SHARP

	I	Date	Jul. 24. 2002
PRELIMINARY DA		137-	
	DATASH		
	32M (x16) Flash Memory		
Model No :	LH28F320BFHG-PBT	LZN	1
 This device detechant is an 	biect to change without potice		
○ Copyright Sharp Co., Ltd. All	bject to change without notice. rights reserved. No reproduction or republication without written permi	ission.	
\bigcirc Contact your local Sharp s	ales office to obtain the latest datasheet.		

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

PAGE

0.75mm pitch 48-Ball CSP (7mm×7mm) Pinout 3
Pin Descriptions 4
Simultaneous Operation Modes Allowed with Four Planes 5
Memory Map 6
Identifier Codes and OTP Address for Read Operation 7
Identifier Codes and OTP Address for Read Operation on Partition Configuration 7
OTP Block Address Map for OTP Program 8
Bus Operation
Command Definitions 10
Functions of Block Lock and Block Lock-Down 12
Block Locking State Transitions upon Command Write 12
Block Locking State Transitions upon WP# Transition 13
Status Register Definition 14

Extended Status Register Definition 15
Partition Configuration Register Definition 16
Partition Configuration 16
1 Electrical Specifications 17
1.1 Absolute Maximum Ratings 17
1.2 Operating Conditions 17
1.2.1 Capacitance 18
1.2.2 AC Input/Output Test Conditions 18
1.2.3 DC Characteristics 19
1.2.4 AC Characteristics - Read-Only Operations
1.2.5 AC Characteristics - Write Operations
1.2.6 Reset Operations 26
1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance
2 Related Document Information

1

PAGE

LH28F320BFHG-PBTLZN 32Mbit (2Mbit×16) Page Mode Dual Work Flash MEMORY

■ 32M density with 16Bit I/O Interface

- High Performance Reads
 70/25ns 8-Word Page Mode
- Configurative 4-Plane Dual Work
 - Flexible Partitioning
 - Read operations during Block Erase or (Page Buffer) Program
 - Status Register for Each Partition

Low Power Operation

- 2.7V Read and Write Operations
- + $\mathrm{V}_{\mathrm{CCQ}}$ for Input/Output Power Supply Isolation
- Automatic Power Savings Mode Reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- High Performance Program with Page Buffer
 - 16-Word Page Buffer
 - + 5µs/Word (Typ.) at 12V $V_{\ensuremath{PP}}$
- Operating Temperature -40°C to +85°C
- CMOS Process (P-type silicon substrate)

- Flexible Blocking Architecture
 - Eight 4K-word Parameter Blocks
 - Sixty-three 32K-word Main Blocks
 - Bottom Parameter Location
- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Absolute Protection with $V_{PP} \leq V_{PPLK}$
 - Block Erase, Full Chip Erase, (Page Buffer) Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 11µs/Word (Typ.) Programming
 - 12V No Glue Logic 9µs/Word (Typ.) Production Programming and 0.5s Erase (Typ.)
- Cross-Compatible Command Support
 - Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 0.75mm pitch 48-Ball CSP (7mm×7mm)
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product, which is 4-Plane Page Mode Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =2.7V-3.6V and V_{PP} =1.65V-3.6V or 11.7V-12.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states. Furthermore, its newly configurative partitioning architecture allows flexible dual work operation.

The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.

Fast program capability is provided through the use of high speed Page Buffer Program.

Special OTP (One Time Program) block provides an area to store permanent code such as a unique number.

* ETOX is a trademark of Intel Corporation.

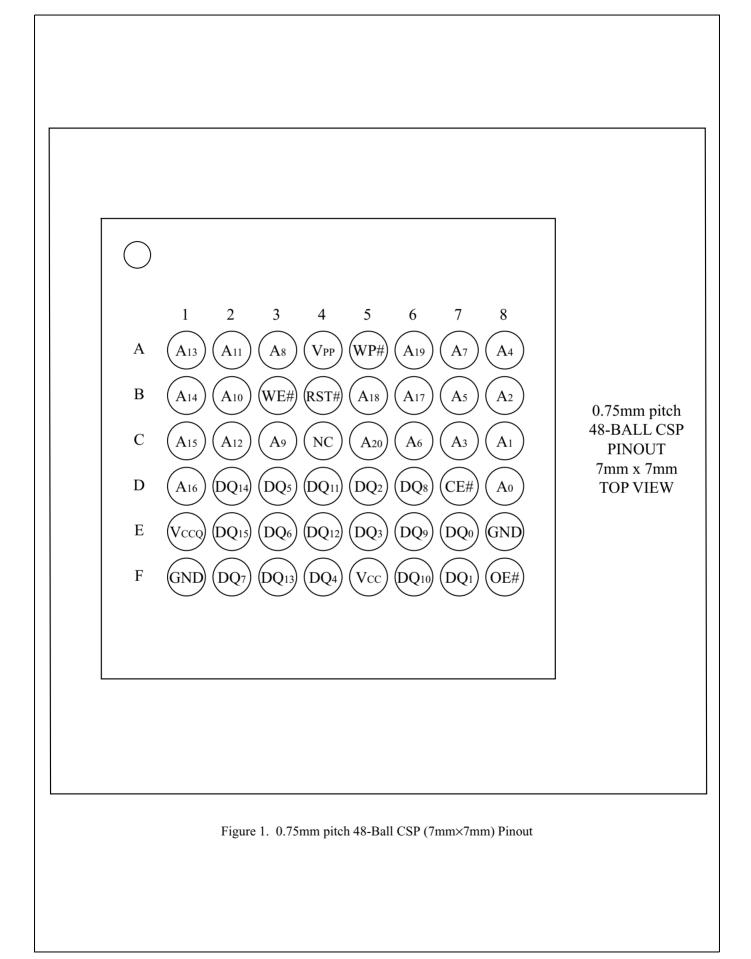


Table 1. Pin Descriptions Symbol Type Name and Function ADDRESS INPUTS: Inputs for addresses. 32M: A₀-A₂₀ INPUT $A_0 - A_{20}$ DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, INPUT/ DQ₀-DQ₁₅ identifier code and partition configuration register code reads. Data pins float to high-OUTPUT impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle. CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense CE# **INPUT** amplifiers. CE#-high (VIH) deselects the device and reduces power consumption to standby levels. RESET: When low (VII), RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (VIH) enables normal operation. After INPUT RST# power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down. OUTPUT ENABLE: Gates the device's outputs during a read cycle. OE# INPUT WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are WE# INPUT latched on the rising edge of CE# or WE# (whichever goes high first). WRITE PROTECT: When WP# is V_{II} , locked-down blocks cannot be unlocked. Erase WP# INPUT or program operation can be executed to the blocks which are not locked and not lockeddown. When WP# is V_{IH}, lock-down is disabled. MONITORING POWER SUPPLY VOLTAGE: V_{PP} is not used for power supply pin. With V_{PP}≤V_{PPLK}, block erase, full chip erase, (page buffer) program or OTP program cannot be executed and should not be attempted. Applying $12V\pm0.3V$ to V_{PP} provides fast erasing or fast programming mode. In this INPUT Vpp mode, V_{PP} is power supply pin. Applying 12V±0.3V to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. VPP may be connected to 12V±0.3V for a total of 80 hours maximum. Use of this pin at 12V beyond these limits may reduce block cycling capability or cause permanent damage. DEVICE POWER SUPPLY (2.7V-3.6V): With V_{CC}≤V_{LKO}, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC SUPPLY V_{CC} Characteristics) produce spurious results and should not be attempted. INPUT/OUTPUT POWER SUPPLY (2.7V-3.6V): Power supply for all input/output V_{CCQ} SUPPLY pins. GND SUPPLY GROUND: Do not float any ground pins. NC NO CONNECT: Lead is not internally connected; it may be driven or floated.

Table 2. Simulaneous Operation Modes Anowed with Four Frances											
			THEN T	THE MO	DES ALL	OWED IN	THE OTI	HER PAI	RTITION I	S:	
IF ONE PARTITION IS:	Read Array	Read ID/OTP	Read Status	Read Query	Word Program	Page Buffer Program	OTP Program	Block Erase	Full Chip Erase	Program Suspend	erase
Read Array	Х	Х	Х	Х	Х	Х		Х		Х	Х
Read ID/OTP	Х	Х	Х	Х	Х	Х		Х		Х	Х
Read Status	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х
Read Query	Х	Х	Х	Х	Х	Х		Х		Х	Х
Word Program	Х	Х	Х	Х							Х
Page Buffer Program	Х	Х	Х	Х							Х
OTP Program			Х								
Block Erase	Х	Х	Х	Х							
Full Chip Erase			Х								
Program Suspend	Х	Х	Х	Х							Х
Block Erase Suspend	Х	Х	Х	Х	Х	Х				Х	

Table 2. Simultaneous Operation Modes Allowed with Four $Planes^{(1, 2)}$

"X" denotes the operation available.
 Configurative Partition Dual Work Restrictions:

Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing. Commands must be written to an address within the block targeted by that command.

				BLO 38	32K-WORD	0F8000H - 0FFFFFH
				37	32K-WORD	0F0000H - 0F7FFFH
				36	32K-WORD	0E8000H - 0EFFFFH
				35	32K-WORD	0E0000H - 0E7FFFH
			E)	34	32K-WORD	0D8000H - 0DFFFF
			PLANE	33	32K-WORD	0D0000H - 0D7FFF
	BLOCK NUMBER	ADDRESS RANGE		32	32K-WORD	0C8000H - 0CFFFFH
	70 32K-WORD	1F8000H - 1FFFFFH	(UNIFORM	31	32K-WORD	0C0000H - 0C7FFFH
Í	69 32K-WORD		AIFC	30	32K-WORD	0B8000H - 0BFFFF
	68 32K-WORD	1E8000H - 1EFFFFH	5	29	32K-WORD	0B0000H - 0B7FFFF
	67 32K-WORD	1E0000H - 1E7FFFH	Έl	28	32K-WORD	OA8000H - 0AFFFF
(E)	66 32K-WORD	1D8000H - 1DFFFFH	PLANE	27	32K-WORD	0A0000H - 0A7FFF
A	65 32K-WORD	1D0000H - 1D7FFFH	Id	26	32K-WORD	098000H - 09FFFFH
PLANE3 (UNIFORM PLANE)	64 32K-WORD	1C8000H - 1CFFFFH		20	32K-WORD	090000H - 097FFFH
R	63 32K-WORD	1C0000H - 1C7FFFH		24	32K-WORD	088000H - 08FFFFH
VIF(62 32K-WORD			23	32K-WORD	080000H - 087FFFH
5	61 32K-WORD					
IE3	60 32K-WORD	1A8000H - 1AFFFFH		22	32K-WORD	078000H - 07FFFFH
AN	59 32K-WORD	1A0000H - 1A7FFFH		21	32K-WORD	— 070000H - 077FFFH
Ы	58 32K-WORD	 198000H - 19FFFFH		20	32K-WORD	
	57 32K-WORD	190000H - 197FFFH		19	32K-WORD	 060000H - 067FFFH
	56 32K-WORD	– 188000H - 18FFFFH		18	32K-WORD	 058000H - 05FFFFH
	55 32K-WORD			17	32K-WORD	
				16	32K-WORD	
	54 32K-WORD	178000H - 17FFFFH	NE)	15	32K-WORD	
	53 32K-WORD		PLANE	14	32K-WORD	 038000H - 03FFFFH
	52 32K-WORD	168000H - 16FFFFH	ER P	13	32K-WORD	
	51 32K-WORD	160000H - 167FFFH	ir i	12	32K-WORD	
NE)	50 32K-WORD	158000H - 15FFFFH	PLANE0 (PARAME1	11	32K-WORD	020000H - 027FFFH
[TA]	49 32K-WORD	150000H - 157FFFH	AR	10	32K-WORD	
MP	48 32K-WORD		(P.	9	32K-WORD	
OR	47 32K-WORD	140000H - 147FFFH	NEC	8	32K-WORD	008000H - 00FFFFH
ZIF	46 32K-WORD	138000H - 13FFFFH	LA	7	4K-WORD	007000H - 007FFFH
5	45 32K-WORD	130000H - 137FFFH		6	4K-WORD	006000H - 006FFFH
VE2	44 32K-WORD	128000H - 12FFFFH		5	4K-WORD	005000H - 005FFFH
PLANE2 (UNIFORM PLANE)	43 32K-WORD	120000H - 127FFFH		4	4K-WORD	004000H - 004FFFH
Р	42 32K-WORD	118000H - 11FFFFH		3	4K-WORD	003000H - 003FFFH
	41 32K-WORD	110000H - 117FFFH		2	4K-WORD	002000H - 002FFFH
	40 32K-WORD	108000H - 10FFFFH		1	4K-WORD	001000H - 001FFFH
	39 32K-WORD	100000H - 107FFFH		0	4K-WORD	000000H - 000FFFH

Table 3.	Identifier Codes	and OTP Address	s for Read Operation
----------	------------------	-----------------	----------------------

		1		
	Code	Address $[A_{15}-A_0]^{(1)}$	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000H	00B0H	
Device Code	Bottom Parameter Device Code	0001H	00B5H	2
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	3
Code	Block is Locked	$DQ_0 = 1$	3	
	Block is not Locked-Down	Address + 2	$DQ_1 = 0$	3
	Block is Locked-Down		$DQ_1 = 1$	3
Device Configuration Code	Partition Configuration Register	0006Н	PCRC	4
OTP	OTP Lock	0080H	OTP-LK	5
	OTP	0081-0088H	OTP	6

1. The address A_{20} - A_{16} are shown in below table for reading the manufacturer, device, lock configuration,

device configuration code and OTP data.

2. Bottom parameter device has its parameter blocks in the plane0 (The lowest address).

3. DQ_{15} - DQ_2 are reserved for future implementation.

4. PCRC=Partition Configuration Register Code.

5. OTP-LK=OTP Block Lock configuration.

6. OTP=OTP Block data.

Partition C	Configuration I	Register ⁽²⁾	Address (32M-bit device)
PCR.10	PCR.9	PCR.8	[A ₂₀ -A ₁₆]
0	0	0	00H
0	0	1	00H or 08H
0	1	0	00H or 10H
1	0	0	00H or 18H
0	1	1	00H or 08H or 10H
1	1	0	00H or 10H or 18H
1	0	1	00H or 08H or 18H
1	1	1	00H or 08H or 10H or 18H

Table 4. Identifier Codes and OTP Address for Read Operation on Partition Configuration⁽¹⁾ (32M-bit device)

NOTES:

1. The address to read the identifier codes or OTP data is dependent on the partition which is selected when writing the Read Identifier Codes/OTP command (90H).

2. Refer to Table 12 for the partition configuration register.

000088H	
	Customer Programmable Area
000085H	
000084H	
	Factory Programmed Area
000081H	
000080H	Reserved for Future Implementation

Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

Mode	Notes	RST#	CE#	OE#	WE#	Address	V _{PP}	DQ ₀₋₁₅
Read Array	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	Х	Х	D _{OUT}
Output Disable		V _{IH}	V _{IL}	V _{IH}	V _{IH}	Х	Х	High Z
Standby		V _{IH}	V _{IH}	Х	Х	Х	Х	High Z
Reset	3	V _{IL}	Х	Х	Х	Х	Х	High Z
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 3 and Table 4	Х	See Table 3 and Table 4
Read Query	6,7	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Appendix	Х	See Appendix
Write	4,5,6	V _{IH}	V _{IL}	V _{IH}	V _{IL}	Х	Х	D _{IN}

Table 5. Bus $Operation^{(1,2)}$

Refer to DC Characteristics. When V_{PP}≤V_{PPLK}, memory contents can be read, but cannot be altered.
 X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or V_{PPH1/2} for V_{PP}. See DC Characteristics for V_{PPLK} and V_{PPH1/2} voltages.
 RST# at GND±0.2V ensures the lowest power consumption.

4. Command writes involving block erase, (page buffer) program or OTP program are reliably executed when V_{PP}=V_{PPH1/2} and V_{CC}=2.7V-3.6V.
 Command writes involving full chip erase are reliably executed when V_{PP}=V_{PPH1} and V_{CC}=2.7V-3.6V.
 Refer to Table 6 for valid D_{IN} during a write operation.

6. Never hold OE# low and WE# low at the same timing.

7. Refer to Appendix of LH28F320BF series for more information about query code.

	Та	able 6. C	Command	Definitions ⁽¹	1)			
	Bus		First Bus Cycle			Second Bus Cycle		
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾
Read Array	1		Write	PA	FFH			
Read Identifier Codes/OTP	≥2	4	Write	PA	90H	Read	IA or OA	ID or OD
Read Query	≥2	4	Write	PA	98H	Read	QA	QD
Read Status Register	2		Write	PA	70H	Read	PA	SRD
Clear Status Register	1		Write	PA	50H			
Block Erase	2	5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	5,9	Write	Х	30H	Write	Х	D0H
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥4	5,7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	8,9	Write	PA	B0H			
Block Erase and (Page Buffer) Program Resume	1	8,9	Write	PA	D0H			
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH
OTP Program	2	9	Write	OA	СОН	Write	OA	OD
Set Partition Configuration Register	2		Write	PCRC	60H	Write	PCRC	04H

1. Bus operations are defined in Table 5.

2. The address which is written at the first bus cycle should be the same as the address which is written at the second bus cvcle.

X=Any valid address within the device.

PA=Address within the selected partition.

IA=Identifier codes address (See Table 3 and Table 4).

QA=Query codes address. Refer to Appendix of LH28F320BF series for details.

BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.

WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. OA=Address of OTP block to be read or programmed (See Figure 3).

PCRC=Partition configuration register code presented on the address A₀-A₁₅.

3. ID=Data read from identifier codes. (See Table 3 and Table 4).

QD=Data read from query database. Refer to Appendix of LH28F320BF series for details.

SRD=Data read from status register. See Table 10 and Table 11 for a description of the status register bits.

WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.

OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.

N-1=N is the number of the words to be loaded into a page buffer.

4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code and the data within OTP block (See Table 3 and Table 4). The Read Query command is available for reading CFI (Common Flash Interface) information.

5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH}.

6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.

7. Following the third bus cycle, inputs the program sequential address and write data of "N" times. Finally, input the any valid address within the target partition to be programmed and the confirm command (D0H). Refer to Appendix of LH28F320BF series for details.

- 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
- 9. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.
- 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is V_{IL}. When WP# is V_{IH}, lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be
- used.

State	WP#	DQ1 ⁽¹⁾	DQ ₀ ⁽¹⁾	State Name	Erase/Program Allowed ⁽²		
[000]	0	0	0	Unlocked	Yes		
[001] ⁽³⁾	0	0	1	Locked	No		
[011]	0	1	1	Locked-down	No		
[100]	1	0	0	Unlocked	Yes		
[101] ⁽³⁾	1	0	1	Locked	No		
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes		
[111]	1	1	1	Lock-down Disable	No		

Table 7. Functions of Block Lock⁽⁵⁾ and Block Lock-Down

1. $DQ_0=1$: a block is locked; $DQ_0=0$: a block is unlocked.

 $DQ_1=1$: a block is locked-down; $DQ_1=0$: a block is not locked-down.

2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.

3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is,

[001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation. 4. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

5. OTP (One Time Program) block has the lock function which is different from those described above.

	Curren	t State		Result after Lock Command Written (Next State)				
State	WP#	DQ ₁	DQ ₀	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾		
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾		
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]		
[011]	0	1	1	No Change	No Change	No Change		
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾		
[101]	1	0	1	No Change	[100]	[111]		
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾		
[111]	1	1	1	No Change	[110]	No Change		

Table 8. Block Locking State Transitions upon Command Write⁽⁴⁾

NOTES:

1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.

2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0=0$), the corresponding block is locked-down and automatically locked at the same time.

3. "No Change" means that the state remains unchanged after the command written.

4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} .

	(Current S	State		Result after WP# Transition (Next State)			
Previous State	State	WP#	DQ ₁	DQ ₀	WP#= $0 \rightarrow 1^{(1)}$	WP#= $1 \rightarrow 0^{(1)}$		
-	[000]	0	0	0	[100]	-		
-	[001]	0	0	1	[101]	-		
[110] ⁽²⁾	[011]	0	1	1	[110]	-		
Other than [110] ⁽²⁾		0	1	1	[111]	-		
-	[100]	1	0	0	-	[000]		
-	[101]	1	0	1	-	[001]		
-	[110]	1	1	0	-	[011] ⁽³⁾		
-	[111]	1	1	1	-	[011]		

Table 9. Block Locking State Transitions upon WP# Transition⁽⁴⁾

1. "WP#=0 \rightarrow 1" means that WP# is driven to V_{IH} and "WP#=1 \rightarrow 0" means that WP# is driven to V_{IL}.

2. State transition from the current state [011] to the next state depends on the previous state.

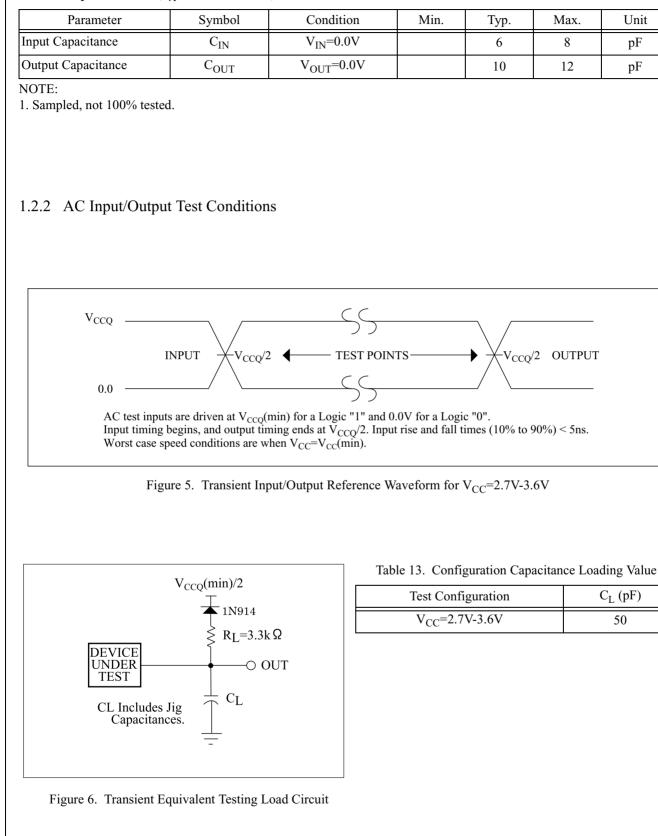
3. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

R	R	R	R	R	R	R	R	
15	14	13	12	11	10	9	8	
WSMS	BESS	BEFCES	PBPOPS	VPPS	PBPSS	DPS	R	
7	6	5	4	3	2	1	0	
ENHANCE	= RESERVED F MENTS (R) E STATE MACF		(WSMS)		NOT			
1 = Ready 0 = Busy				(Write State Ma be occupied by	indicates the st achine). Even if the other partit s configuration.	the SR.7 is "1" ion when the de	, the WSM ma	
1 = Block	K ERASE SUS Erase Suspende Erase in Progres	d	S (BESS)		determine bloc n or OTP progra R.7="0".			
STAT 1 = Error i	K ERASE ANE 'US (BEFCES) n Block Erase o ssful Block Eras	r Full Chip Era	se	erase, (page b block lock-do	nd SR.4 are "1" uffer) program, wn bit, set pa proper command	, set/clear bloc artition configu	k lock bit, s aration regist	
OTP 1 = Error i 0 = Succes $\text{SR.3} = \text{V}_{\text{PP}} \text{ST}$	E BUFFER) PRO PROGRAM ST n (Page Buffer) ssful (Page Buffer) FATUS (VPPS)	ATUS (PBPOP Program or OT er) Program or	P Program	The WSM inte Block Erase, F Program com	provide a conti rrogates and inc ull Chip Erase, (nand sequences feedback when	licates the V _{PP} (Page Buffer) F s. SR.3 is not	level only aft rogram or OT guaranteed	
$0 = V_{PP} O$ SR.2 = (PAGE STAT 1 = (Page 1)	OW Detect, Ope K E BUFFER) PRO US (PBPSS) Buffer) Program Buffer) Program	DGRAM SUSP 1 Suspended		bit. The WSM Erase, Full C Program com depending on t set. Reading th	provide a contin interrogates the hip Erase, (Pa mand sequenc he attempted op e block lock co tifier Codes/O	block lock bit of ge Buffer) Pro- es. It informoration, if the languation code	only after Bloo ogram or OT s the syster block lock bit les after writin	
$1 = \text{Erase} \mathbf{c}$	CE PROTECT S or Program Atte d Block, Operat ced	mpted on a		SR.15 - SR.8 and SR.0 are reserved for future use and sl be masked out when polling the status register.				

		Table 1	1. Extended Sta	atus Register De	finition				
R	R	R	R	R R R R					
15	14	13	12	11	10	9	8		
SMS	R	R	R	R R R					
7	6	5	4	3	2	1	0		
7 6 5 4 XSR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R) XSR.7 = STATE MACHINE STATUS (SMS) 1 = Page Buffer Program available 0 = Page Buffer Program not available				XSR.7="1" ind If XSR.7 is "0" Buffer Program		Program cor entered comma is not accepted BH) should be	nmand (E8H), nd is accepted. and a next Page issued again to		
XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)							future use and extended status		

		Table 12.	Partition Config	guration Re	egiste	er Definition		
R	R	R	R	R		PC2	PC1	PC0
15	14	13	12	11		10	9	8
R	R	R	R	R		R	R	R
7	6	5	4	3		2	1	0
7 PCR.15-11 = F PCR.10-8 = PA 000 = No 001 = Plat (defau 010 = Plat (defau 010 = Plat (defau 011 = Plat three operat 110 = Plat three operat 101 = Plat three operat 101 = Plat three	6 RESERVED FOI ENHANCEME ARTITION CON partitioning. Du ne1-3 are merged It in a bottom partition is available ne 0-1 and Plane on respectively. ne 0-2 are merged partitions in the ion is available ne 0-1 are merged partitions in the ion is available ne 1-2 are merged partitions in the ion is available PARTITION PARTITION PARTITION PARTITION	5 R FUTURE ENTS (R) IFIGURATION al Work is not a d into one parti- arameter device e2-3 are merged ed into one part- heter device) ed into one part- is configuration between any two ed into one part- is configuration is configurati	4 (PC2-0) allowed. tion.) l into one ition. There are on. Dual work to partitions. ition. There are on. Dual work to partitions. ition. There are on. Dual work to partitions.	3 111 = E ti PCR.7-0 = After pow "001" in parameter See Figur PCR.15-1 should to configura PC2 PC1H 0 1	Each ively wo p = RI I vver-t a b r dev r dev r dev r dev pc0 1 1 0	2 ere are four partit plane correspon y. Dual work oper partitions. ESERVED FOR ENHANCEMEN NOT up or device response pottom parameter vice. for the detail on p nd PCR.7-0 are masked out w register. PARTITION PARTITION PARTITION PARTITION PARTITION PARTITION PARTITION PARTITION	1 ions in this connds to each pration is availa FUTURE FUTURE TS (R) TES: et, PCR10-8 (Ir r device and partition config reserved for when polling NING FOR DU NING FOR DU TEAL TEAL TEAL TEAL TEAL TEAL TEAL TEAL	0 Infiguration. Deartition respec- ble between any PC2-0) is set to "100" in a top uration. future use and the partition UAL WORK N1 PARTITION0 U
F 1 0 0	PARTITION1	PARTITIO	0N BLANE0	1 1	1	PARTITION3 PART	ITION2 PARTITI	ON1 PARTITION0
		F	Figure 4. Partiti	on Configu	urati	on		
								Pay 2/12


 Electrical Specifications Absolute Maximum Ratings[*] Operating Temperature During Read, Erase and Program40°C to +85°C ⁽¹⁾ 	*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
Storage Temperature During under Bias40°C to +85°C During non Bias65°C to +125°C	 NOTES: Operating temperature is for extended temperature product defined by this specification. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} and V_{PP} pins. During transitions,
Voltage On Any Pin (except V_{CC} and V_{PP})0.5V to V_{CC} +0.5V ⁽²⁾	 this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC}+0.5V which, during transitions, may overshoot to V_{CC}+2.0V for periods <20ns. 3. Maximum DC voltage on V_{PP} may overshoot to
V_{CC} and V_{CCQ} Supply Voltage0.2V to +3.9V $^{(2)}$	 +13.0V for periods <20ns. 4. V_{PP} erase/program voltage is normally 2.7V-3.6V. Applying 11.7V-12.3V to V_{PP} during erase/program
V _{PP} Supply Voltage0.2V to +12.6V ^(2, 3, 4) Output Short Circuit Current	can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. V_{PP} may be connected to 11.7V-12.3V for a total of 80 hours maximum.
Output Short Circuit Current 100mA	5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	-40	+25	+85	°C	
V _{CC} Supply Voltage	V _{CC}	2.7	3.0	3.6	V	1
I/O Supply Voltage	V _{CCQ}	2.7	3.0	3.6	V	1
V _{PP} Voltage when Used as a Logic Control	V _{PPH1}	1.65	3.0	3.6	V	1
V _{PP} Supply Voltage	V _{PPH2}	11.7	12	12.3	V	1, 2
Main Block Erase Cycling: V _{PP} =3.0V		100,000			Cycles	
Parameter Block Erase Cycling: V _{PP} =3.0V		100,000			Cycles	
Main Block Erase Cycling: V _{PP} =12V, 80 hrs.				1,000	Cycles	
Parameter Block Erase Cycling: V _{PP} =12V, 80 hrs.				1,000	Cycles	
Maximum V _{PP} hours at 12V				80	Hours	

NOTES:

See DC Characteristics tables for voltage range-specific specification.
 Applying V_{PP}=11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to V_{PP}=11.7V-12.3V is not allowed and can cause damage to the device.

1.2.3 DC Characteristics

V_{CC}=2.7V-3.6V

			00					
Symbol	Paran	neter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I _{LI}	Input Load Current		1	-1.0		+1.0	μA	V _{CC} =V _{CC} Max.,
I _{LO}	Output Leakage Current		1	-1.0		+1.0	μΑ	V _{CCQ} =V _{CCQ} Max., V _{IN} /V _{OUT} =V _{CCQ} or GND
I _{CCS}	V _{CC} Standby Current		1		4	20	μΑ	$V_{CC}=V_{CC}Max.,$ $CE\#=RST\#=$ $V_{CCQ}\pm0.2V,$ $WP\#=V_{CCQ} \text{ or } GND$
I _{CCAS}	V _{CC} Automatic Power Savings Current		1,4		4	20	μΑ	V _{CC} =V _{CC} Max., CE#=GND±0.2V, WP#=V _{CCQ} or GND
I _{CCD}	V _{CC} Reset Power-Down Current		1		4	20	μA	RST#=GND±0.2V
I	Average V _{CC} Read Current Normal Mode		1,7		15	25	mA	V _{CC} =V _{CC} Max., CE#=V _{IL} ,
I _{CCR}	Average V _{CC} Read Current Page Mode	8 Word Read	1,7		5	10	mA	OE#=V _{IH} , f=5MHz
т	V (Dece Duffer) D	no anome Commont	1,5,7		20	60	mA	V _{PP} =V _{PPH1}
I _{CCW}	V _{CC} (Page Buffer) P	Togram Current	1,5,7		10	20	mA	V _{PP} =V _{PPH2}
т	V _{CC} Block Erase, Fu	ıll Chip	1,5,7		10	30	mA	V _{PP} =V _{PPH1}
I _{CCE}	Erase Current		1,5,7		10	30	mA	V _{PP} =V _{PPH2}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) P Block Erase Suspend	-	1,2,7		10	200	μA	CE#=V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read	d Current	1,6,7		2	5	μΑ	V _{PP} ≤V _{CC}
Innus	V _{PP} (Page Buffer) Pr	rogram Current	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPW}			1,5,6,7		10	30	mA	V _{PP} =V _{PPH2}
Inne	V _{PP} Block Erase, Fu	ll Chip	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPE}	Erase Current		1,5,6,7		5	15	mA	V _{PP} =V _{PPH2}
Innuc	V _{PP} (Page Buffer) Pr	rogram	1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPWS}	Suspend Current		1,6,7		10	200	μA	V _{PP} =V _{PPH2}
Innec	V _{PP} Block Erase Sus	spend Current	1,6,7		2	5	μA	V _{PP} =V _{PPH1}
I _{PPES}	PP DIOCK LIASE SUS	spena Carteni	1,6,7		10	200	μΑ	V _{PP} =V _{PPH2}

		V _{CC} =2	2.7V-3.6V	7			
Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	5	-0.4		0.4	V	
V _{IH}	Input High Voltage	5	2.4		V _{CCQ} + 0.4	V	
V _{OL}	Output Low Voltage	5			0.2	V	V _{CC} =V _{CC} Min., V _{CCQ} =V _{CCQ} Min., I _{OL} =100µA
V _{OH}	Output High Voltage	5	V _{CCQ} -0.2			V	V _{CC} =V _{CC} Min., V _{CCQ} =V _{CCQ} Min., I _{OH} =-100µA
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V	
V _{PPH1}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program Operations	6	1.65	3.0	3.6	V	
V _{PPH2}	V _{PP} during Block Erase, (Page Buffer) Program or OTP Program Operations	6	11.7	12	12.3	V	
V _{LKO}	V _{CC} Lockout Voltage		1.5			V	

DC Characteristics (Continued)

NOTES:

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC}=3.0V and T_A=+25°C unless V_{CC} is specified.

2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} . 3. Block erase, full chip erase, (page buffer) program and OTP program are inhibited when $V_{PP} \leq V_{PPLK}$, and not guaranteed

in the range between V_{PPLK}(max.) and V_{PPH1}(min.), between V_{PPH1}(max.) and V_{PPH2}(min.) and above V_{PPH2}(max.).

4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.

5. Sampled, not 100% tested.

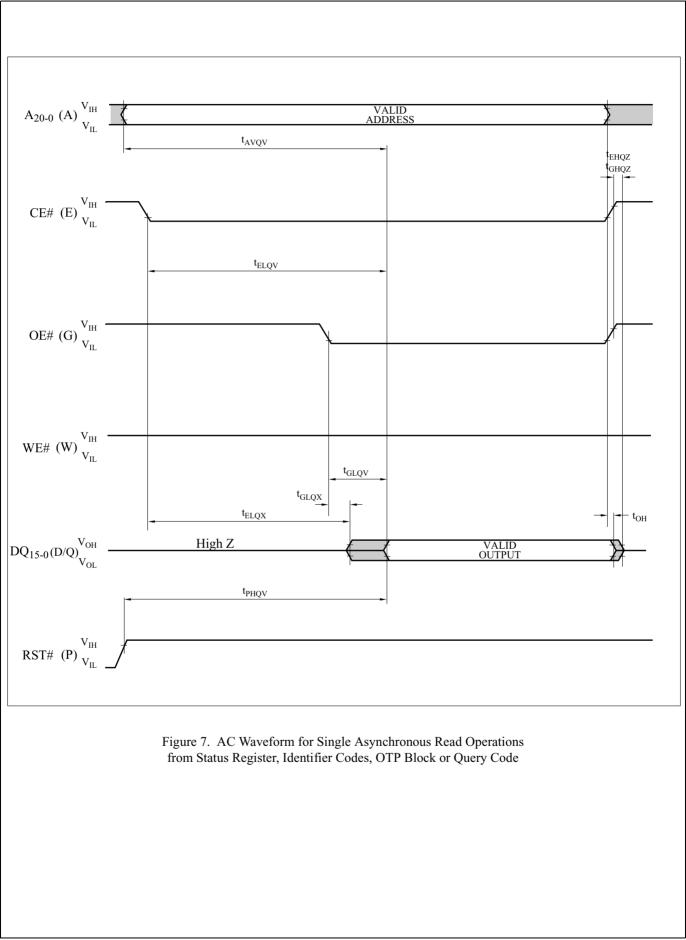
6. V_{PP} is not used for power supply pin. With V_{PP}≤V_{PPLK}, block erase, full chip erase, (page buffer) program and OTP program cannot be executed and should not be attempted.

Applying 12V±0.3V to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.

Applying 12V±0.3V to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum.

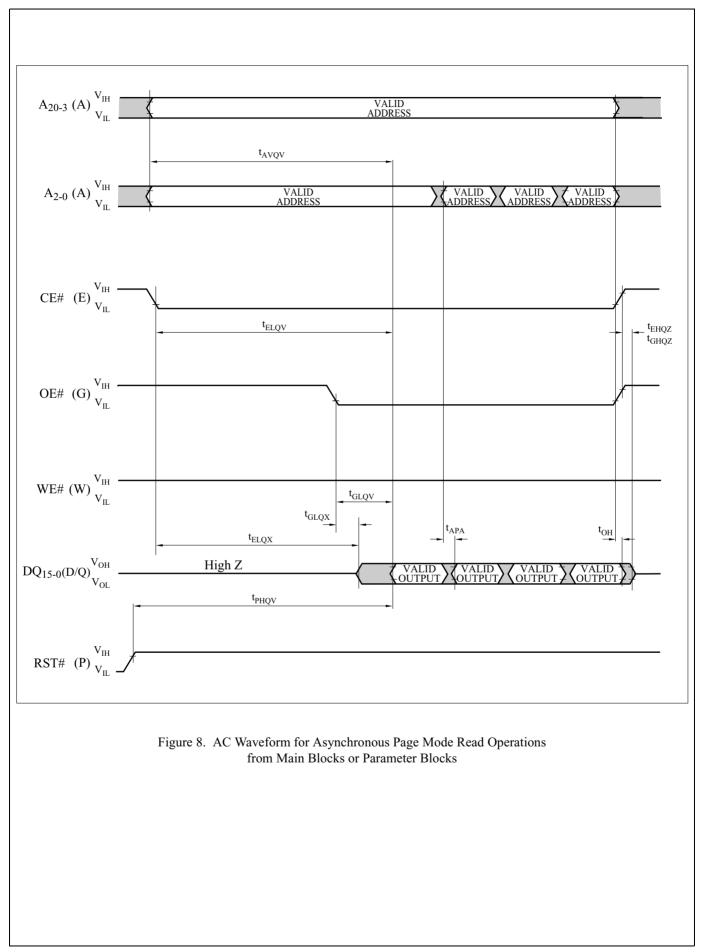
7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾


V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		70		ns
t _{AVQV}	Address to Output Delay			70	ns
t _{ELQV}	CE# to Output Delay	3		70	ns
t _{APA}	Page Address Access Time			25	ns
t _{GLQV}	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns

NOTES:


1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.

2. Sampled, not 100% tested. 3. OE# may be delayed up to t_{ELQV} — t_{GLQV} after the falling edge of CE# without impact to t_{ELQV} .

Rev. 2.42

22

1.2.5 AC Characteristics - Write Operations^{(1), (2)}

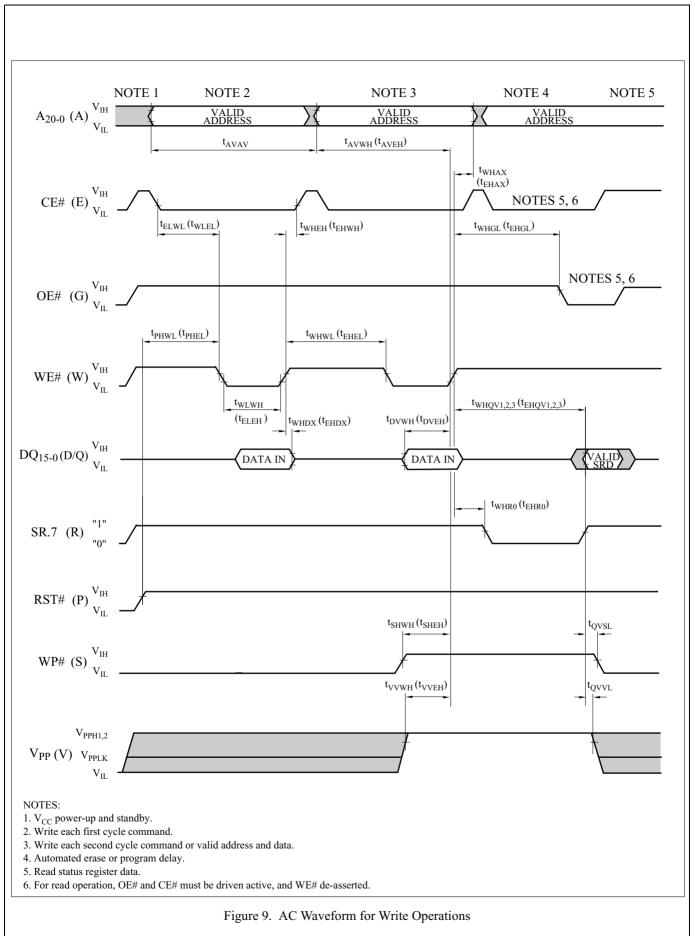
$V_{CC}=2.7V-3.6V, T_{A}=-40^{\circ}C$ to	+85°C
---	-------

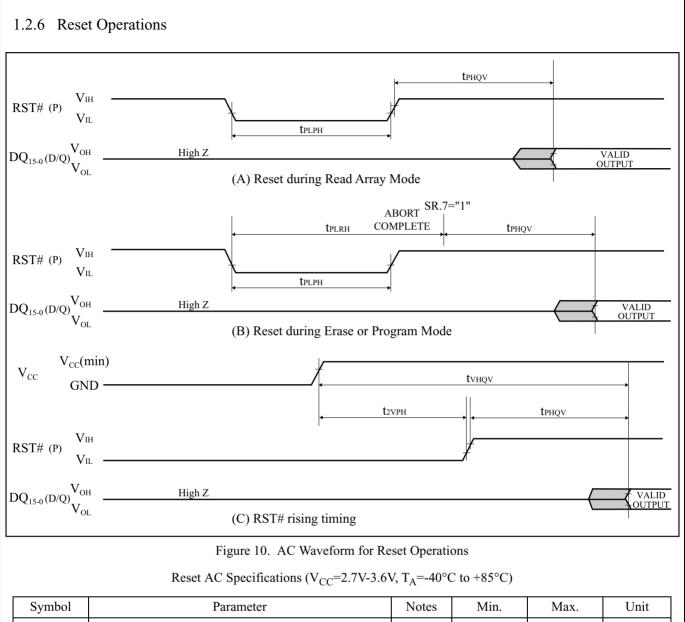
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		70		ns
t _{PHWL} (t _{PHEL})	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
$t_{\rm ELWL} \left(t_{\rm WLEL} \right)$	CE# (WE#) Setup to WE# (CE#) Going Low	4	0		ns
t _{WLWH} (t _{ELEH})	WE# (CE#) Pulse Width	4	60		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	8	40		ns
$t_{\rm AVWH} (t_{\rm AVEH})$	Address Setup to WE# (CE#) Going High	8	50		ns
t _{WHEH} (t _{EHWH})	CE# (WE#) Hold from WE# (CE#) High		0		ns
t _{WHDX} (t _{EHDX})	Data Hold from WE# (CE#) High		0		ns
$t_{WHAX} (t_{EHAX})$	Address Hold from WE# (CE#) High		0		ns
t _{WHWL} (t _{EHEL})	WE# (CE#) Pulse Width High	5	30		ns
$t_{\rm SHWH} \left(t_{\rm SHEH} ight)$	WP# High Setup to WE# (CE#) Going High	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to WE# (CE#) Going High	3	200		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read		30		ns
t _{QVSL}	WP# High Hold from Valid SRD	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD	3, 6	0		ns
$t_{WHR0} (t_{EHR0})$	WE# (CE#) High to SR.7 Going "0"	3, 7		t_{AVQV}^+ 40	ns

NOTES:

1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.

2. A write operation can be initiated and terminated with either CE# or WE#.


3. Sampled, not 100% tested.


4. Write pulse width (t_{WP}) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of

CE# or WE# (whichever goes high first). Hence, $t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}$. 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling

6. V_{PP} should be held at V_{PP}=V_{PPH1/2} until determination of block erase, (page buffer) program or OTP program success (SR.1/3/4/5=0) and held at V_{PP}=V_{PPH1} until determination of full chip erase success (SR.1/3/5=0).
7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command=t_{AVQV}+100ns.

8. Refer to Table 6 for valid address and data for block erase, full chip erase, (page buffer) program, OTP program or lock bit configuration.

Symbol	Parameter		Min.	Max.	Unit
t _{PLPH}	RST# Low to Reset during Read (RST# should be low during power-up.)		100		ns
t _{PLRH}	RST# Low to Reset during Erase or Program			22	μs
t_{2VPH} V _{CC} 2.7V to RST# High		1, 3, 5	100		ns
t _{VHQV} V _{CC} 2.7V to Output Delay		3		1	ms
NOTES					

1. A reset time, t_{PHQV}, is required from the later of SR.7 going "1" or RST# going high until outputs are valid. Refer to AC Characteristics - Read-Only Operations for t_{PHQV}.

2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.

3. Sampled, not 100% tested.

4. If RST# asserted while a block erase, full chip erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns.

5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performa	ance ⁽³⁾)
--	---------------------	---

	•0	C 2., ,	-5.0 v, $1_{\rm A}$ 40	0.00						
Symbol	Parameter	Notes	Page Buffer Command is Used or not Used	V _{PP} =V _{PPH1} (In System)			V _{PP} =V _{PPH2} (In Manufacturing)			Unit
				Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	
twop	4K-Word Parameter Block	2	Not Used		0.05	0.3		0.04	0.12	S
t _{WPB}	Program Time		Used		0.03	0.12		0.02	0.06	S
tun m	32K-Word Main Block	2	Not Used		0.38	2.4		0.31	1.0	S
t _{WMB}	Program Time	2	Used		0.24	1.0		0.17	0.5	S
t _{WHQV1} /	Word Program Time	2	Not Used		11	200		9	185	μs
t _{EHQV1}		2	Used		7	100		5	90	μs
t _{WHOV1} / t _{EHOV1}	OTP Program Time	2	Not Used		36	400		27	185	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4		0.2	4	s
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5		0.5	5	s
	Full Chip Erase Time	2			40	350				S
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			500			μs

 V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C

NOTES:

1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V or 12V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

2. Excludes external system-level overhead.

3. Sampled, but not 100% tested.

4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1".

5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

2 Related Document Information⁽¹⁾

Document No.	Document Name
FUM00701	LH28F320BF series Appendix

NOTE:

1. International customers should contact their local SHARP or distribution sales offices.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

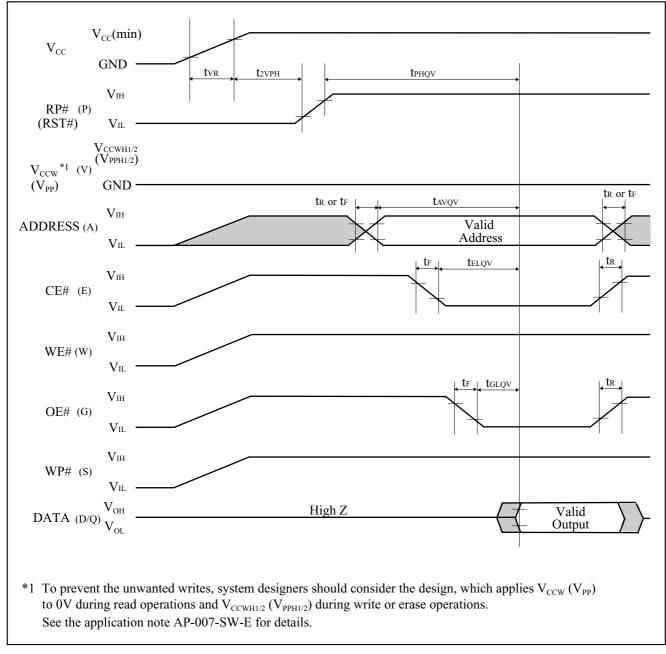


Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter		Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time		0.5	30000	μs/V
t _R	Input Signal Rise Time			1	μs/V
t _F	Input Signal Fall Time	1, 2		1	μs/V

NOTES:

1. Sampled, not 100% tested.

2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

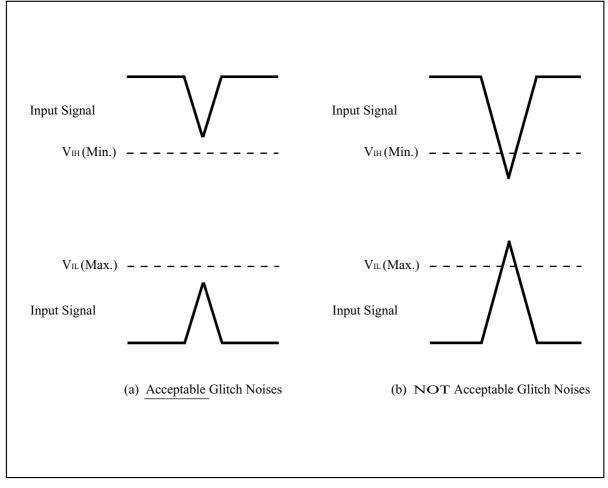


Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
АР-006-РТ-Е	Data Protection Method of SHARP Flash Memory
AP-007-SW-E RP#, V _{PP} Electric Potential Switching Circuit	

NOTE:

1. International customers should contact their local SHARP or distribution sales office.