Power MOSFET 12 Amps, 60 Volts

N-Channel DPAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- Lower R_{DS(on)}
- Lower V_{DS(on)}
- Lower and Tighter V_{SD}
- Lower Diode Reverse Recovery Time
- Lower Reverse Recovery Stored Charge

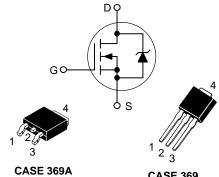
Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	Vdc
Drain–to–Gate Voltage (R _{GS} = 10 MΩ)	V_{DGR}	60	Vdc
Gate-to-Source Voltage			Vdc
Continuous	V_{GS}	±20	
Non–Repetitive (t_p≤10 ms)	V_{GS}	±30	
Drain Current			
– Continuous @ T _A = 25°C	I_{D}	12	Adc
– Continuous @ T _A = 100°C	I_{D}	10	
– Single Pulse (t _p ≤10 μs)	I_{DM}	45	Apk
Total Power Dissipation @ T _A = 25°C	P_{D}	48	W
Derate above 25°C		0.32	W/°C
Total Power Dissipation @ T _A = 25°C (Note 1)		2.1	W
Total Power Dissipation @ T _A = 25°C (Note 2)		1.5	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to	°C
		+175	
Single Pulse Drain-to-Source Avalanche	E _{AS}	61	mJ
Energy – Starting T _J = 25°C			
$(V_{DD} = 25 \text{ Vdc}, V_{GS} = 10 \text{ Vdc}, L = 1.0 \text{ mH}$			
$I_{L(pk)} = 11 \text{ A, } V_{DS} = 60 \text{ Vdc}$			
Thermal Resistance			
Junction–to–Case	$R_{\theta,JC}$	3.13	°C/W
– Junction–to–Ambient (Note 1)	$R_{\theta JA}$	71.4	
– Junction–to–Ambient (Note 2)	$R_{\theta JA}$	100	
Maximum Lead Temperature for Soldering	Tı	260	°C
Purposes, 1/8" from case for 10 seconds	_		

- When surface mounted to an FR4 board using 1" pad size, (Cu Area 1.127 in²).
- When surface mounted to an FR4 board using the minimum recommended pad size, (Cu Area 0.412 in²).

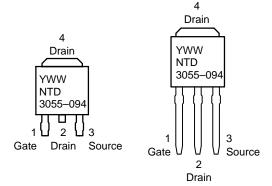

ON Semiconductor™

http://onsemi.com

12 AMPERES 60 VOLTS

 $R_{DS(on)} = 94 \text{ m}\Omega$

N-Channel



DPAK
(Bent Lead)
STYLE 2

CASE 369
DPAK
(Straight Lead)
STYLE 2

NTD3055-094 = Device Code Y = Year WW = Work Week

MARKING DIAGRAMS & PIN ASSIGNMENTS

ORDERING INFORMATION

Device	Package	Shipping
NTD3055-094	DPAK	75 Units/Rail
NTD3055-094-1	DPAK Straight Lead	75 Units/Rail
NTD3055-094T4	DPAK	2500/Tape & Reel

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS							
Drain-to-Source Breakdown ($V_{GS} = 0 \text{ Vdc}$, $I_D = 250 \mu\text{A}$ c Temperature Coefficient (Pos	V _{(BR)DSS}	60 -	68 54.4	- -	Vdc mV/°C		
Zero Gate Voltage Drain Curr $(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_ _	_ _	1.0 10	μAdc		
Gate-Body Leakage Current	$(V_{GS} = \pm 20 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}	-	-	±100	nAdc	
ON CHARACTERISTICS (Note	e 3)						
Gate Threshold Voltage (Note $(V_{DS} = V_{GS}, I_D = 250 \mu Add)$ Threshold Temperature Coeff	V _{GS(th)}	2.0	2.9 6.3	4.0 _	Vdc mV/°C		
Static Drain-to-Source On-F ($V_{GS} = 10 \text{ Vdc}, I_D = 6.0 \text{ Add}$	R _{DS(on)}	-	84	94	mOhm		
Static Drain-to-Source On-\ (V _{GS} = 10 Vdc, I _D = 12 Add (V _{GS} = 10 Vdc, I _D = 6.0 Add (V	V _{DS(on)}	_ _	0.85 0.77	1.35 -	Vdc		
Forward Transconductance (9FS	_	6.7	ı	mhos		
DYNAMIC CHARACTERISTIC	s						
Input Capacitance		C _{iss}	-	323	450	pF	
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	_	107	150		
Transfer Capacitance	,	C _{rss}	_	34	70		
SWITCHING CHARACTERIST	TICS (Note 4)				_		
Turn-On Delay Time		t _{d(on)}	_	7.7	15	ns	
Rise Time	$(V_{DD} = 48 \text{ Vdc}, I_D = 12 \text{ Adc},$	t _r	_	32.3	70		
Turn-Off Delay Time	$V_{GS} = 10 \text{ Vdc}, R_G = 9.1 \Omega) \text{ (Note 3)}$	t _{d(off)}	_	25.2	50		
Fall Time		t _f	_	23.9	50		
Gate Charge		Q _T	-	10.9	20	nC	
	$(V_{DS} = 48 \text{ Vdc}, I_{D} = 12 \text{ Adc}, V_{GS} = 10 \text{ Vdc}) \text{ (Note 3)}$	Q ₁	-	3.1	-		
		Q ₂	-	4.2	-		
SOURCE-DRAIN DIODE CHA	RACTERISTICS						
Forward On–Voltage	$(I_S = 12 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 3)}$ $(I_S = 12 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	V _{SD}		0.94 0.82	1.15 -	Vdc	
Reverse Recovery Time	(I _S = 12 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs) (Note 3)	t _{rr}	_	33.1	_	ns	
		t _a	_	24	-	1	
		t _b	_	8.9	-		
Reverse Recovery Stored Charge		Q _{RR}	-	0.047	-	μС	

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

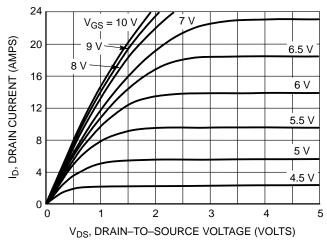


Figure 1. On-Region Characteristics

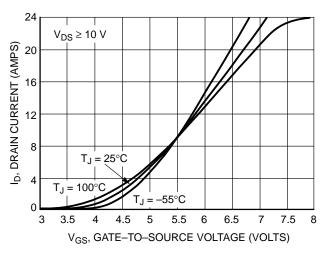


Figure 2. Transfer Characteristics

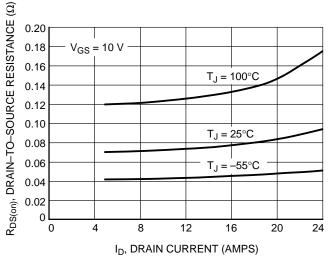


Figure 3. On–Resistance versus Gate–to–Source Voltage

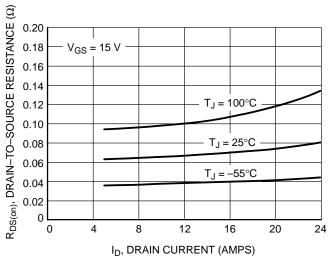


Figure 4. On–Resistance versus Drain Current and Gate Voltage

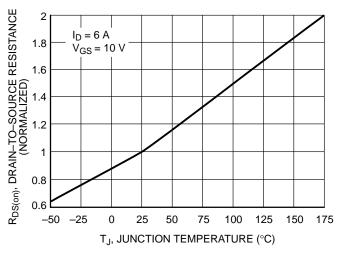


Figure 5. On–Resistance Variation with Temperature

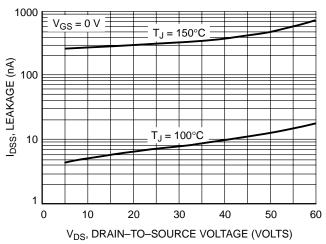


Figure 6. Drain-to-Source Leakage Current versus Voltage

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain–gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current ($I_{G(AV)}$) can be made from a rudimentary analysis of the drive circuit so that

$$t = Q/I_{G(AV)}$$

During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, V_{SGP} . Therefore, rise and fall times may be approximated by the following:

$$t_r = Q_2 \times R_G/(V_{GG} - V_{GSP})$$

 $t_f = Q_2 \times R_G/V_{GSP}$

where

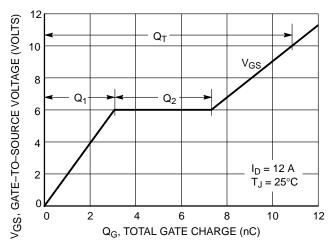
 V_{GG} = the gate drive voltage, which varies from zero to V_{GG} R_G = the gate drive resistance

and Q_2 and $V_{\mbox{\footnotesize GSP}}$ are read from the gate charge curve.


During the turn—on and turn—off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

$$\begin{split} t_{d(on)} &= R_G \ C_{iss} \ In \ [V_{GG}/(V_{GG} - V_{GSP})] \\ t_{d(off)} &= R_G \ C_{iss} \ In \ (V_{GG}/V_{GSP}) \end{split}$$

The capacitance (C_{iss}) is read from the capacitance curve at a voltage corresponding to the off–state condition when calculating $t_{d(on)}$ and is read at a voltage corresponding to the on–state when calculating $t_{d(off)}$.


At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

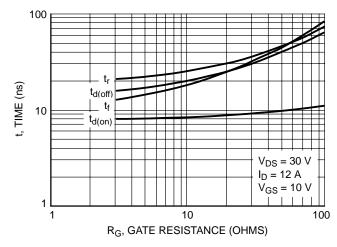


Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

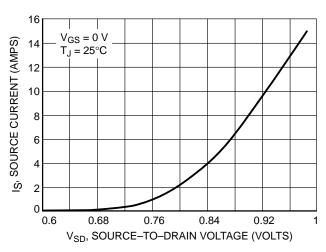


Figure 10. Diode Forward Voltage versus Current

SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain–to–source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance – General Data and Its Use."

Switching between the off–state and the on–state may traverse any load line provided neither rated peak current (I_{DM}) nor rated voltage (V_{DSS}) is exceeded and the transition time ($t_p t_f$) do not exceed 10 μ s. In addition the total power averaged over a complete switching cycle must not exceed ($T_{J(MAX)} - T_C$)/($R_{\theta JC}$).

A Power MOSFET designated E–FET can be safely used in switching circuits with unclamped inductive loads. For reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non–linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E–FETs can withstand the stress of drain–to–source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_{D}), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_{D} can safely be assumed to equal the values indicated.

SAFE OPERATING AREA

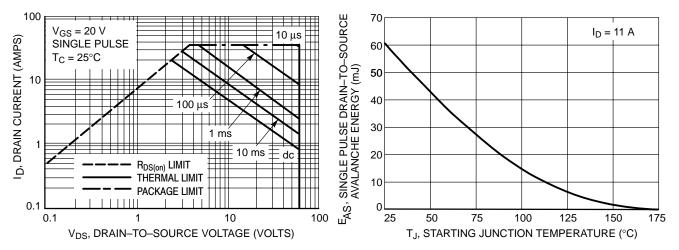


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

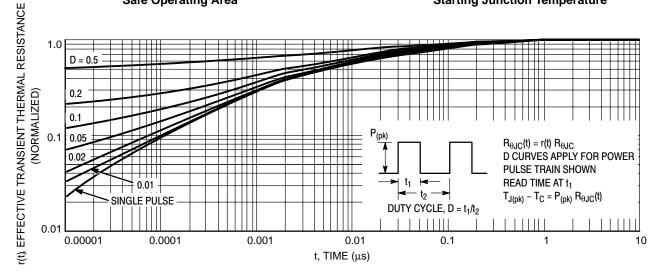


Figure 13. Thermal Response

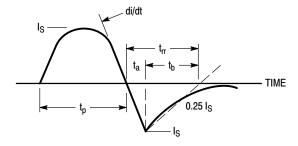
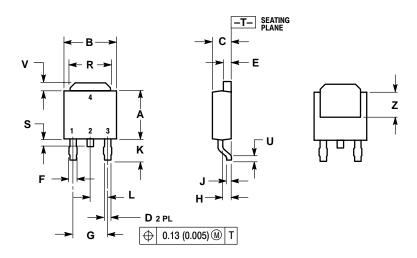
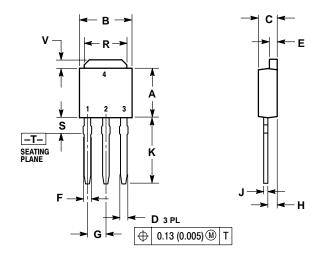



Figure 14. Diode Reverse Recovery Waveform

PACKAGE DIMENSIONS

DPAK CASE 369A-13 **ISSUE AA**



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.180 BSC		4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29 BSC	
R	0.175	0.215	4.45	5.46
S	0.020	0.050	0.51	1.27
U	0.020		0.51	
٧	0.030	0.050	0.77	1.27
Z	0.138		3.51	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

DPAK CASE 369-07 ISSUE M

NOTES:

- VIED.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.235	0.250	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.033	0.040	0.84	1.01	
F	0.037	0.047	0.94	1.19	
G	0.090 BSC		2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.175	0.215	4.45	5.46	
S	0.050	0.090	1.27	2.28	
٧	0.030	0.050	0.77	1.27	
STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN					

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.