsis	RXSetup Time	4	-	-	ns
tSIH	RXHold Time	8	-	-	ns
tsod	Clock to Valid Data	8	-	20	ns
tCHz	Clock to High-Z	-	-	9	ns
tclz	Clock to Low-Z	3	-	-	ns
tode	OutputDriver Enable to ResetHigh	5	-	-	ns
todehz	Output Driver Enable (ODE) Delay	-	-	9	ns
todelz	Output Driver Enable (ODE) to Low-Z	5	-	-	ns
toel	OutputEnable Indicator	8	-	20	ns
tRZ	Active to High-Z on Master Reset	-	-	12	ns
tzR	High-Z to Active on Master Reset	-	-	12	ns
tRS	Resetpulse width	20	-	-	ns
TODEA	Output Drive Enable to Active	6	-	16	ns

ORDERING INFORMATION

IDT

Commercial ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Thin Quad Flatpacks (TQFP, DA144-1)
Plastic Ball Grid Array (PBGA, BB144-1)

DATASHEET DOCUMENT HISTORY

$08 / 14 / 2001$	pgs. $3,18,19,21,22,24$ and 25.
$09 / 24 / 2001$	pgs. $2,3,11,19,21,24$ and 25.
$12 / 19 / 2001$	pgs. $1-6,8,10-19,20-21$ and $23-27$.
$12 / 21 / 2001$	pgs. $1,5,6,14-19$ and 24.
$03 / 26 / 2002$	pgs. 17 and 18.
$08 / 02 / 2002$	pg. 8
$05 / 24 / 2003$	pg. 18.
$10 / 10 / 2003$	pg. 1 and 4.

