3 Watt DO-41 Surmetic™ 30 Zener Voltage Regulators This is a complete series of 3 Watt Zener diodes with limits and excellent operating characteristics that reflect the superior capabilities of silicon—oxide passivated junctions. All this in an axial—lead, transfer—molded plastic package that offers protection in all common environmental conditions. #### **Specification Features:** - Zener Voltage Range 3.3 V to 200 V - ESD Rating of Class 3 (>16 KV) per Human Body Model - Surge Rating of 98 W @ 1 ms - Maximum Limits Guaranteed on up to Six Electrical Parameters - Package No Larger than the Conventional 1 Watt Package #### **Mechanical Characteristics:** **CASE:** Void free, transfer-molded, thermosetting plastic FINISH: All external surfaces are corrosion resistant and leads are readily solderable #### **MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:** 230°C, 1/16" from the case for 10 seconds **POLARITY:** Cathode indicated by polarity band MOUNTING POSITION: Any #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|----------------|-------| | Max. Steady State Power Dissipation
@ T _L = 75°C, Lead Length = 3/8" | P _D | 3 | W | | Derate above 75°C | | 24 | mW/°C | | Steady State Power Dissipation @ T _A = 50°C | P _D | 1 | W | | Derate above 50°C | | 6.67 | mW/°C | | Operating and Storage
Temperature Range | T _J , T _{stg} | –65 to
+200 | °C | #### ON Semiconductor™ #### http://onsemi.com #### **MARKING DIAGRAM** L = Assembly Location 1N59xxB = Device Code (See Table Next Page) YY = Year WW = Work Week #### ORDERING INFORMATION | Device | Package | Shipping | |-------------------------|------------|------------------| | 1N59xxB | Axial Lead | 2000 Units/Box | | 1N59xxBRL | Axial Lead | 6000/Tape & Reel | | 1N59xxBRR1 [†] | Axial Lead | 2000/Tape & Reel | | 1N59xxBRR2 [‡] | Axial Lead | 2000/Tape & Reel | - † Polarity band **up** with cathode lead off first - [‡] Polarity band **down** with cathode lead off first Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value. #### **ELECTRICAL CHARACTERISTICS** $(T_L = 30^{\circ}C \text{ unless otherwise noted,}$ $V_F = 1.5 \text{ V Max } @ I_F = 200 \text{ mAdc for all types)}$ | Symbol | Parameter | | |-----------------|---|--| | VZ | Reverse Zener Voltage @ I _{ZT} | | | I _{ZT} | Reverse Current | | | Z _{ZT} | Maximum Zener Impedance @ I _{ZT} | | | I _{ZK} | Reverse Current | | | Z _{ZK} | Maximum Zener Impedance @ I _{ZK} | | | I _R | Reverse Leakage Current @ V _R | | | V_{R} | Breakdown Voltage | | | I _F | Forward Current | | | V _F | Forward Voltage @ I _F | | | I _{ZM} | Maximum DC Zener Current | | **ELECTRICAL CHARACTERISTICS** ($T_L = 30^{\circ}$ C unless otherwise noted, $V_F = 1.5$ V Max @ $I_F = 200$ mAdc for all types) | Device (Note 1) Device (Note 2) Device (Note 1) 2) Device (Note 2) Device (Note 3) (N | Izm mA 454 319 267 241 220 182 164 150 136 125 100 93 83 83 | |---|---| | Note | mA 454 319 267 241 220 182 164 150 136 125 100 93 | | (Note 1) Marking Min Nom Max mA Ω Ω mA μA Max Volts | 454
319
267
241
220
182
164
150
136
125
100
93 | | 1N5917B 1N5917B 4.47 4.7 4.94 79.8 5 500 1 5 1.5 1N5919B 1N5919B 5.32 5.6 5.88 66.9 2 250 1 5 3 1N5920B 1N5920B 5.89 6.2 6.51 60.5 2 200 1 5 4 1N5921B 1N5921B 6.46 6.8 7.14 55.1 2.5 200 1 5 4 1N5923B 1N5923B 7.79 8.2 8.61 45.7 3.5 400 0.5 5 6.5 1N5924B 1N5924B 8.65 9.1 9.56 41.2 4 500 0.5 5 7 1N5925B 1N5925B 9.50 10 10.50 37.5 4.5 500 0.25 5 8 1N5926B 1N5926B 10.45 11 11.55 34.1 5.5 550 0.25 1 8.4 < | 319
267
241
220
182
164
150
136
125
100
93 | | 1N5919B 1N5919B 5.32 5.6 5.88 66.9 2 250 1 5 3 1N5920B 1N5920B 5.89 6.2 6.51 60.5 2 200 1 5 4 1N5921B 1N5921B 6.46 6.8 7.14 55.1 2.5 200 1 5 5.2 1N5923B 1N5923B 7.79 8.2 8.61 45.7 3.5 400 0.5 5 6.5 1N5924B 1N5924B 8.65 9.1 9.56 41.2 4 500 0.5 5 7 1N5924B 1N5924B 8.65 9.1 9.56 41.2 4 500 0.5 5 7 1N5925B 1N5925B 9.50 10 10.50 37.5 4.5 500 0.25 5 8 1N5926B 1N5926B 10.45 11 11.55 34.1 5.5 550 0.25 1 8.4 | 267
241
220
182
164
150
136
125
100
93 | | 1N5920B 1N5920B 5.89 6.2 6.51 60.5 2 200 1 5 4 1N5921B 1N5921B 6.46 6.8 7.14 55.1 2.5 200 1 5 5.2 1N5923B 1N5923B 7.79 8.2 8.61 45.7 3.5 400 0.5 5 6.5 1N5924B 1N5924B 8.65 9.1 9.56 41.2 4 500 0.5 5 7 1N5925B 1N5925B 9.50 10 10.50 37.5 4.5 500 0.25 5 8 1N5926B 1N5926B 10.45 11 11.55 34.1 5.5 550 0.25 1 8.4 1N5927B 1N5927B 11.40 12 12.60 31.2 6.5 550 0.25 1 9.1 1N5939B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 <td< td=""><td>241
220
182
164
150
136
125
100
93</td></td<> | 241
220
182
164
150
136
125
100
93 | | 1N5921B 1N5921B 6.46 6.8 7.14 55.1 2.5 200 1 5 5.2 1N5923B 1N5923B 7.79 8.2 8.61 45.7 3.5 400 0.5 5 6.5 1N5924B 1N5924B 8.65 9.1 9.56 41.2 4 500 0.5 5 7 1N5925B 1N5925B 9.50 10 10.50 37.5 4.5 500 0.25 5 8 1N5926B 1N5926B 10.45 11 11.55 34.1 5.5 550 0.25 1 8.4 1N5927B 1N5927B 11.40 12 12.60 31.2 6.5 550 0.25 1 9.1 1N5929B 1N5929B 14.25 15 15.75 25.0 9 600 0.25 1 11.4 1N5930B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 | 182
164
150
136
125
100
93 | | 1N5923B 1N5923B 7.79 8.2 8.61 45.7 3.5 400 0.5 5 6.5 1N5924B 1N5924B 8.65 9.1 9.56 41.2 4 500 0.5 5 7 1N5925B 1N5925B 9.50 10 10.50 37.5 4.5 500 0.25 5 8 1N5926B 1N5926B 10.45 11 11.55 34.1 5.5 550 0.25 1 8.4 1N5927B 1N5927B 11.40 12 12.60 31.2 6.5 550 0.25 1 9.1 1N5929B 14.25 15 15.75 25.0 9 600 0.25 1 11.4 1N5930B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 12.2 1N5931B 1N5931B 17.10 18 18.90 20.8 12 650 0.25 1 13.7 1N5933B 1N5933B 20.90 22 23.10 17.0 <td< td=""><td>182
164
150
136
125
100
93</td></td<> | 182
164
150
136
125
100
93 | | 1N5924B 1N5924B 8.65 9.1 9.56 41.2 4 500 0.5 5 7 1N5925B 1N5925B 9.50 10 10.50 37.5 4.5 500 0.25 5 8 1N5926B 1N5926B 10.45 11 11.55 34.1 5.5 550 0.25 1 8.4 1N5927B 1N5927B 11.40 12 12.60 31.2 6.5 550 0.25 1 8.4 1N5927B 1N5927B 11.40 12 12.60 31.2 6.5 550 0.25 1 9.1 1N5929B 1N5929B 14.25 15 15.75 25.0 9 600 0.25 1 11.4 1N5930B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 12.2 1N5931B 1N5931B 17.10 18 18.90 20.8 12 650 0.25 1 <td>164
150
136
125
100
93</td> | 164
150
136
125
100
93 | | 1N5925B 1N5925B 9.50 10 10.50 37.5 4.5 500 0.25 5 8 1N5926B 1N5926B 10.45 11 11.55 34.1 5.5 550 0.25 1 8.4 1N5927B 1N5927B 11.40 12 12.60 31.2 6.5 550 0.25 1 9.1 1N5929B 1N5929B 14.25 15 15.75 25.0 9 600 0.25 1 11.4 1N5930B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 12.2 1N5931B 1N5931B 17.10 18 18.90 20.8 12 650 0.25 1 13.7 1N5932B 1N5932B 19.00 20 21.00 18.7 14 650 0.25 1 15.2 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 <td< td=""><td>150
136
125
100
93</td></td<> | 150
136
125
100
93 | | 1N5926B 1N5926B 10.45 11 11.55 34.1 5.5 550 0.25 1 8.4 1N5927B 1N5927B 11.40 12 12.60 31.2 6.5 550 0.25 1 9.1 1N5929B 1N5929B 14.25 15 15.75 25.0 9 600 0.25 1 11.4 1N5930B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 12.2 1N5931B 1N5931B 17.10 18 18.90 20.8 12 650 0.25 1 13.7 1N5932B 1N5932B 19.00 20 21.00 18.7 14 650 0.25 1 15.2 1N5933B 1N5933B 20.90 22 23.10 17.0 17.5 650 0.25 1 16.7 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 1 18.2 1N5935B 1N5936B 28.50 30 31.50 | 136
125
100
93 | | 1N5927B 1N5927B 11.40 12 12.60 31.2 6.5 550 0.25 1 9.1 1N5929B 1N5929B 14.25 15 15.75 25.0 9 600 0.25 1 11.4 1N5930B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 12.2 1N5931B 1N5931B 17.10 18 18.90 20.8 12 650 0.25 1 13.7 1N5932B 1N5932B 19.00 20 21.00 18.7 14 650 0.25 1 15.2 1N5933B 1N5933B 20.90 22 23.10 17.0 17.5 650 0.25 1 16.7 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 1 18.2 1N5935B 1N5935B 25.65 27 28.35 13.9 23 700 0.25 | 125
100
93 | | 1N5929B 1N5929B 14.25 15 15.75 25.0 9 600 0.25 1 11.4 1N5930B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 12.2 1N5931B 1N5931B 17.10 18 18.90 20.8 12 650 0.25 1 13.7 1N5932B 1N5932B 19.00 20 21.00 18.7 14 650 0.25 1 15.2 1N5933B 1N5933B 20.90 22 23.10 17.0 17.5 650 0.25 1 16.7 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 1 18.2 1N5935B 1N5935B 25.65 27 28.35 13.9 23 700 0.25 1 20.6 1N5936B 1N5936B 28.50 30 31.50 12.5 28 750 0.25 | 100
93 | | 1N5930B 1N5930B 15.20 16 16.80 23.4 10 600 0.25 1 12.2 1N5931B 1N5931B 17.10 18 18.90 20.8 12 650 0.25 1 13.7 1N5932B 1N5932B 19.00 20 21.00 18.7 14 650 0.25 1 15.2 1N5933B 1N5933B 20.90 22 23.10 17.0 17.5 650 0.25 1 16.7 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 1 18.2 1N5935B 1N5935B 25.65 27 28.35 13.9 23 700 0.25 1 20.6 1N5936B 1N5936B 28.50 30 31.50 12.5 28 750 0.25 1 22.8 1N5937B 1N5937B 31.35 33 34.65 11.4 33 800 0.25 | 93 | | 1N5931B 1N5931B 17.10 18 18.90 20.8 12 650 0.25 1 13.7 1N5932B 1N5932B 19.00 20 21.00 18.7 14 650 0.25 1 15.2 1N5933B 1N5933B 20.90 22 23.10 17.0 17.5 650 0.25 1 16.7 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 1 18.2 1N5935B 1N5935B 25.65 27 28.35 13.9 23 700 0.25 1 20.6 1N5936B 1N5936B 28.50 30 31.50 12.5 28 750 0.25 1 22.8 1N5937B 1N5937B 31.35 33 34.65 11.4 33 800 0.25 1 25.1 | | | 1N5932B 1N5932B 19.00 20 21.00 18.7 14 650 0.25 1 15.2 1N5933B 1N5933B 20.90 22 23.10 17.0 17.5 650 0.25 1 16.7 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 1 18.2 1N5935B 1N5935B 25.65 27 28.35 13.9 23 700 0.25 1 20.6 1N5936B 1N5936B 28.50 30 31.50 12.5 28 750 0.25 1 22.8 1N5937B 1N5937B 31.35 33 34.65 11.4 33 800 0.25 1 25.1 | 83 | | 1N5933B 1N5933B 20.90 22 23.10 17.0 17.5 650 0.25 1 16.7 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 1 18.2 1N5935B 1N5935B 25.65 27 28.35 13.9 23 700 0.25 1 20.6 1N5936B 1N5936B 28.50 30 31.50 12.5 28 750 0.25 1 22.8 1N5937B 1N5937B 31.35 33 34.65 11.4 33 800 0.25 1 25.1 | | | 1N5934B 1N5934B 22.80 24 25.20 15.6 19 700 0.25 1 18.2 1N5935B 1N5935B 25.65 27 28.35 13.9 23 700 0.25 1 20.6 1N5936B 1N5936B 28.50 30 31.50 12.5 28 750 0.25 1 22.8 1N5937B 1N5937B 31.35 33 34.65 11.4 33 800 0.25 1 25.1 | 75 | | 1N5935B 1N5935B 25.65 27 28.35 13.9 23 700 0.25 1 20.6 1N5936B 1N5936B 28.50 30 31.50 12.5 28 750 0.25 1 22.8 1N5937B 1N5937B 31.35 33 34.65 11.4 33 800 0.25 1 25.1 | 68 | | 1N5936B 1N5936B 28.50 30 31.50 12.5 28 750 0.25 1 22.8 1N5937B 1N5937B 31.35 33 34.65 11.4 33 800 0.25 1 25.1 | 62 | | 1N5937B 1N5937B 31.35 33 34.65 11.4 33 800 0.25 1 25.1 | 55 | | | 50 | | 1N5938B | 45 | | | 41 | | 1N5940B 1N5940B 40.85 43 45.15 8.7 53 950 0.25 1 32.7 | 34 | | 1N5941B | 31 | | 1N5942B | 29 | | 1N5943B | 26 | | 1N5944B 1N5944B 58.90 62 65.10 6.0 100 1500 0.25 1 47.1 | 24 | | 1N5945B 1N5945B 64.60 68 71.40 5.5 120 1700 0.25 1 51.7 | 22 | | 1N5946B 1N5946B 71.25 75 78.75 5.0 140 2000 0.25 1 56 | 20 | | 1N5947B | 18 | | 1N5948B | 16 | | 1N5950B 1N5950B 104.5 110 115.5 3.4 300 4000 0.25 1 83.6 | 13 | | 1N5951B 1N5951B 114 120 126 3.1 380 4500 0.25 1 91.2 | 12 | | 1N5952B 1N5952B 123.5 130 136.5 2.9 450 5000 0.25 1 98.8 | 11 | | 1N5953B | 10 | | 1N5954B | 9 | | 1N5955B 1N5955B 171 180 189 2.1 900 7000 0.25 1 136.8 | 8 | | 1N5956B 1N5956B 190 200 210 1.9 1200 8000 0.25 1 152 | 0 | ^{1.} TOLERANCE AND TYPE NUMBER DESIGNATION Tolerance designation – device tolerance of ±5% are indicated by a "B" suffix. 2. ZENER VOLTAGE (V₂) MEASUREMENT ON Semiconductor guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature (T_L) at 30°C ±1°C, 3/8" from the diode body. 3. ZENER IMPEDANCE (Z₂) DERIVATION The report improduces individed from 60 seconds AC valters which results when an AC surrent begins on recovering an armound a guarantee 10% of the The zener impedance is derived from 60 seconds AC voltage, which results when an AC current having an rms value equal to 10% of the DC zener current (I_{ZT} or I_{ZK}) is superimposed on I_{ZT} or I_{ZK} . Figure 1. Power Temperature Derating Curve Figure 2. Typical Thermal Response L, Lead Length = 3/8 Inch Figure 3. Maximum Surge Power Figure 4. Typical Reverse Leakage #### **APPLICATION NOTE** Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, T_L, should be determined from: $$T_L = \theta_{LA} P_D + T_A$$ θ_{LA} is the lead-to-ambient thermal resistance (°C/W) and P_D is the power dissipation. The value for θ_{LA} will vary and depends on the device mounting method. θ_{LA} is generally 30–40°C/W for the various clips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_L , the junction temperature may be determined by: $$T_{,J} = T_{I} + \Delta T_{,JI}$$ ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses (L = 3/8 inch) or from Figure 10 for dc power. $$\Delta T_{JL} = \theta_{JL} P_D$$ For worst-case design, using expected limits of I_Z , limits of P_D and the extremes of T_J (ΔT_J) may be estimated. Changes in voltage, V_Z , can then be found from: $$\Delta V = \theta_{VZ} \Delta T_{J}$$ θ_{VZ} , the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded. #### **TEMPERATURE COEFFICIENT RANGES** (90% of the Units are in the Ranges Indicated) Figure 5. Units To 12 Volts Figure 6. Units 10 To 400 Volts #### **ZENER VOLTAGE versus ZENER CURRENT** Figure 7. $V_Z = 3.3$ thru 10 Volts Figure 9. $V_Z = 100 \text{ thru } 400 \text{ Volts}$ Figure 10. Typical Thermal Resistance #### **OUTLINE DIMENSIONS** ## Zener Voltage Regulators – Axial Leaded ## 3 Watt DO-41 Surmetic™ 30 PLASTIC DO-41 CASE 59-10 ISSUE R - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 59-04 OBSOLETE, NEW STANDARD 59-09. 4. 59-03 OBSOLETE, NEW STANDARD 59-10. 5. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY 6. POLARITY DENOTED BY CATHODE BAND. 7. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION. | | INCHES | | MILLIM | ETERS | |-----|--------|-------|--------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.161 | 0.205 | 4.10 | 5.20 | | В | 0.079 | 0.106 | 2.00 | 2.70 | | D | 0.028 | 0.034 | 0.71 | 0.86 | | F | | 0.050 | | 1.27 | | K | 1 000 | | 25 40 | | Surmetic is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.