

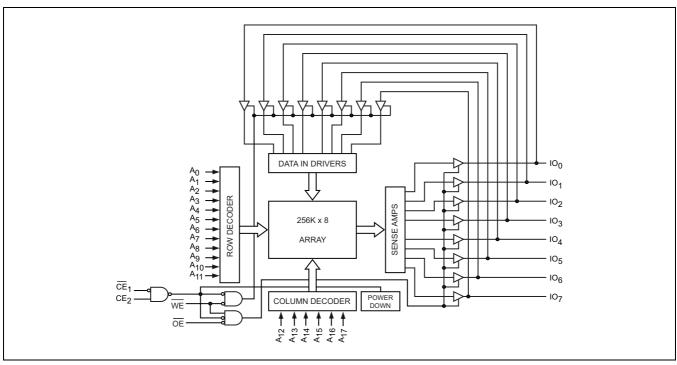
CY62138F MoBL[®]

Features

- High speed: 45 ns
- Wide voltage range: 4.5 V 5.5 V
- Pin compatible with CY62138V
- · Ultra low standby power
 - Typical standby current: 1 μA
 - Maximum standby current: 5 μA
- · Ultra low active power
- Typical active current: 1.6 mA @ f = 1 MHz
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} features
- · Automatic power down when deselected
- · CMOS for optimum speed and power
- Available in Pb-free 32-pin SOIC and 32-pin TSOP II packages

2-Mbit (256K x 8) Static RAM

Functional Description^[1]


The CY62138F is a high performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99% when deselected (CE₁ HIGH or CE₂ LOW).

To write to the device, tak<u>e</u> Chip Enable (\overline{CE}_1 LOW and CE_2 HIGH) and Write Enable (WE) inputs LOW. Data on the eight IO pins (IO₀ through IO₇) is then written into the location specified on the address pins (A₀ through A₁₇).

To read from the device, take Chip Enable (\overline{CE}_1 LOW and CE_2 HIGH) and output enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the IO pins.

The eight input and output pins (IO₀ through IO₇) are placed in a high impedance state when the device is de<u>selected</u> (CE₁ HIGH or CE₂ LOW), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE₁ LOW and CE₂ HIGH and WE LOW).

Logic Block Diagram

Note

1. For best practice recommendations, refer to the Cypress application note "System Design Guidelines" at http://www.cypress.com.

Pin Configuration ^[2]

32-Pin SOIC/TSOP II Pinout **Top View**

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
--	--

Product Portfolio

							Power D	er Dissipation		
V _{CC} Range (V)		V)	Speed	(Operating I _{CC} (mA)			Standby L (A)		
Froduct	(ns) f		f = 1	1MHz f = f _{max}		Standby I _{SB2} (μΑ)				
	Min	Typ ^[3]	Max		Тур ^[3]	Мах	Typ ^[3]	Мах	Typ ^[3]	Max
CY62138FLL	4.5V	5.0V	5.5V	45	1.6	2.5	13	18	1	5

Notes
2. NC pins are not connected on the die.
3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.

CY62138F MoBL[®]

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.
Storage Temperature65°C to + 150°C
Ambient Temperature with Power Applied55°C to + 125°C
Supply Voltage to Ground Potential0.5V to 6.0V (V _{CCmax} + 0.5V)
DC Voltage Applied to Outputs in High-Z state ^[4, 5] 0.5V to 6.0V (V _{CCmax} + 0.5V)

DC Input Voltage [4, 5] –	0.5V to 6.0V (V _{CCmax} + 0.5V)
Output Current into Outputs (LC	OW) 20 mA
Static Discharge Voltage (MIL–STD–883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	V_{CC} ^[6]
CY62138FLL	Industrial	–40°C to +85°C	4.5V to 5.5V

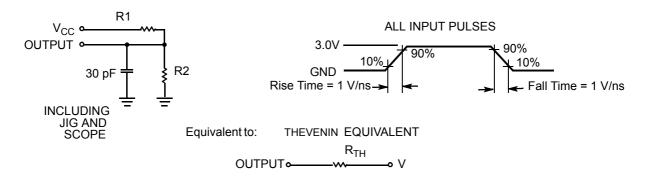
Electrical Characteristics (Over the Operating Range)

Devenueter	Description	Tast Car			45 ns		Unit
Parameter	Description	Test Cor	Min	Typ ^[3]	Max	Unit	
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	2.4			V	
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA			0.4	V	
V _{IH}	Input HIGH Voltage	$V_{\rm CC}$ = 4.5V to 5.5V	2.2		V _{CC} + 0.5	V	
V _{IL}	Input LOW Voltage	V _{CC} = 4.5V to 5.5V		-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$		-1		+1	μA
I _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output Disabled		-1		+1	μA
I _{CC}	V _{CC} Operating Supply	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CC(max)}$		13	18	mA
	Current	f = 1 MHz	I _{OUT} = 0 mÀ CMOS levels		1.6	2.5	
I _{SB2} ^[7]	Automatic CE Power Down Current CMOS inputs	$\overline{CE}_{1} \ge V_{CC} - 0.2V \text{ or } CE_{2} \le 0.2V$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V,$ $f = 0, V_{CC} = V_{CC(max)}$			1	5	μΑ

Capacitance (For all packages) [8]

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

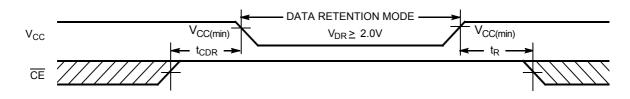
Thermal Resistance [8]


Parameter	Description	Test Conditions	SOIC	TSOP II	Unit
Θ _{JA}		Still air, soldered on a 3 × 4.5 inch two-layer printed circuit board	44.53	44.16	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		24.05	11.97	°C/W

Notes

- 4. $V_{IL(min)}$ = -2.0V for pulse durations less than 20 ns.
- V_{IH(max)} = V_{CC}+0.75V for pulse durations less than 20ns.
 Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.
- 7. Only chip enables (\overline{CE}_1 and CE_2) must be at CMOS level to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
- 8. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms



Parameters	5.0V	Unit
R1	1800	Ω
R2	990	Ω
R _{TH}	639	Ω
V _{TH}	1.77	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min	Typ ^[3]	Max	Unit
V _{DR}	V _{CC} for Data Retention		2.0			V
I _{CCDR} ^[7]	Data Retention Current	$\begin{array}{l} V_{CC} = V_{DR}, \ \overline{CE}_1 \geq V_{CC} - 0.2 V \text{ or } CE_2 \leq 0.2 V, \\ V_{IN} \geq V_{CC} - 0.2 V \text{ or } V_{IN} \leq 0.2 V \end{array}$		1	5	μΑ
t _{CDR} ^[8]	Chip Deselect to Data Retention Time		0			ns
t _R ^[9]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform ^[10]

Notes:

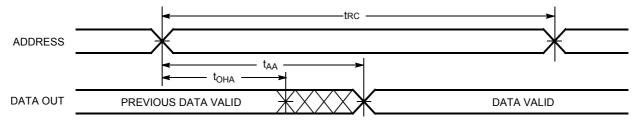
9. Full device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \,\mu s$ or stable at $V_{CC(min)} \ge 100 \,\mu s$. 10. \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

Switching Characteristics (Over the Operating Range) [11]

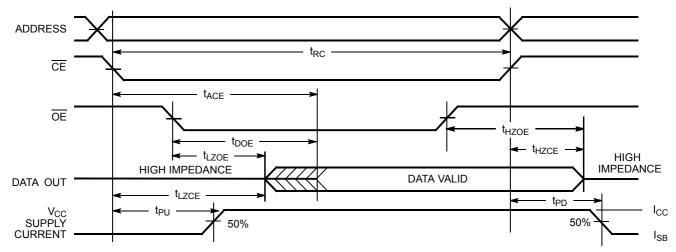
Duranta		45 ns		
Parameter	Description	Min	Max	Unit
Read Cycle				•
t _{RC}	Read Cycle Time	45		ns
t _{AA}	Address to Data Valid		45	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		45	ns
t _{DOE}	OE LOW to Data Valid		22	ns
t _{LZOE}	OE LOW to Low-Z ^[12]	5		ns
t _{HZOE}	OE HIGH to High-Z ^[12, 13]		18	ns
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low Z ^[12]	10		ns
t _{HZCE}	\overline{CE}_1 HIGH or CE_2 LOW to High-Z ^[12, 13]		18	ns
t _{PU}	\overline{CE}_1 LOW and CE_2 HIGH to power up	0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to power down		45	ns
Write Cycle ^[14]			•	•
t _{WC}	Write Cycle Time	45		ns
t _{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to Write End	35		ns
t _{AW}	Address Setup to Write End	35		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Setup to Write Start	0		ns
t _{PWE}	WE Pulse Width	35		ns
t _{SD}	Data Setup to Write end	25		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High-Z ^[12, 13]		18	ns
t _{LZWE}	WE HIGH to Low-Z ^[12]	10		ns

Notes

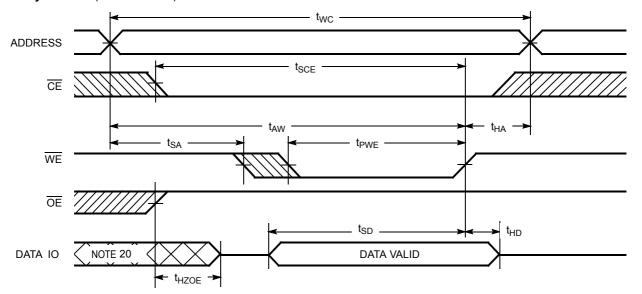
12. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.


13. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
14. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

^{11.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns (1V/ns) or less, timing reference levels of V_{CC(typ})/2, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} as shown in the AC Test Loads and Waveforms on page 4.



Switching Waveforms



Read Cycle No. 2 (OE controlled) ^[10, 16, 17]

Write Cycle No. 1 ($\overline{\text{WE}}$ controlled) [10, 14, 18, 19]

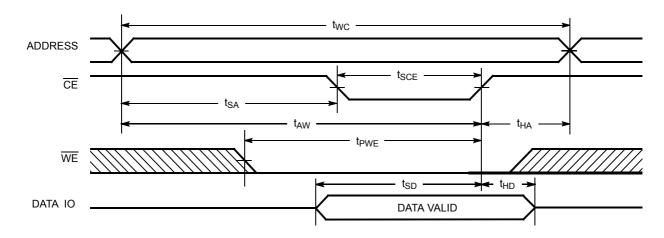
Notes:

15. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.

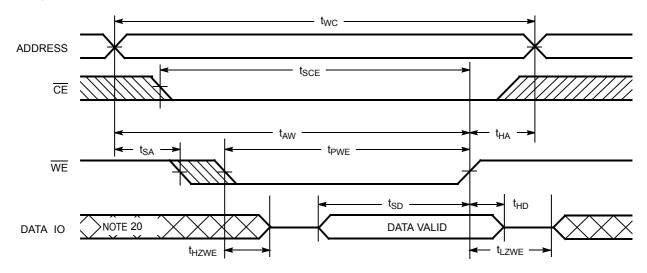
16. WE is HIGH for read cycle.

17. Address valid before or similar to \overline{CE}_1 transition LOW and CE_2 transition HIGH.

18. Data IO is high impedance if $\overline{OE} = V_{IH}$.


19. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high impedance state.

20. During this period, the IOs are in output state. Do not apply input signals.



Switching Waveforms (continued)

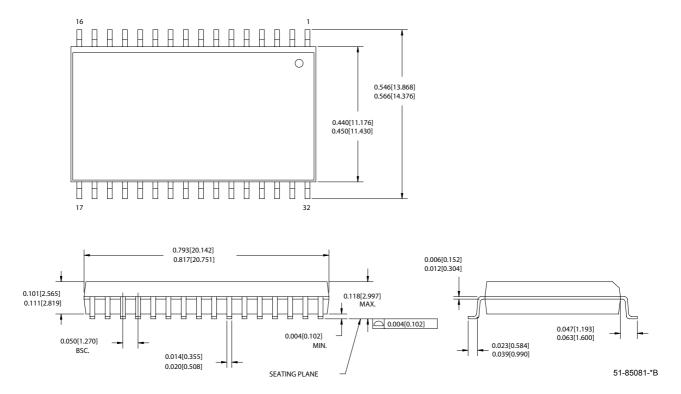
Write Cycle No. 2 ($\overline{CE1}$ or CE2 controlled) [10, 14, 18, 19]

Write Cycle No. 3 (WE controlled, OE LOW) ^[10, 19]

Truth Table

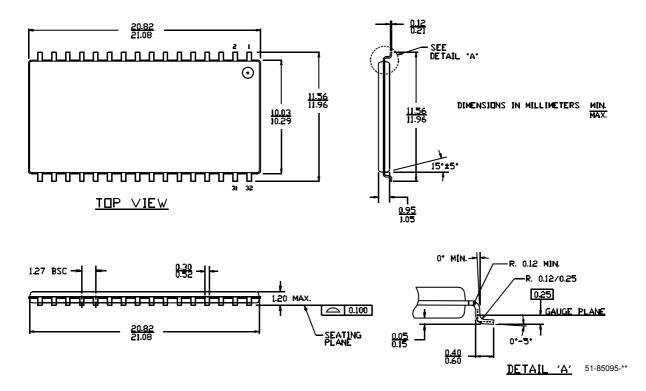
CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62138FLL-45SXI	51-85081	32-pin Small Outline Integrated Circuit (Pb-free)	Industrial
	CY62138FLL-45ZSXI	51-85095	32-pin Thin Small Outline Package II (Pb-free)	

Contact your local Cypress sales representative for availability of these parts.

Package Diagrams


Figure 1. 32-pin (450 Mil) Molded SOIC, 51-85081

Package Diagrams (continued)

Figure 2. 32-Pin TSOP II, 51-85095

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 001-13194 Rev. *A

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY62138F MoBL [®] 2-Mbit (256K x 8) Static RAM Document Number: 001-13194						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	797956	See ECN	VKN	New Data Sheet		
*A	940341	See ECN	VKN	Added footnote #7 related to I _{SB2} and I _{CCDR}		