MEMORY CMOS 4 M × 1 BIT FAST PAGE MODE DYNAMIC RAM

MB81V4100C-60/-70

CMOS 4,194,304 \times 1 BIT Fast Page Mode Dynamic RAM

■ DESCRIPTION

The Fujitsu MB81V4100C is a fully decoded CMOS Dynamic RAM (DRAM) that contains a total of 4,194,304 memory cells in a x1 configuration. The MB81V4100C features a "fast page" mode of operation whereby high-speed random access of up to 4,096-bits of data within the same row can be selected. The MB81V4100C DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and high bandwidth are basic requirements of the design. Since the standby current of the MB81V4100C is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

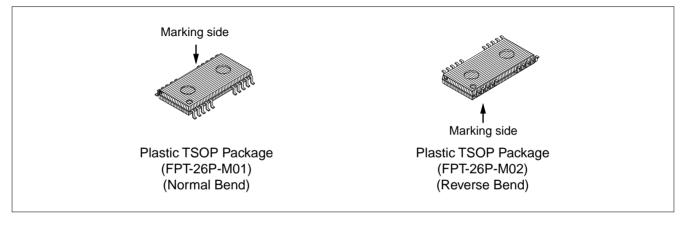
The MB81V4100C is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon process. This process, coupled with advanced stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB81V4100C are not critical and all inputs are LVTTL compatible.

■ PRODUCT LINE & FEATURES

Param	eter	MB81V4100C-60	MB81V4100C-70
RAS Access Time		60 ns max.	70 ns max.
CAS Access Time		15 ns min.	20 ns min.
Address Access Time		30 ns max.	35 ns max.
Random Cycle Time		110 ns max.	125 ns max.
Fast Page Mode Cycle Time	e	40 ns min.	45 ns min.
Low power Dissipation	Operating current	220 mW max.	195 mW max.
	Standby current	7.2 mW max. (TTL level)/3.6	6 mW max. (CMOS level)

- 4,194,304 words × 1 bit organization
- Silicon gate, CMOS, 3D-Stacked Capacitor Cell
- All input and output are LVTTL compatible
- 1024 refresh cycles every 16.4 ms
- · Self refresh function

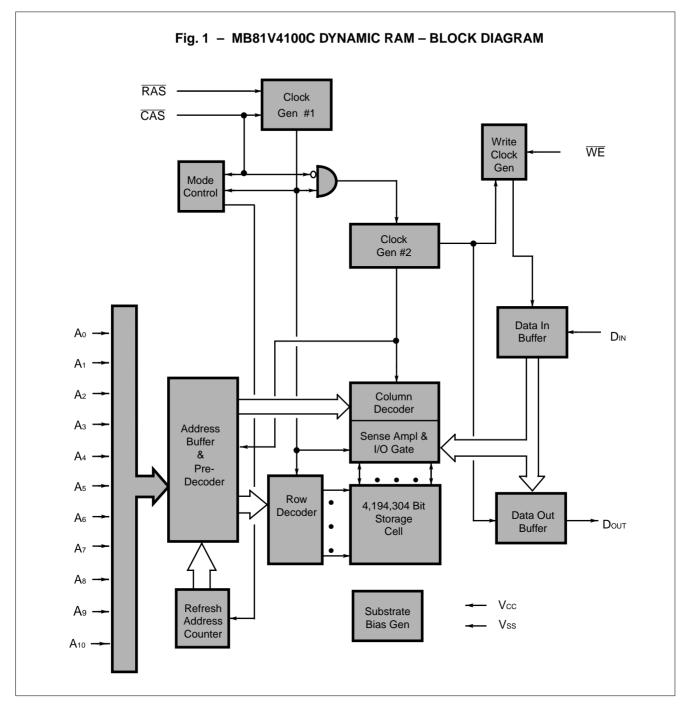
- · Common I/O capability by using early write
- RAS-only, CAS-before-RAS, or Hidden Refresh
- Fast Page Mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	Vin, Vout	–0.5 to +4.6	V
Voltage of Vcc supply relative to Vss	Vcc	-0.5 to +4.6	V
Power Dissipation	PD	1.0	W
Short Circuit Output Current	Ιουτ	-50 to +50	mA
Storage Temperature	Тѕтс	-55 to +125	٥C

WARNING: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


PACKAGE

Package and Ordering Information

- 26-pin plastic (300 mil) TSOP-II with normal bend leads, order as MB81V4100C-xxPFTN

- 26-pin plastic (300 mil) TSOP-II with reverse bend leads, order as MB81V4100C-xxPFTR

■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Тур	Max	Unit
Input Capacitance, Ao toA10, DIN	CIN1		5	pF
Input Capacitance, RAS, CAS, WE	CIN2		7	pF
Output Capacitance, Dout	Соит		7	pF

■ PIN ASSIGNMENTS AND DESCRIPTIONS

		26-Pin TSOP: (TOP VIEW)
<normal bend<="" th=""><td>1 : FPT-26P-M01></td><td></td></normal>	1 : FPT-26P-M01>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	
$ \begin{array}{c} A_0 \\ & 9 \\ A_1 \\ A_2 \\ & 11 \\ A_3 \\ & 12 \\ V_{CC} \\ & 13 \\ \end{array} $	18	

<Reverse Bend : FPT-26P-M02>

Vss 🗖	26	1		DIN
Dout 🞞	25	2		WE
	24	3		RAS
N.C. 🎞	23	4		N.C.
A9 🗖	22	5	⊐	A10
As 🗖	18	9	Ь	A
A7 🗖	17	10		A ₁
A6 🗖	16	11		A ₂
A5 🗖	15	12		Aз
A4 🗖	14	13		Vcc
≜'				
	\geq			
	-/			
\sim				

Designator	Function
DIN	Data Input.
Dout	Data Output.
WE	Write Enable.
RAS	Row address strobe.
N.C.	No connection.
A ₀ to A ₁₀	Address inputs.
Vcc	+3.3 volt power supply.
CAS	Column address strobe.
Vss	Circuit ground.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp
		Vcc	3.0	3.3	3.6	V	
Supply Voltage		Vss	0	0	0	v	
Input High Voltage, all inputs	1	Vін	2.0	_	Vcc + 0.3	V	0°C to +70°C
Input Low Voltage, all inputs*	1	VIL	-0.3		0.8	V	

*: Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty-two input bits are required to decode any one of 4,194,304 cell addresses in the memory matrix. Since only eleven address bits (A₀-A₁₀) are available, the column and row inputs are separately strobed by \overline{RAS} and \overline{CAS} as shown in Figure 5. First, eleven row address bits are applied on pins A₀-through-A₁₀ and latched with the row address strobe (\overline{RAS}) then, eleven column address bits are applied and latched with the column address strobe (\overline{CAS}). Both row and column addresses must be stable on or before the falling edge of \overline{RAS} and \overline{CAS} , respectively. The flow-through type latch is used for the address latches ; thus, address information appearing after t_{RAH} (min.)+ t_T is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of two basic ways–an early write cycle and a read-modify-write cycle. The falling edge of \overline{WE} or \overline{CAS} , whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data is strobed by \overline{CAS} and the setup/hold times are referenced to the falling edge of \overline{CAS} because \overline{WE} goes Low before \overline{CAS} . In a delayed write or a read-modify-write cycle, \overline{WE} goes Low after \overline{CAS} ; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the falling edge of \overline{WE} .

DATA OUTPUT

The three-state buffers are LVTTL compatible with a fanout of one TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- t_{RAC} : from the falling edge of \overline{RAS} when t_{RCD} (max.) is satisfied.
- tcac : from the falling edge of \overline{CAS} when trcd is greater than trcd (max.).
- taa : from column address input when tRAD is greater than tRAD (max.).

The data remains valid until either \overline{CAS} returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, RAS is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of 4,096-bits can be accessed and, when multiple MB81V4100Cs are used, CAS is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted.

■ DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) Notes 3

Derem		Notes	Cumhal	Conditions		Values		11
Parame	Parameter Notes		Symbol	Conditions	Min.	Тур.	Max.	Unit
Output high voltage	Output high voltage		Vон	Iон = −2 mA	2.4		_	V
Output low voltage		1	Vol	lo∟ = 2 mA			0.4	V
Input leakage curre	nt (an	y input)	lı(L)	$\begin{array}{l} 0 \; V \leq V_{\text{IN}} \leq 3.6 \; \text{V}; \\ 3.0 \; \text{V} \leq \text{Vcc} \leq 3.6 \; \text{V}; \\ \text{Vss} = 0 \; \text{V}; \; \text{All other pins} \\ \text{not under test} = 0 \; \text{V} \end{array}$	-10	_	10	μΑ
Output leakage cur	rent		IO(L)	$0 \text{ V} \le V_{\text{OUT}} \le 3.6 \text{ V};$ Data out disabled	-10		10	
Operating current (Average power		MB81V4100C-60		RAS & CAS cycling;			61	mA
supply current)	2	MB81V4100C-70		t _{RC} = min.			54	
Standby current LVTTL level		LVTTL level		$\overline{RAS} = \overline{CAS} = V_{IH}$			2.0	mA
(Power supply current)		CMOS level		$\overline{RAS} = \overline{CAS} \ge V_{CC} - 0.2 V$			1.0	ШA
Refresh current#1 (Average power		MB81V4100C-60	Іссз	CAS = V⊮, RAS cycling;			61	mA
supply current)	2	MB81V4100C-70		t _{RC} = min.	_		54	ША
Fast page mode		MB81V4100C-60	- Icc4	RAS = V⊩, CAS cycling;			41	– mA
current	2	MB81V4100C-70	ICC4	t⊧c = min.	_		37	
Refresh current#2 (Average power		MB81V4100C-60		RAS cycling; CAS-before-RAS;			49	
supply current) 2 MB81V4100C-70		- Iccs	$t_{RC} = min.$	_		44	mA	
Refresh current#3		MB81V4100C-60		$\overline{RAS} = V_{IL}; \overline{CAS} = V_{IL}$			1000	
(Average power supply current)		MB81V4100C-70		Self refresh; t _{RASS} = min.			1000	μA

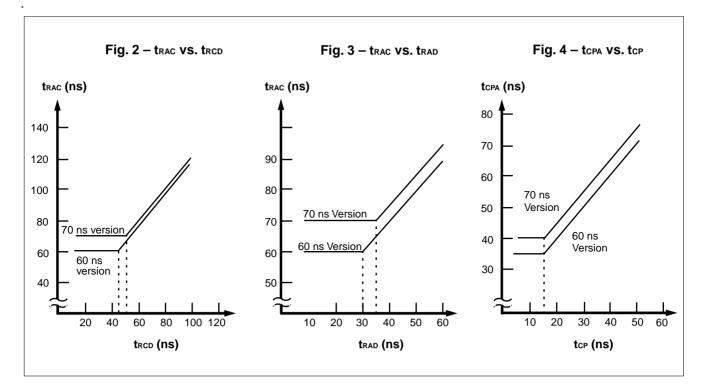
■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

No.	Parameter	Notes	Symbol	MB81V4	4100C-60	MB81V4	Unit	
NO.	Farameter	Notes	Symbol	Min.	Max.	Min.	Max.	Unit
1	Time Between Refresh		tref	—	16.4		16.4	ms
2	Random Read/Write Cycle Time		t RC	110		125		ns
3	Read-Modify-Write Cycle Time		t RWC	130		148		ns
4	Access Time from RAS	6, 9	t rac	—	60		70	ns
5	Access Time from CAS	7, 9	tcac	—	15	—	20	ns
6	Column Address Access Time	8, 9	t AA	—	30	—	35	ns
7	Output Hold Time		tон	0		0		ns
8	Output Buffer Turn On Delay Time		ton	0	_	0		ns
9	Output Buffer Turn Off Delay Time	10	toff	—	15		15	ns
10	Transition Time		t⊤	2	50	2	50	ns
11	RAS Precharge Time		t RP	40		45		ns
12	RAS Pulse Width		tras	60	100000	70	100000	ns
13	RAS Hold Time		trsh	15	_	20		ns
14	CAS to RAS Precharge Time		t CRP	0		0		ns
15	RAS to CAS Delay Time	11, 12	t RCD	20	45	20	50	ns
16	CAS Pulse Width		tcas	15	10000	20	10000	ns
17	CAS Hold Time		tсsн	60		70		ns
18	CAS Precharge Time (Normal)	17	t CPN	10		10		ns
19	Row Address Set Up Time		t asr	0		0	_	ns
20	Row Address Hold Time		t rah	10		10		ns
21	Column Address Set Up Time		tasc	0		0		ns
22	Column Address Hold Time		t сан	12		12		ns
23	RAS to Column Address Delay Time	13	t RAD	15	30	15	35	ns
24	Column Address to RAS Lead Time		t RAL	30		35		ns
25	Column Address to CAS Lead Time		t CAL	30		35		ns
26	Read Command Set Up Time		t RCS	0		0		ns
27	Read Command Hold Time Referenced to RAS	14	t rrh	0	_	0	_	ns
28	Read Command Hold Time Referenced to CAS	14	t RCH	0		0		ns
29	Write Command Set Up Time	15	twcs	0		0		ns
30	Write Command Hold Time		twcн	10		10		ns
31	WE Pulse Width		twp	10		10		ns
32	Write Command to RAS Lead Time		t rwL	15		18		ns
33	Write Command to CAS Lead Time		tcw∟	15	_	18	_	ns

■ AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

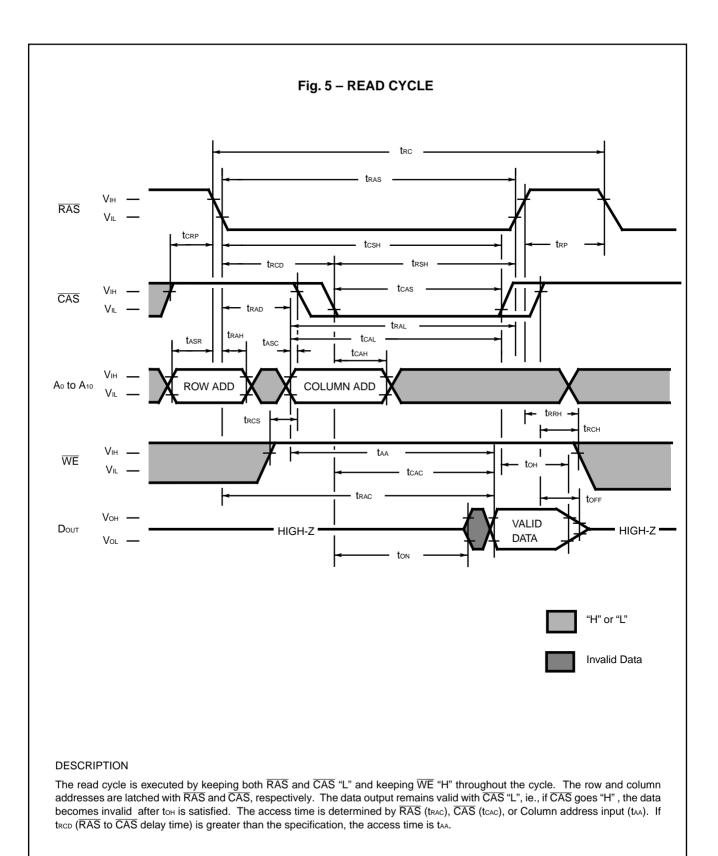

Na	Devementer Netter	Cumb al	MB81V4	100C-60	MB81V4	100C-70	Unit
No.	Parameter Notes	Symbol	Min.	Max.	Min.	Max.	
34	DIN Set Up Time	tos	0	_	0	—	ns
35	DIN Hold Time	tон	10	_	10	—	ns
36	RAS to WE Delay Time15	t rwd	60	_	70	_	ns
37	CAS to WE Delay Time 15	tcwp	15	_	20	—	ns
38	Column Address to WE Delay Time 15	tawd	30	—	35	—	ns
39	RAS Precharge Time to CAS Active Time (Refresh cycles)	t RPC	5	_	5	_	ns
40	CAS Set Up Time for CAS-before-RAS Refresh	t CSR	0	_	0	_	ns
41	CAS Hold Time for CAS-before-RAS Refresh	tchr	10	—	10	—	ns
42	WE Set Up Time from RAS [18]	twsr	0	—	0	—	ns
43	WE Hold Time from RAS [18]	twhr	10	_	10	—	ns
51	Fast Page Mode Read/Write Cycle Time	t _{PC}	40	_	45	_	ns
52	Fast Page Mode Read-Modify-Write Cycle Time	t PRWC	60	_	68		ns
53	Access Time from CAS Precharge 9, 16	t CPA	—	35		40	ns
54	Fast Page Mode CAS Precharge Time	t _{CP}	10	—	10	—	ns
55	Fast Page Mode RAS Pulse width	t RASP		200000		200000	ns
56	Fast Page Mode \overline{RAS} Hold Time from \overline{CAS} Precharge	tкнср	35	_	40	_	ns
57	Fast Page Mode \overline{CAS} Precharge to \overline{WE} Delay Time	t CPWD	35	_	40	_	ns

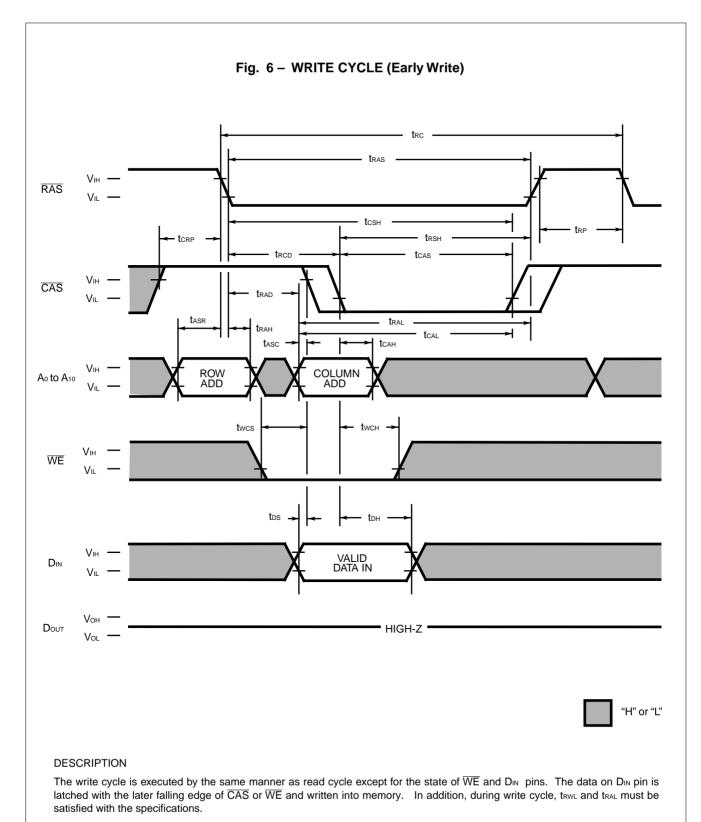
Notes: 1. Referenced to Vss

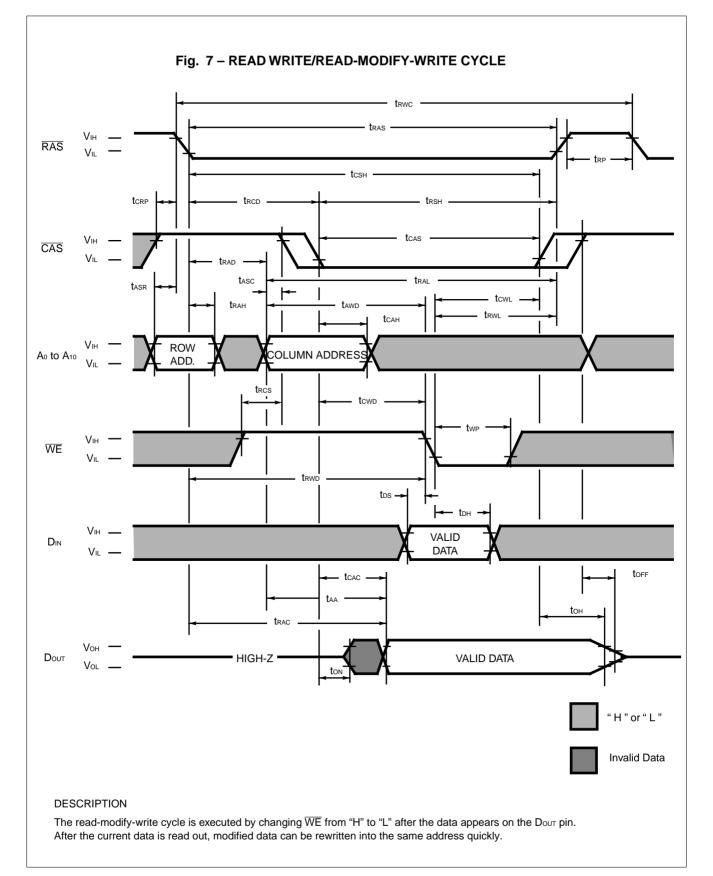
2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.

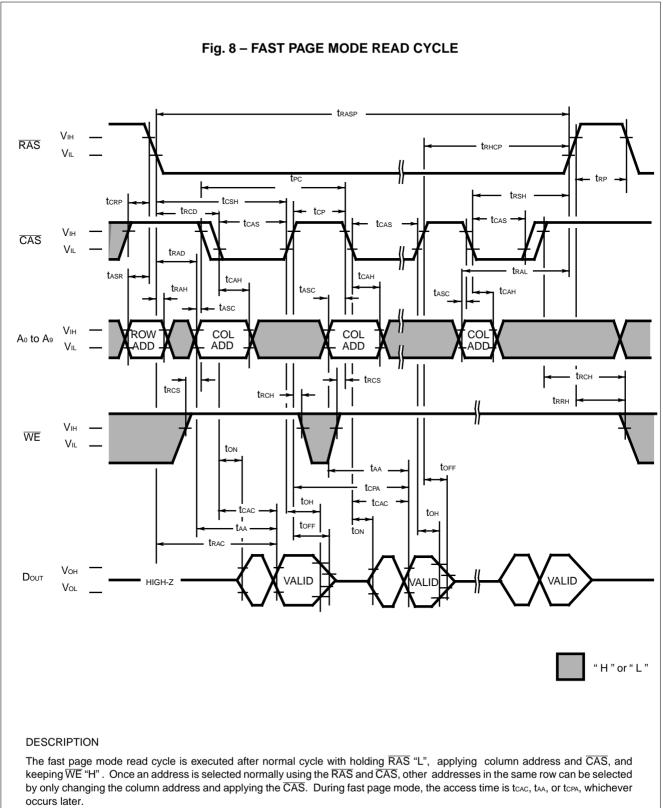
Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. Icc1, Icc3 and Icc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. Icc4 is specified at one time of address change during one Page Cycle.

- 3. An Initial pause (RAS = CAS = V_H) of 200 μs is required after power-up followed by any eight RASonly cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume $t_T = 5$ ns.
- Input voltage levels are 0 V and 3.0 V, and input reference levels are V_{IH} (min.) and V_{IL} (max.) for measuring timing of input signals. Also, the transmission time (t_T) is measured between V_{IH} (min.) and V_{IL} (max.). The output reference levels are V_{OH} = 2.0 V and V_{OL} = 0.8 V.
- 6. Assumes that tRCD ≤ tRCD (max.), tRAD ≤ tRAD (max.). If tRCD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If $t_{RCD} \ge t_{RCD}$ (max.), $t_{RAD} \ge t_{RAD}$ (max.), and $t_{ASC} \ge t_{AA} t_{CAC} t_{T}$, access time is t_cac.
- 8. If trad \geq trad (max.) and tasc \leq taa tcac tt, access time is taa.
- 9. Measured with a load equivalent to one TTL loads and 100 pF.
- 10. toFF is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point only; if tRCD is greater than the specified tRCD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 12. trcd (min.) = trah (min.)+ 2tr + tasc (min.).
- 13. Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point only; if tRAD is greater than the specified tRAD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. twcs, tcwb, trwb and tawb are not a restrictive operating parameter. They are included in the data sheet as an electrical characteristic only. If twcs ≥ t wcs (min.), the cycle is an early write cycle and Dou⊤ pin will maintain high impedance state throughout the entire cycle. If tcwb ≥ tcwb (min.), trwb ≥ trwb (min.), and tawb ≥ tawb (min.), the cycle is a read-modify-write cycle and data from the selected cell will appear at the Dou⊤ pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dou⊤ pin, and write operation can be executed by satisfying trwb, tcwb, tcab and trab specifications.
- 16. tcpa is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max.).
- 17. Assumes that \overline{CAS} -before- \overline{RAS} refresh.
- 18. Assumes that Test mode function.

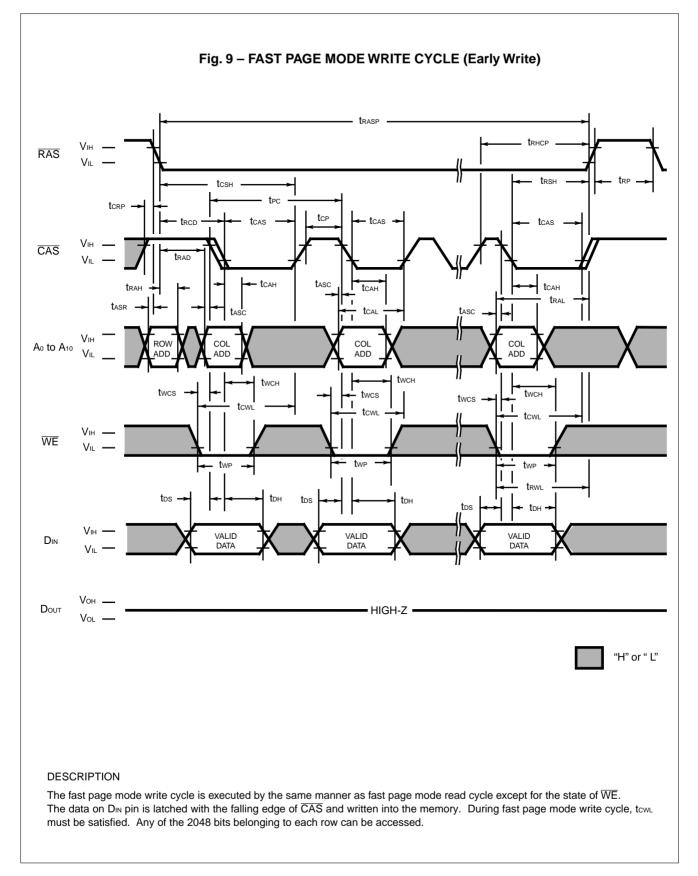


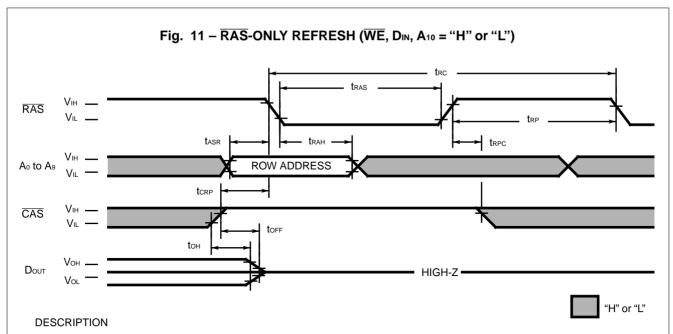

■ FUNCTIONAL TRUTH TABLE

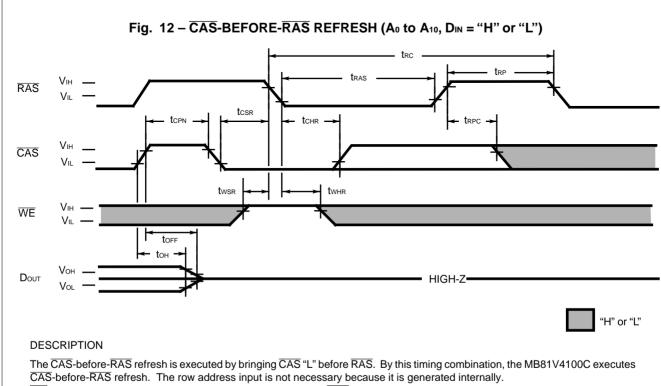

Operation Made	Clo	ock Inj	put	Addres	s Input	Da	ata	Refresh	Note	
Operation Mode	RAS	CAS	WE	Row	Column	Input	Output	Reliesh	Note	
Standby	Н	Н	Х	_	—	_	High-Z	_		
Read Cycle	L	L	Н	Valid	Valid	_	Valid	Yes*1	trcs ≥ trcs (min.)	
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes*1	twcs ≥ twcs (min.)	
Read-Modify-Write Cycle	L	L	$H\toL$	Valid	Valid	$X \rightarrow Valid$	Valid	Yes*1	tcw⊳ ≥ tcw⊳ (min.)	
RAS-only Refresh Cycle	L	Н	х	Valid	_		High-Z	Yes		
CAS-before-RAS Refresh Cycle	L	L	н	_	_	_	High-Z	Yes	tcsr ≥ tcsr (min.)	
Hidden Refresh Cycle	$H \rightarrow L$	L	н	_	_	_	Valid	Yes	Previous data is kept	
Test mode Set Cycle (CBR)	L	L	L	_	_		High-Z	Yes	tcsr ≥ tcsr (min.) twsr ≥ twsr (min.)	
Test mode Set Cycle (Hidden)	$H \rightarrow L$	L	L	_			Valid	Yes	tcsr ≥ tcsr (min.) twsr ≥ twsr (min.)	

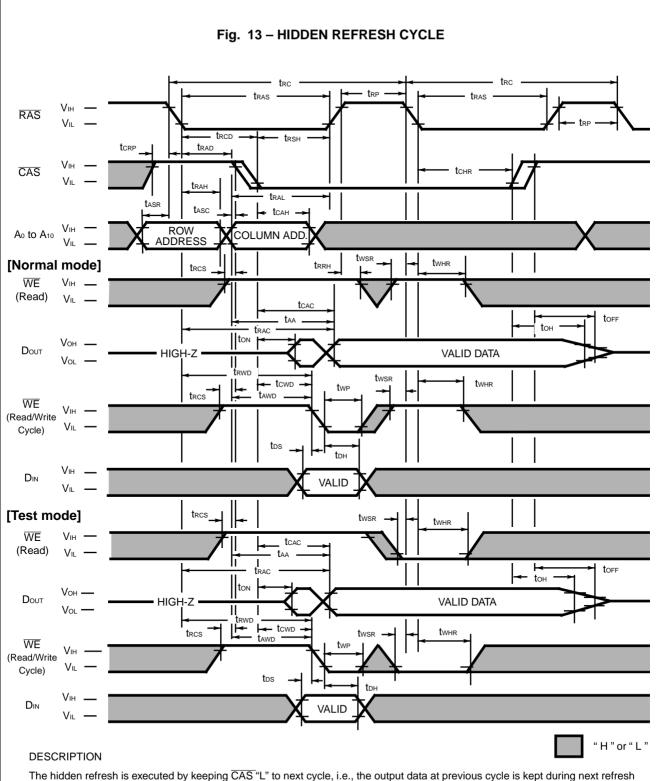

Notes: X : "H" or "L"

*1 : It is impossible in Fast Page Mode.

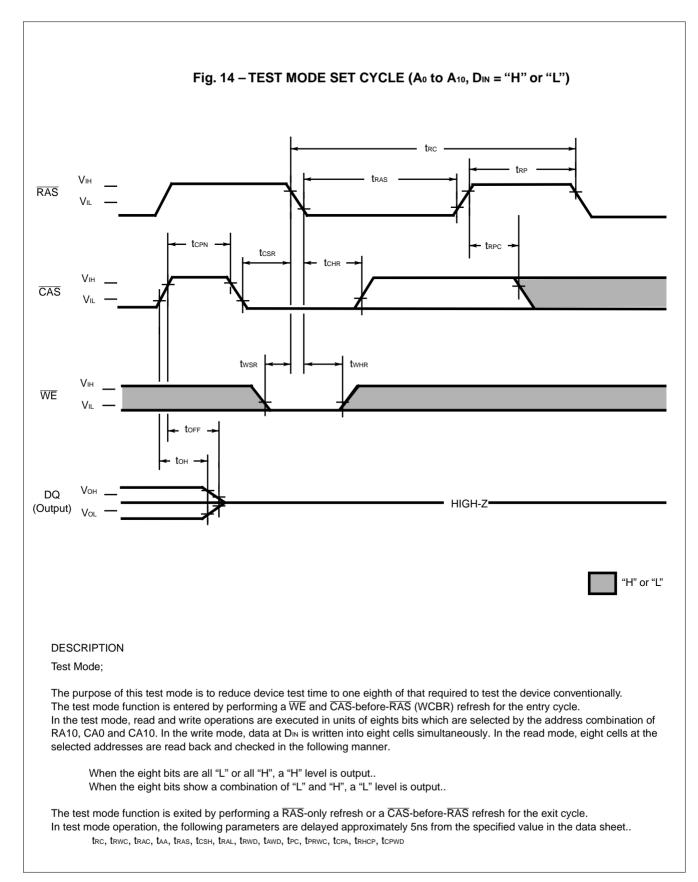


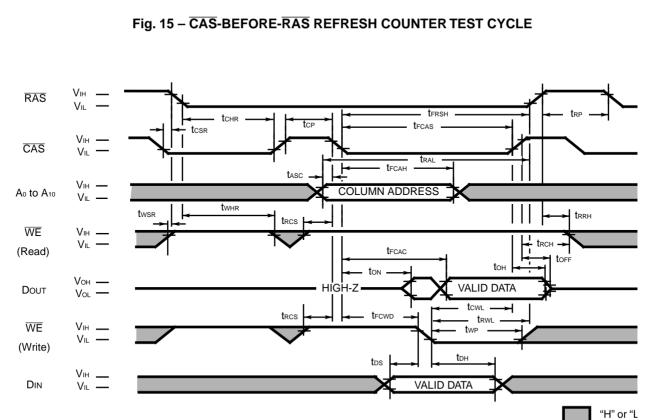



Any of the 2048 bits belonging to each row can be accessed.



The refresh of DRAM is executed by normal read, write or read-modify-write cycle, i.e., the cells on the one row line are also refreshed by executing one of three cycles. 1024 row address must be refreshed every 16.4ms period. During the refresh cycle, the cell data connected to the selected row are sent to sense amplifier and re-written to the cell. The MB81V4100C has three types of refresh modes, RAS-only refresh, CAS-before-RAS refresh, and Hidden refresh.


The RAS-only refresh is executed by keeping RAS "L" and CAS "H" throughout the cycle. The row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, the D_{0UT} pin is kept in a high impedance state.



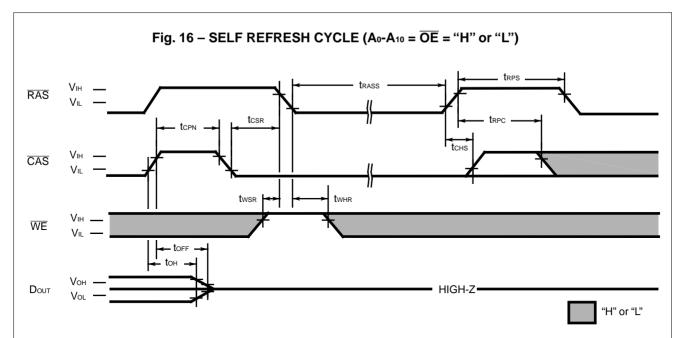
WE must be held "H" for the specified set up time (twsR) before RAS goes "L" in order not to enter "test mode".

The hidden refresh is executed by keeping CAS "L" to next cycle, i.e., the output data at previous cycle is kept during next refresh cycle. Since the \overline{CAS} is kept low continuously from previous cycle, followed refresh cycle should be \overline{CAS} -before- \overline{RAS} refresh. WE must be held "H" for the specified set up time (twsR) before \overline{RAS} goes "L" for the secound time in order not to enter "test mode" to be specified later.

DESCRIPTION

A special timing sequence using the \overline{CAS} -before- \overline{RAS} refresh counter test cycle provides a convenient method to verify the functionality of \overline{CAS} -before- \overline{RAS} refresh circuitry. If, after a \overline{CAS} -before- \overline{RAS} refresh cycle. \overline{CAS} makes a transition from High to Low while \overline{RAS} is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows:

Row Address: Bits A_0 through A_{10} are defined by the on-chip refresh counter. Column Address: Bits A_0 through A_{10} are defined by latching levels on A_0 - A_{10} at the second falling edge of \overline{CAS} .


The CAS-before-RAS Counter Test procedure is as follows ;

- 1) Initialize the internal refresh address counter by using 8 RAS-only refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 1024 row addresses at the same column address by using normal write cycles.
- 4) Read "0" written in procedure 3) and check; simultaneously write "1" to the same addresses by using CAS-before-RAS refresh counter test (read-modify-write cycles). Repeat this procedure 1024 times with addresses generated by the internal refresh address counter.
- 5) Read and check data written in procedure 4) by using normal read cycle for all 1024 memory locations.
- 6) Reverse test data and repeat procedures 3), 4), and 5).

No.	Parameter	Symbol	MB81V4	4100C-60	MB81V	4100C-70	Unit
NO.	Farameter	Symbol	Min.	Max.	Min.	Max.	Unit
90	Access Time from \overline{CAS}	t FCAC	_	35	—	40	ns
91	Column Address Hold Time	t FCAH	30		30	—	ns
92	CAS to WE Delay Time	t FCWD	35		40	—	ns
93	CAS Pulse Width	t FCAS	35		40	—	ns
94	RAS Hold Time	t FRSH	35		40	_	ns

(At recommended operating conditions unless otherwise noted.)

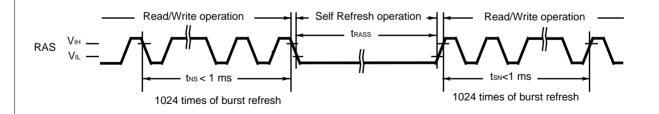
Note. Assumes that CAS-before-RAS refresh counter test cycle only.

(At recommended operating conditions unless otherwise noted.)

No.	Parameter	Symbol	MB81V4100C-60		MB81V4100C-70		Unit
			Min.	Max.	Min.	Max.	Unit
100	RAS Pulse Width	trass	100	—	100	_	μs
101	RAS Precharge Time	trps	110	_	125	—	ns
102	CAS Hold Time	tснs	-50	_	-50	—	ns

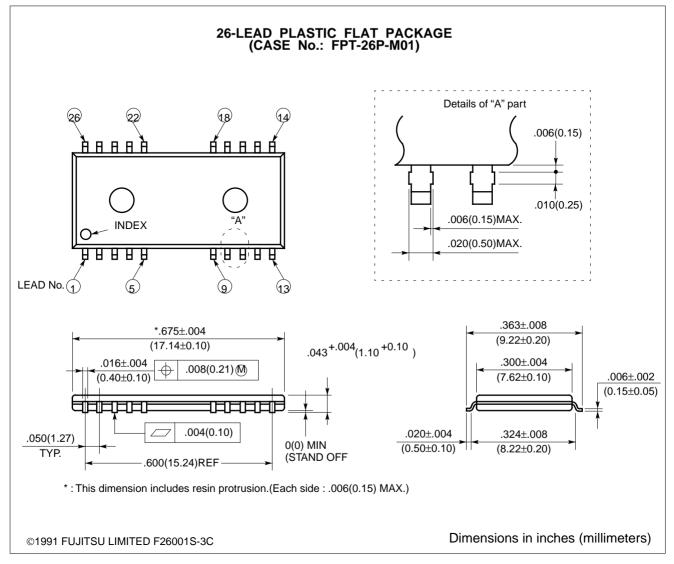
Note. Assumes self refresh cycle only

DESCRIPTION

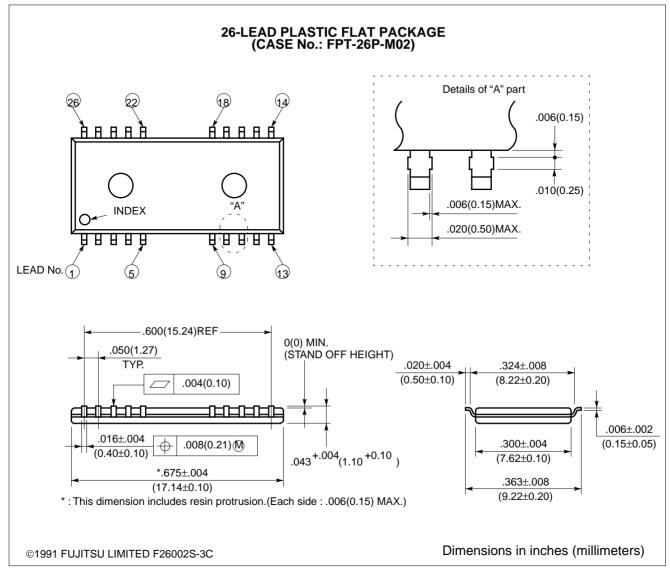

The self refresh cycle provides a refresh operation without external clock and external Address. Self refresh control circuit on chip is operated in the self refresh cycle and refresh operation can be automatically executed using internal refresh address counter. If \overline{CAS} goes to "L" before \overline{RAS} goes to "L" (CBR) and the condition of \overline{CAS} "L" and \overline{RAS} "L" is kept for term of trans (more than 100 μ s), the device can be entered the self refresh cycle. And after that, refresh operation is automatically executed per fixed interval using internal refresh address counter during " \overline{RAS} =L" and " \overline{CAS} =L".

And exit from self refresh cycle is performed by toggling of RAS and CAS to "H" with specifying tcHs min.

Restruction for Self refresh operation ;


For self refresh operation, the notice below must be considered.

- 1) In the case that distribute CBR refresh are operated in read/write cycles
 - Self refresh cycles can be executed without special rule if 1024 cycles of distribute CBR refresh are executed within tREF max.
- 2) In the case that burst CBR refresh or RAS-only refresh are operated in read/write cycles 1024 times of burst CBR refresh or 1024 times of burst RAS-only refresh must be executed before and after Self refresh cycles.


■ PACKAGE DIMENSIONS

(Suffix: -PFTN)

■ PACKAGE DIMENSIONS (Continued)

(Suffix: -PFTR)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281 0770 Fax: (65) 281 0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.