9C08052A....J (2322 730)

FEATURES

Reduced size of final equipment

Lower assembly costs

Higher component and equipment reliability

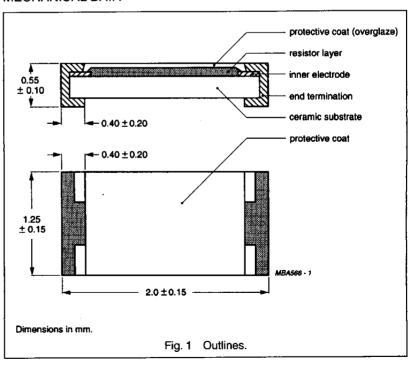
Improved performance at high frequencies

DESCRIPTION

The resistors are constructed on a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste which is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistance layer.

The resistive layer is covered with a protective coating and printed with the resistance value. The two external end terminations are added along with a nickel barrier coat. For ease of soldering, the outer layer of these end terminations is a tin/lead alloy.

MASS: 0.55 g per 100 units


QUICK REFERENCE DATA

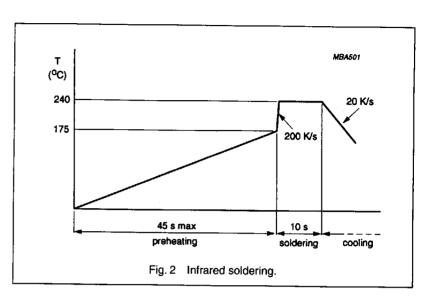
Resistance Range	1 Ω to 10 M Ω ; E24 Series and Jumper (0 Ω)
Resistance Tolerance	± 5%
Temperature Coefficient	≤ ± 200 ppm/°C
Abs. Max. Dissipation at Tamb = 70°C	0.100 W
Max. Continuous Operating Voltage	150 V (DC or RMS)
Operating Temperature Range	-55°C to +125°C
Basic Specification	IEC 115-8
Stability after: Load, 1000 hrs at T _{amb} = 70°	AD/D May 1 59/ + 0.05 O
for $R \le 1 M\Omega$ for $R > 1 M\Omega$	Δ R/R Max: 1.5% + 0.05 Ω Δ R/R Max: 3.0% + 0.10 Ω
Climatic Tests	Δη/η IVIAX. 3.0 /6 + 0.10 \$2
for $R \le 1 M\Omega$	ΔR/R Max: 1.5% + 0.05 Ω
for R > 1 M Ω	ΔR/R Max: 3.0% + 0.10 Ω
Resistance to Soldering Heat	ΔR/R Max: 0.5% + 0.05 Ω
Short Time Overload, 300 V max.	ΔR/R Max: 1.0% + 0.05 Ω

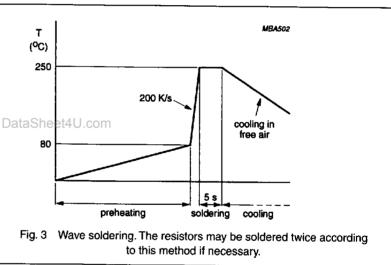
Note)ataSheet4U.co

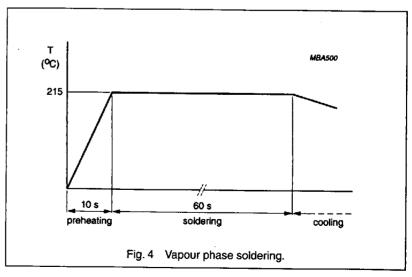
± 2% Tolerance available upon request.

MECHANICAL DATA

9C08052A....J (2322 730)


MOUNTING


Due to their rectangular shape and small tolerances on the dimensions, Surface Mounted Resistors are suitable for handling by automatic placement systems. Chip placement is possible on ceramic substrates and printed-circuit boards (PCB's). Electrical connection to the circuit is made by wave, vapor phase, or infrared soldering. The end terminations guarantee a reliable contact and the protective coating enables "face down" mounting.


The robust construction of the device allows it to be completely immersed in a solder bath of 260°C for up to one minute. Therefore, it is possible to mount Surface Mounted Resistors on one side of a PCB and other discrete components on the reverse side (mixes PCB's).

SOLDERING CONDITIONS

Surface Mounted Resistors are tested for solderability at a temperature of 235°C during 2 seconds. The test condition for no leaching is 260°C for 60 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Figs. 2, 3, and 4.

June 1995

21

www.DataSheet4U.com

DataSheet4U.com

et4U.com

9C08052A....J (2322 730)

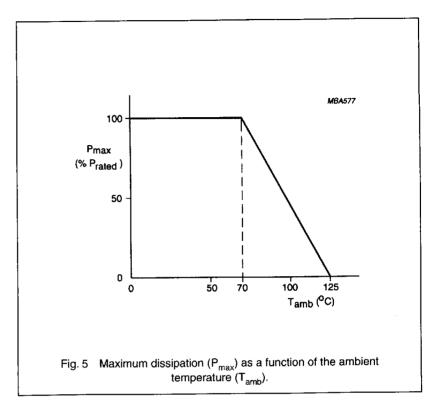
MARKING

Each resistor is marked with a three digit code on the protective coating to designate the nominal resistance value. For values up to 91 Ω , "R" is used as the decimal point. For values of 100 Ω and higher, the first two digits are significant, and the third digit indicates the number of "0's" to follow. The 0 Ω , Jumper, is marked "000".

100 to 910 Ω	1
1 to 9.1 K Ω	2
10 to 91 K Ω	3
100 to 910 K Ω	4
1 M Ω to 9.1 M Ω	5
10 M Ω	6

Examples:

 $12R = 12 \Omega$ $471 = 470 \Omega$


 $823 = 82 \text{ K} \Omega$

The packing is also marked and includes resistance value, tolerance, TCR, catalogue number, quantity, production period, batch number, and source code.

ELECTRICAL DATA

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of \pm 5%. The values of this series are in accordance with IEC Publication 63.

The maximum continuous working voltage (DC or RMS) is 150 V. This is the maximum voltage that may be continuously applied to the resistor element.

DataSheet4U.com

DISSIPATION

The rated power that the resistor can dissipate depends on the operating temperature. See Fig. 5.

The 0 Ω , jumper has a maximum resistance R_{max} = 50 m Ω and a rated current I_R = 2 A.

PULSE LOAD BEHAVIOR

The Pulse Load Behavior is determined in accordance with the method outlined in the "General Section". The results are shown in Figs. 6, 7, and 8.

DataSn

9C08052A....J (2322 730)

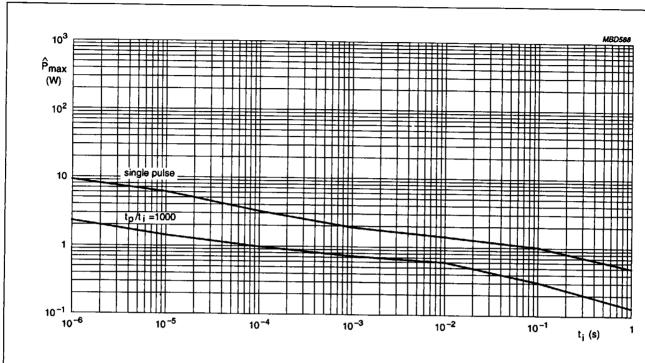
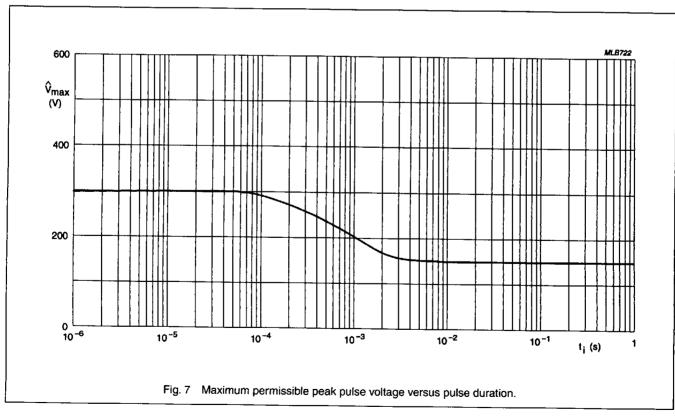



Fig. 6 Maximum permissible peak pulse power versus pulse duration for R ≤10 kΩ. Single pulse and repetitive pulse and repetitive pulse $t_p/t_i = 1,000$.

et4U.com

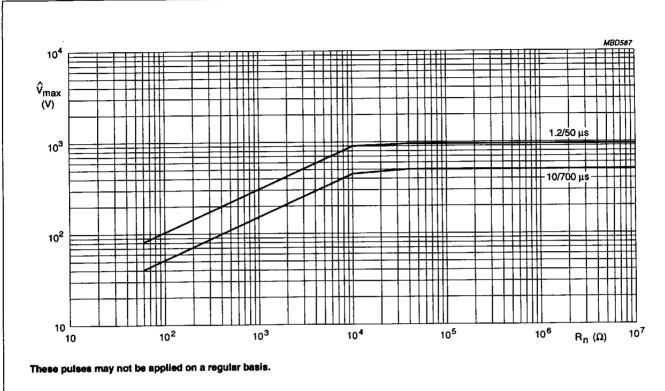
ataSheet4U.com

luna 1005

--

www.DataSheet4U.com

DataShe


Philips Components

Resistor Chip

Size 0805

5%

9C08052A....J (2322 730)

et4U.com

DataSheet4U.com

Fig. 8 Maximum permissible peak pulse voltage without failing to open circuit

ORDERING INFORMATION

Philips, North America, Part Number

Table 1

Resistance Range	Tol. ± %	Series	Part Number
1 Ω to 10 M Ω and 0 Ω	5	E24	9C08052AJ

The "..." in the part number represents the value of the resistor. The value is composed of three significant figures followed by a multiplier to indicate the number of "0's" to follow. For values less than 100 Ω 's, a "R" is used as the decimal place (12 Ω is 12R0).

Examples:

100
$$\Omega$$
 = 1000
51,000 Ω = 5102
1,500,000 Ω = 1504

$$4,700 \Omega = 4701$$

 $330,000 \Omega = 3303$

24

DataSheet4U.com

9C08052A....J (2322 730)

INTERNATIONAL PART NUMBER

Table 2 The resistor part numbers start with 2322. Subsequent digits indicate packaging and resistance as listed in this table.

Resistance Range Tol ± % Series		2322				
	Series	Cardboard Tape		Plastic Blister Tape		
		5000 reel	10,000 reel	5000 reel	10,000 reel	
1Ω to 10 MΩ	5	E24	730 61	730 71	731 61	731 71
$0~\Omega$ Jumper			730 91002	730 91003	731 91003	731 91002

Note

5000 piece cardboard tape reels are standard. Other packaging is available on special order.

Table 3 To complete the part number (see Table 2), replace the first two dots of the remaining code with the first two digits of the resistance value. Replace the third dot with a figure as shown in this table.

Nominal Resistance Range	Last Digit of Part Number
1 Ω to 9.1 Ω	8
10 Ω to 91 Ω Data Shee	t411 com
100 Ω to 910 Ω	1
1 KΩ to 9.1 KΩ	2
10 KΩ to 91 KΩ	3
100 K Ω to 910 K Ω	4
1 M Ω to 9.1 M Ω	5
10 ΜΩ	6

et4U.com

.lune 1995

DataShe

Precision Resistor Chip Size 0805

1%

9C08052A....F (2322 734.....)

FEATURES

Reduced size of final equipment

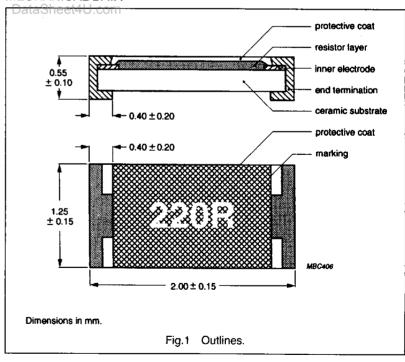
Lower assembly costs

Higher component and equipment reliability

Improved performance at high frequencies

DESCRIPTION

The resistors are constructed on a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste which is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistance layer.


The resistive layer is covered with a protective coating and printed with the resistance value. The two external end terminations are added along with a nickel barrier coat. For ease of soldering, the outer layer of these end terminations is a tin/lead alloy.

MASS: 0.55 g per 100 units

QUICK REFERENCE DATA

Resistance Range	1 Ω to 1 M Ω ; E24/96 Series
Resistance Tolerance	± 1%
Temperature Coefficient 1 Ω to 4.99 Ω 5.1 Ω to 97.6 Ω 100 Ω to 1 M Ω	≤ ± 250 ppm/°C ≤ ± 200 ppm/°C ≤ ± 100 ppm/°C
Abs. Max. Dissipation at T _{amb} = 70°C	0.100 W
Max. Continuous Operating Voltage	150 V (DC or RMS)
Operating Temperature Range	-55°C to +125°C
Basic Specification	EIA 575/IEC 115-8
Stability after: Load, 1000 hrs at T _{amb} = 70°C Climatic Tests Resistance to Soldering Heat Short Time Overload, 300 V. max.	Δ R/R Max: 1.0% + 0.05 Ω Δ R/R Max: 1.0% + 0.05 Ω Δ R/R Max: 0.5% + 0.05 Ω Δ R/R Max: 1.0% + 0.05 Ω

MECHANICAL DATA

luna 100E

--

www.DataSheet4U.com

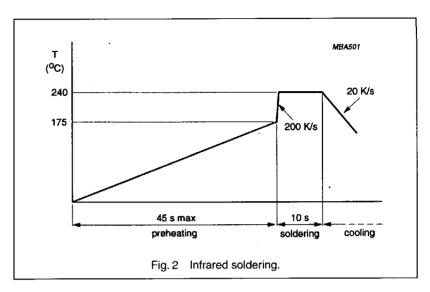
DataSheet4U.com

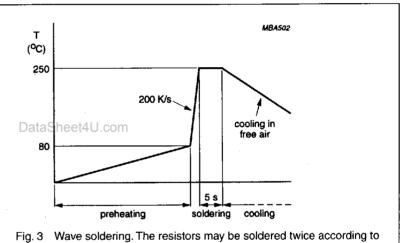
et4U.com

Precision Resistor Chip Size 0805

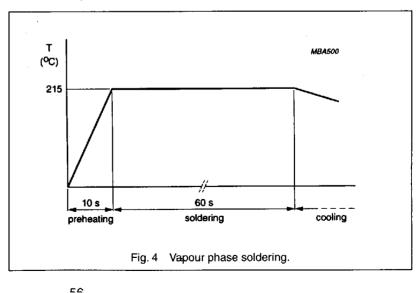
9C08052A....F (2322 734)

1%


MOUNTING


Due to their rectangular shape and small tolerances on the dimensions, Surface Mounted Resistors are suitable for handling by automatic placement systems. Chip placement is possible on ceramic substrates and printed-circuit boards (PCB's). Electrical connection to the circuit is made by wave, vapor phase, or infrared soldering. The end terminations guarantee a reliable contact and the protective coating enables "face down" mounting.

The robust construction of the device allows it to be completely immersed in a solder bath of 260°C for up to one minute. Therefore, it is possible to mount Surface Mounted Resistors on one side of a PCB and other discrete components on the reverse side (mixes PCB's).


SOLDERING CONDITIONS

Surface Mounted Resistors are tested for solderability at a temperature of 230°C et4U.conduring 2 seconds. The test condition for no leaching is 260°C for 60 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Figs. 2, 3, and 4.

this method if necessary.

Philips Components

Precision Resistor Chip Size 0805 1%

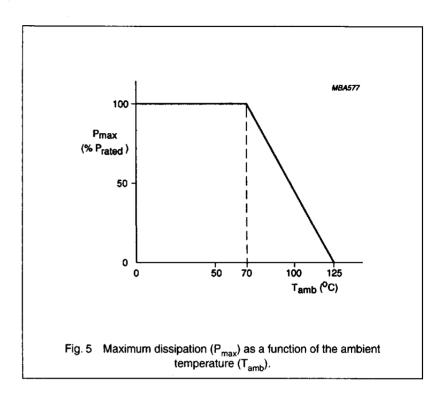
9C08052A....F (2322 734)

MARKING

Each resistor is marked with a four digit code on the protective coating to designate the nominal resistance value. For values up to 976 Ω , "R" is used as the decimal point. For values of 1 K Ω and higher, the first three digits are significant, and the fourth digit indicates the number of "0's" to follow.

Examples:

121R = 121 Ω 4021 = 4.02 ΚΩ 1503 = 150 ΚΩ


The packing is also marked and includes resistance value, tolerance, TCR, catalogue number, quantity, production period, batch number, and source code.

ELECTRICAL DATA

et4U.com

Standard values of nominal resistance are taken from the E24/96 series for resistors with a tolerance of \pm 1%. The values of these series are in accordance with IEC Publication 63.

The maximum continuous working voltage (DC or RMS) is 150 V. This is the maximum voltage that may be continuously applied to the resistor element.

DISSIPATION U.com

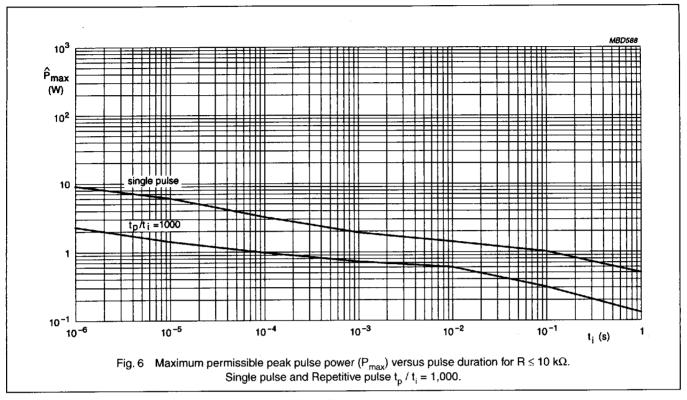
The rated power that the resistor can dissipate depends on the operating temperature. See Fig. 5.

PULSE LOAD BEHAVIOR

The Pulse Load Behavior is determined in accordance with the method outlined in the "General Section". The results are shown in Figs. 6, 7, and 8.

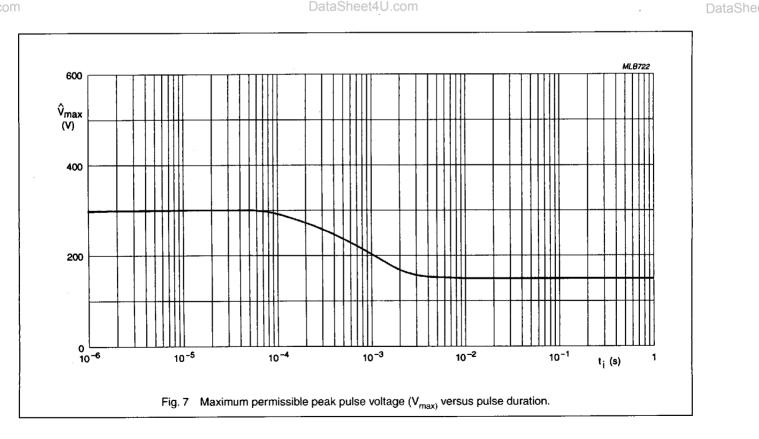
DataSne

I.--- 100F


__

DataSheet4U.com

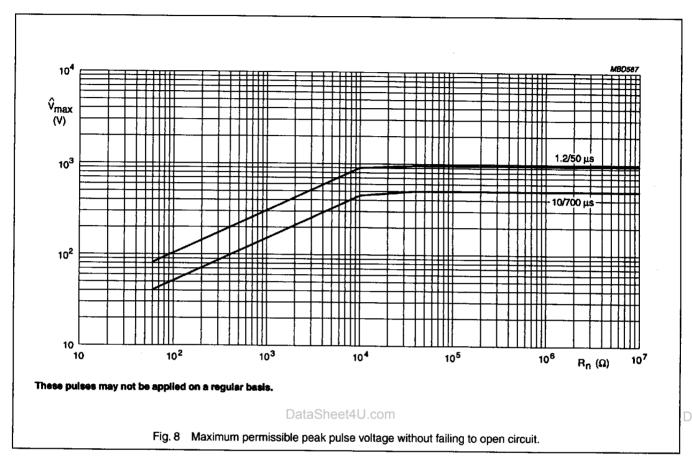
Philips Components


Precision Resistor Chip Size 0805 1%

9C08052A....F (2322 734)

et4U.com

DataSheet4U.com



DataSheet4U.com

Precision Resistor Chip Size 0805

1%

9C08052A....F (2322 734)

ORDERING INFORMATION

North American, Part Number

Table 1

et4U.com

Resistance Range	Tol. ± %	Series	Part Number
1 Ω to 1 MΩ	1	E24/96	9C08052AF

The "..." in the part number represents the value of the resistor. The value is composed of three significant figures followed by a multiplier to indicate the number of "0's" to follow. For values less than 100 Ω 's, a "R" is used as the decimal place (49.9 Ω is 49R9).

Examples:

100
$$\Omega$$
 = 1000
51,000 Ω = 5102
1,500,000 Ω = 1504

$$4,700 \Omega = 4701$$

 $330,000 \Omega = 3303$

l..... 100F

Precision Resistor Chip Size 0805 1%

9C08052A....F (2322 734)

International Part Number

Table 2 The resistor part numbers start with 2322. Subsequent digits indicate packaging and resistance as listed in this table.

			2322 734			
Resistance	Tol ±	Series	Cardboard Tape		Plastic B	lister Tape
Range	%		5000 reel	10,000 reel	5000 reel	10,000 reel
1 Ω to 1 M Ω	1	E24/E96	6	7	2	4

Note

5000 piece cardboard tape reels are standard. Other packaging is available on special order.

Table 3 To complete the Part Number (see Table 2), replace the first three dots of the remaining code with the first three digits of the resistance value. Replace the fourth dot with a figure as shown in this table.

	Nominal Resistance Range	Last Digit of Part Number	
	1 Ω to 9.76 Ω	8	
	10 Ω to 97.6 Ω	9	
	100 Ω to 976 Ω	1	
	1 KΩ to 9.76 KΩ	2	
	10 KΩ to 97.6 KΩ	3	
n	100 KΩ to 976 KΩ DataS	heet#U.com 4	
	1 M Ω to 9.76 M Ω	5	

et4U.com