

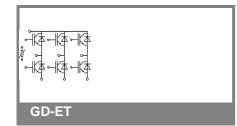
IGBT Module

SK35GD12T4ET

Target Data

Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor


Typical Applications*

Remarks

• V_{CE,sat} , V_F = chip level value

Absolute Maximum Ratings				T _s = 25 °C, unless otherwise specified				
Symbol	Conditions		ĺ	Values	Units			
IGBT								
V _{CES}	T _j = 25 °C			1200	V			
I _C	T _j = 175 °C	T _s = 25 °C		44	Α			
		$T_s = 70 ^{\circ}C$		35	Α			
I _{CRM}	I _{CRM} = 3 x I _{Cnom}			105	Α			
V_{GES}				± 20	V			
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C		10	μs			
Inverse D								
I _F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		40	Α			
		$T_s = 70 ^{\circ}C$		31	Α			
I _{FRM}	I _{FRM} = 3 x I _{Fnom}			105	Α			
I _{FSM}	t _p = 10 ms; half sine wave	$T_j = 150 ^{\circ}C$		225	Α			
Module								
I _{t(RMS)}					Α			
T_{vj}				-40 + 175	°C			
T _{stg}				-40 +125	°C			
V _{isol}	AC, 1 min.			2500	V			

Characteristics $T_s =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.2 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,005	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V				120	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 150 °C		1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		21,4		mΩ
		T _j = 150°C		35,7		mΩ
V _{CE(sat)}	I _{Cnom} = 35 A, V _{GE} = 15 V			1,85	2,05	V
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V
C _{ies}				1,95		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,155		nF
C _{res}				0,115		nF
Q_G	V _{GE} = -7V+15V			190		nC
t _{d(on)}				28		ns
t _r	$R_{Gon} = 22 \Omega$	V _{CC} = 600V		25		ns
E _{on}		I _C = 35A		3,27		mJ
t _{d(off)}	$R_{Goff} = 22 \Omega$ di/dt = 2900 A/µs	T _j = 150 °C V _{GE} = ±15 V		303 70		ns
t _f E _{off}	αι/αι – 2000 Α/μ5	V _{GE} - ±13 V		3,3		ns mJ
R _{th(j-s)}	per IGBT	1		1,21		K/W

SEMITOP® 3

IGBT Module

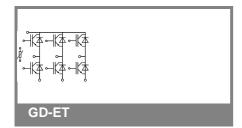
SK35GD12T4ET

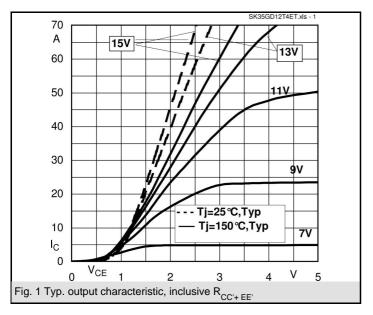
Target Data

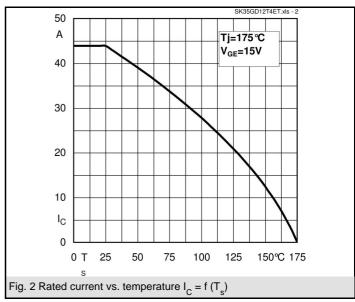
Features

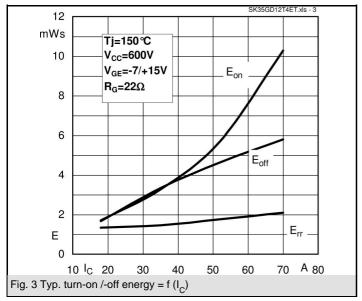
- · One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

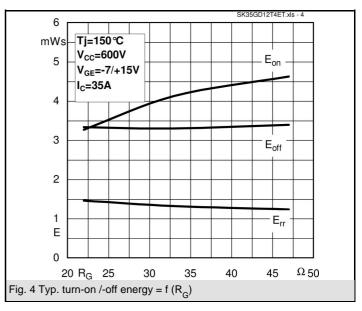
Typical Applications*


Remarks


• V_{CE,sat} , V_F = chip level value


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 35 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2,3	2,62	V	
		$T_j = 150 ^{\circ}C_{chiplev.}$		2,29	2,62	V	
V _{F0}		T _j = 25 °C		1,3	1,5	V	
		T _j = 150 °C		0,9	1,1	V	
r _F		T _j = 25 °C		27	32	mΩ	
		T _j = 150 °C		39,7	43,4	$m\Omega$	
I _{RRM}	I _F = 35 A	T _j = 150 °C		30		Α	
Q_{rr}	di/dt = 2900 A/µs			2		μC	
E _{rr}	V _{CC} = 600V			1,46		mJ	
$R_{th(j-s)D}$	per diode			1,55		K/W	
M _s	to heat sink		2,25		2,5	Nm	
w				30		g	
Temperature sensor							
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

