Preferred Device

HDPlus [™] 52 Amps, 40 Volts Self Protected with Temperature Sense

N–Channel D²PAK

HDPlus devices are an advanced series of Power MOSFETs which utilize ON Semiconductor's latest MOSFET technology process to achieve the lowest possible on-resistance per silicon area while incorporating additional features such as clamp diodes. They are capable of withstanding high energy in the avalanche and commutation modes. The avalanche energy is specified to eliminate guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients.

This new HDPlus device features integrated Gate-to-Source diodes for ESD protection, and Gate-to-Drain clamp for overvoltage protection. Also, this device integrates a sense diode for temperature monitoring.

- Ultra Low R_{DS(on)} Provides Higher Efficiency
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Overvoltage Protection
- FET ESD Human Body Model Discharge Sensitivity Class 3
- Temperature Sense Diode

Rating	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	40	Vdc		
Drain-to-Gate Voltage	V _{DGR}	40	Vdc		
Gate-to-Source Voltage	V _{GS}	±10	Vdc		
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to +175	°C		
$ Single Pulse Drain-to-Source Avalanche \\ Energy - Starting T_J = 25^\circ C (Note 1) \\ (V_{DD} = 25 Vdc, V_{GS} = 5.0 Vdc, \\ I_{L(pk)} = 25 A, L = 1.4 mH, R_G = 10 k\Omega) $	E _{AS}	450	mJ		
$\begin{array}{l} \text{Drain Current} \\ - \text{Continuous } @ \ T_A = 25^\circ\text{C} \\ - \text{Continuous } @ \ T_A = 140^\circ\text{C} \\ - \text{Single Pulse } (t_p \leq 10 \ \mu\text{s}) \end{array}$	I _D ID I _{DM}	52 25 200	Adc		
Total Power Dissipation (t \leq 10 seconds) Linear Derating Factor	P _D @ T _A = 25°C	115 0.76	W W/°C		
Thermal Resistance – Junction–to–Case – Junction–to–Ambient (Note 1)	R _{θJC} R _{θJA}	1.3 80	°C/W		

ON Semiconductor"

http://onsemi.com

52 AMPERES 40 VOLTS R_{DS(on)} = 20 mΩ

MARKING DIAGRAM

NIB6404 = Device Code					
А	= Assembly Location				

Y = Year WW = Work Wee

= Work Week

ORDERING INFORMATION

Device	Package	Shipping
NIB6404–5L	D ² PAK	800 Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

1. Measured while surface mounted to an FR4 board using the minimum recommended pad size. Typical value is 64°C/W.

Observe the general handling precautions for electrostatic–discharge sensitive devices (ESD) to prevent damage.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain–to–Source Breakdown Voltage (Note 2) (V _{GS} = 0 Vdc, I _D = 250 μAdc, –55°C < T _J < 175°C) Temperature Coefficient (Negative)			40 -	51 7.0	55 -	Vdc mV/°C
Gate-to-Source Clamp Voltage (No $(V_{GS} = 0 \text{ Vdc}, I_G = 20 \mu \text{Adc})$	te 2)	V _{(BR)GSS}	10	13	20	Vdc
Zero Gate Voltage Drain Current $(V_{DS} = 35 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 35 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{I} = 125^{\circ}\text{C})$				1.1 0.2 4.0	100 2.0 20	μAdc
Gate-Body Leakage Current (V _{GS} =	= 5.0 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	0.02	1.0	μAdc
ON CHARACTERISTICS (Note 2)				•		
Gate Threshold Voltage (Note 2) $(V_{DS} = V_{GS}, I_D = 1.0 \text{ mAdc})$ Threshold Temperature Coefficient (Negative)			1.0 _	1.7 4.5	2.0 _	Vdc mV/°C
Static Drain-to-Source On-Resistance (Note 2) ($V_{GS} = 5.0 \text{ Vdc}, I_D = 20 \text{ Adc}$)			_	18	20	mΩ
Forward Transconductance (V_{DS} =	15 Vdc, I _D = 10 Adc) (Note 2)	9fs	TBD	34	-	mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	1	1720	_	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	_	525	-	
Transfer Capacitance	- ,	C _{rss}	-	120	-	
SWITCHING CHARACTERISTICS (N	lote 3)					
Turn-On Delay Time		t _{d(on)}	-	11.2	_	μs
Rise Time	$(V_{DD} = 32 \text{ Vdc}, I_D = 25 \text{ Adc},$	t _r	-	38.5	_	
Turn–Off Delay Time	$R_G = 10 \text{ k}\Omega$ (Note 2)	t _{d(off)}	-	31.5	_	
Fall Time		t _f	-	29.5	-	
Gate Charge		QT	-	29	_	nC
	$(V_{DS} = 32 \text{ Vdc}, I_D = 25 \text{ Adc}, V_{GS} = 5.0 \text{ Vdc}) \text{ (Note 2)}$	Q ₁	-	6.0	_	
		Q ₂	-	16	-	
		Q ₃	_	2.0	-	
SOURCE-DRAIN DIODE CHARACT	ERISTICS					
Forward On–Voltage	$(I_S = 20 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 2)}$ $(I_S = 20 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}		0.876 0.746	1.2 -	Vdc
Reverse Recovery Time		t _{rr}	-	60	-	ns
	(I _S = 25 Adc, V _{GS} = 0 Vdc,	ta	-	29	-	
	dI _S /dt = 100 A/µs) (Note 2)	t _b	-	32	-	
Reverse Recovery Stored Charge			-	80	-	рС
TEMPERATURE SENSE DIODE CHARACTERISTICS						
Forward (Reverse) On–Voltage	(I _{F(R)} = 250 μAdc) (Note 2) (I _{F(R)} = 250 μAdc, T _J = 125°C)	V _{AC(ACR)}	715 _	743 570	775 -	mVdc
Temperature Coefficient (Negative)	I _{F(R)} = 250 μAdc, T _J = 160°C	V _{FTC}	1.57	1.71	1.85	mV/°C
Forward Voltage Hysteresis	$I_{F(R)}$ = 125 µAdc to 250 µAdc	V _{hys}	25	37	50	mVdc

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

Figure 9. Sense Diode Forward Voltage Variation with Temperature

Figure 10. Sense Diode Temperature Coefficient Variation with Temperature

PACKAGE DIMENSIONS

D²PAK CASE 936D-03 ISSUE B

- NOTES:

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K.
 DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 6.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.386	0.403	9.804	10.236	
В	0.356	0.368	9.042	9.347	
С	0.170	0.180	4.318	4.572	
D	0.026	0.036	0.660	0.914	
E	0.045	0.055	1.143	1.397	
G	0.067	0.067 BSC		BSC	
Н	0.539	0.579	13.691	14.707	
J	0.125	MAX	3.175 MAX		
K	0.050	0.050 REF		REF	
L	0.000	0.010	0.000	0.254	
Μ	0.088	0.102	2.235	2.591	
N	0.018	0.026	0.457	0.660	
Р	0.058	0.078	1.473	1.981	
R	5°REF		5° REF		
S	0.116	0.116 REF 2.		2.946 REF	
U	0.200 MIN		5.080 MIN		
V	0.250 MIN		6.350 MIN		

<u>Notes</u>

<u>Notes</u>

HDPlus is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.