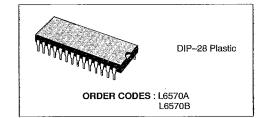
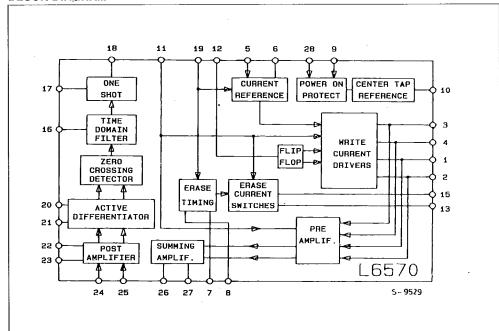
L6570A L6570B

NOZMOHT-Z D Z


2-CHANNEL FLOPPY DISK READ/ WRITE CIRCUITS

- TWO GAIN VERSIONS (A AND B)
- COMPATIBLE WITH 8", 5.25" AND 3.5" DRIVES.
- INTERNAL WRITE AND ERASE CURRENT SOURCES, EXTERNALLY SET
- INTERNAL CENTER TAP VOLTAGE SOURCE
- CONTROL SIGNALS ARE TTL COMPATIBLE
- TTL SELECTABLE WRITE CURRENT BOOST
- OPERATES ON + 12 V AND + 5 V POWER SUP-PLIES

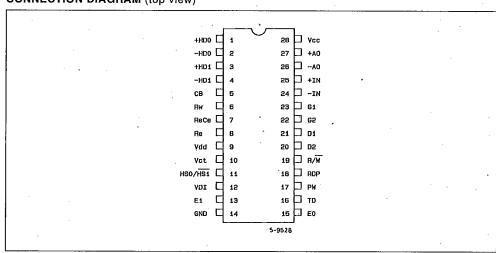

DESCRIPTION

The L6570A/B are integrated circuits which perform the functions of generating write signals and amplifying and processing read signals required for a double sided floppy disk drive. The L6570A fea-

tures a gain of 85 min and the L6570B of 300 min. All logic inputs and outputs are TTL compatible and all timing is externally programmable for maximum design flexibility.

BLOCK DIAGRAM

Symbol	Parameter	Test Conditions	Unit
Vcc	5V Supply Voltage	7	V
V_{DD}	12V Supply Voltage	- 14	V
T_{stg}	Storage Temperature	- 65 to 150	°C
T _{amb}	Ambient Operating Temperature	0 to + 70	°C
Tj.	Junction Operating Temperature	0 to + 130	
Vr	Logic Input Voltage	- 0.5 to 7.0	V


500

mW

CONNECTION DIAGRAM (top view)

Power Dissipation

 P_{tot}

THERMAL DATA

_	the state of the s			
1	Rth I-amb Thermal Resistance Junction-ambient	Max	100	°C/W

ELECTRICAL CHARACTERISTICS (unless otherwise specified, 4.75V ≤ V_{CC} ≤ 5.25V; 11.4V ≤ V_{DD} \leq 12,6V; 0 °C \leq T_{amb} \leq 70 °C; R_W = 430 Ω ; R_{FD} = 62 K Ω ; C_F = 0.012 μ F; R_{FH} = 62 K Ω ; R_{FC} $=220\Omega$) Symbol **Parameter Test Condtions** Min. Тур. Unit Max. POWER SUPPLY CURRENTS Togge Mode EV Cumply Current

ICC	SV Supply Current	Write Mode	38	mA
Ipp	12V Supply Current	Read Mode L6570A L6570B	26 35	mA mA
		Write Mode (exclude Write and Erase currents) L6570A L6570B	24 35	mA mA

LOGIC SIGNALS-READ/WRITE (R/W), CURRENT BOOST (CB)

L	VIL	Input Low Voltage			0.8	V
	l _{i∟}	Input Low Current	V _{IL} = 0.4V		- 0.4	mA
	ViH	Input High Voltage		2.0		V
[l _{IH}	Input High Current	V _{IH} = 2.4V		20	μА

LOGIC SIGNALS-WRITE DATA INPUT (WDI), HEAD SELECT (HS0/HS1)

-	V _T +	Threshold Voltage, Positive-going		1.4	1.9	٧
	V _T -	Threshold Voltage, Negative-going		0.6	1.1	٧
	V _T +, V _T -	Hysteresis		0.4		٧
	I _{IH}	Input High Current	V _{IH} = 2.4V		20	μА
	Iμ	Input Low Current	V _{IL} = 0.4V		- 0.4	mA

CENTE	R TAP VOLTAGE REFERI	ENCE			
V _{CT}	Output Voltage	I _{WC} + I _E = 3 mA to 60 mA	V _{DD} -1.5	V _{DD} -0.5	V
Vcc	Turn-Off Threshold		4.0		V
V _{DD}	Turn-Off Threshold		9.6		V

Vcc	Turn-Off Threshold		4.0		V
V_{DD}	Turn-Off Threshold		9.6		V
V _{CT}	Disabled Voltage	-		1.0	V
ERASE	OUTPUTS (E1, E0)				

Unselected Head Leakage

Output on Voltage

V _{CT}	Disabled Voltage	-		1.0	V
ERASE	OUTPUTS (E1, E0)				
	Unselected Head Leakage	V _{EO} , V _{E1} = 12.6V		100	μΑ

 $I_F = 50 \text{ mA}$

0.5

Symbol	Parameter.	Test Conditions	Min.	Тур.	Max.	Unit
VRITE	CURRENT					
	Unselected Head Leakage	V_{E1} , $V_{E0} = 12.6V$	T		25	μA
	Write Current Range	R_W = 820 Ω to 180 Ω	3		10	mA
	Current Reference Accuracy	I _{W C} = 2.3/R _W V _{CB} (current boost) = 0.5V	-5		+5	%
	Write Current Unbalanced	Iwc = 3 mA to 10 mA	<u> </u>		1.0	.%
	Differential Head Voltage Swing	ΔI _{WC} ≤ 5 %	12.8			V _{pk}
	Current Boost	V _{CB} = 2.4V	1.25 Iwc		1.35 lwc	
RASE	TIMING		· · · · · · · · · · · · · · · · · · ·			
	Erase Delay Range	R_{ED} = 39 KΩ to 82 KΩ C_{E} = 0.0015 μF to 0.043 μF	0.1		1.0	ms
	$\frac{\Delta T_{ED}}{T_{ED}} \times 100 \%$	T_{ED} = 0.69 R_{ED} C_{E} R_{ED} = 39 $K\Omega$ to 82 $K\Omega$ C_{E} = 0.0015 μF to 0.043 μF	- 15		+ 15	%
	Erase Hold Range	R_{EH} + R_{ED} = 78 KΩ to 164 KΩ C_{E} = 0.0015 μF to 0.043 μF	0.2		2.0	· ms
ine wav	Erase Hold Accuracy Description	o. Summing amplifier load =	d : V _{IN} (F : 2 ΚΩ lir	ne-line,	AC cour	oled.
ine way In (Pos Icc ; Cc	ATED TED x 100 % RICAL CHARACTERISTICS ve, DC coupled to center tap stamplifier)= 0.2 Vpp sine way 0 = 240 pF; CTD = 100 pF; F	R_{EH} + R_{ED} = 78 KΩ to 164 KΩ C_E = 0.0015 μF to 0.043 μF (Unless otherwise specifier). Summing amplifier load = ve, AC coupled; R_G = oper R_{TD} = 7.5 KΩ; C_{PW} = 47 pF	d: V _{IN} (F 2 KΩ lin n; Data F; R _P w =	ne-linė, pulse lo 7.5 Ks	lifier) =1 AC coup pad = 1 k	OmV _F oled. (Ω to
ine way IN (Pos CC; CE	ATED TED x 100 % RICAL CHARACTERISTICS ve, DC coupled to center tap stamplifier)= 0.2 Vpp sine way 0 = 240 pF; CTD = 100 pF; F	$R_{EH} + R_{ED} = 78$ KΩ to 164 KΩ $C_{E} = 0.0015$ μF to 0.043 μF (Unless otherwise specifier). Summing amplifier load = ve. AC coupled: $R_{G} = 0.001$	d: V _{IN} (F 2 ΚΩ lir 1: Data	ne-line, oulse la	lifier) =1 AC coup ad = 1 k	OmV _r oled. (Ω to
ine way IN (Pos CC; Cc READ M	ATED TED x 100 % RICAL CHARACTERISTICS ve, DC coupled to center tap stamplifier)= 0.2 Vpp sine way 0 = 240 pF; CTD = 100 pF; F	$R_{EH} + R_{ED} = 78$ KΩ to 164 KΩ $C_E = 0.0015$ μF to 0.043 μF (Unless otherwise specifier). Summing amplifier load = ve, AC coupled; $R_G = 0$ oper $R_{TD} = 7.5$ KΩ; $C_{PW} = 47$ pf	d: V _{IN} (F 2 KΩ lin n; Data F; R _P w =	ne-linė, pulse lo 7.5 Ks	lifier) =1 AC coup pad = 1 k	OmV _r oled. (Ω to
ne way IN (Pos CC; Cc EEAD N	TED x 100 % RICAL CHARACTERISTICS we, DC coupled to center tap stamplifier) = 0.2 V _{pp} sine way to = 240 pF; C _{TD} = 100 pF; F	$R_{EH} + R_{ED} = 78$ KΩ to 164 KΩ $C_E = 0.0015$ μF to 0.043 μF (Unless otherwise specifier). Summing amplifier load = ve, AC coupled; $R_G = 0$ oper $R_{TD} = 7.5$ KΩ; $C_{PW} = 47$ pf	d: V _{IN} (F 2 KΩ lin n; Data F; R _P w =	ne-linė, pulse lo 7.5 Ks	lifier) =1 AC coup pad = 1 k	OmV _i oled. Ω to Unit
ine way IN (Pos CC; Cc READ M	TED x 100 % RICAL CHARACTERISTICS We, DC coupled to center tap stamplifier)= 0.2 V _{pp} sine way 0 = 240 pF; C _{TD} = 100 pF; F MODE Parameter PLIFIER-SUMMING AMPLIFIER	$R_{EH} + R_{ED} = 78$ KΩ to 164 KΩ $C_E = 0.0015$ μF to 0.043 μF (Unless otherwise specifier). Summing amplifier load = ve, AC coupled; $R_G = 0$ oper $R_{TD} = 7.5$ KΩ; $C_{PW} = 47$ pf $R_{TD} = 7.5$ KΩ; $R_{TD} = 7.5$ KΩ $R_{TD} = 7.5$ KΩ $R_{TD} = 7.5$ KΩ $R_{TD} = 7.5$ Conditions	d: V _{IN} (F : 2 KΩ lin ; Data ; R _{PW} =	ne-linė, pulse lo 7.5 Ks	lifier) =1 AC coup ad = 1 k 2).	OmV _r oled. Ω to Unit
ne way IN (Pos CC; Cc EEAD N	TED X 100 % RICAL CHARACTERISTICS Ve, DC coupled to center tap ptamplifier)= 0.2 Vpp sine way o = 240 pF; CTD = 100 pF; F MODE Parameter PLIFIER-SUMMING AMPLIFIER Diff Voltage Gain	$R_{EH} + R_{ED} = 78$ KΩ to 164 KΩ $C_E = 0.0015$ μF to 0.043 μF (Unless otherwise specifier). Summing amplifier load = ve, AC coupled; $R_G = 0$ oper $R_{TD} = 7.5$ KΩ; $C_{PW} = 47$ pf $R_{TD} = 7.5$ KΩ; $R_{TD} = 7.5$ KΩ $R_{TD} = 7.5$ KΩ $R_{TD} = 7.5$ KΩ $R_{TD} = 7.5$ Conditions	d: V _{IN} (F = 2 KΩ lit ; Data ; P = = ; R _{PW} = Min.	ne-linė, pulse lo 7.5 Ks	lifier) =1 AC coup ad = 1 k 2).	OmV _i oled. Ω to Unit
ine way IN (Pos CC; Cc READ M	TED X 100 % RICAL CHARACTERISTICS ve, DC coupled to center tap stamplifier)= 0.2 Vpp sine way o = 240 pF; CTD = 100 pF; F MODE Parameter PLIFIER-SUMMING AMPLIFIER Diff Voltage Gain Bandwidth (- 3 dB)	$R_{EH} + R_{ED} = 78$ KΩ to 164 KΩ $C_E = 0.0015$ μF to 0.043 μF (Unless otherwise specifies Summing amplifier load = ve, AC coupled; $R_G = 0$ per $R_{TD} = 7.5$ KΩ; $C_{PW} = 47$ pf Test Conditions Freq. = 250 KHz L6570A	d: V _{IN} (F = 2 KΩ lit ; Data ; P = = ; R _{PW} = Min.	ne-linė, pulse lo 7.5 Ks	Hifier) =1 AC coup ad = 1 k 2). Max.	OmV _p oled. ⟨Ω to Unit
ine way In (Pos Icc ; Co READ N	ATED TED X 100 % RICAL CHARACTERISTICS We, DC coupled to center tap Estamplifier)= 0.2 Vpp sine way to = 240 pF; CTD = 100 pF; F MODE Parameter PLIFIER-SUMMING AMPLIFIER Diff Voltage Gain Bandwidth (- 3 dB) Gain Flatness	$R_{EH} + R_{ED} = 78$ KΩ to 164 KΩ $C_E = 0.0015$ μF to 0.043 μF (Unless otherwise specifies Summing amplifier load = 0.0000000000000000000000000000000000	d: V _{IN} (F = 2 KΩ lift ; Data F = 7 ; R _{PW} = 1 Min. 85 300 3	ne-linė, pulse lo 7.5 Ks	Hifier) =1 AC coup ad = 1 k 2). Max.	0mV; bled. ΚΩ to Unit
ine way IN (Pos cc; Cc READ N	ATED TED X 100 % RICAL CHARACTERISTICS We, DC coupled to center tap Estamplifier)= 0.2 Vpp sine way D = 240 pF; CTD = 100 pF; F MODE Parameter PLIFIER-SUMMING AMPLIFIER Diff Voltage Gain Bandwidth (- 3 dB) Gain Flatness Diff. Input Impedance	$R_{EH} + R_{ED} = 78$ KΩ to 164 KΩ $C_E = 0.0015$ μF to 0.043 μF (Unless otherwise specifier). Summing amplifier load = ve, AC coupled; $R_G = 0$ per $R_{TD} = 7.5$ KΩ; $C_{PW} = 47$ pf Test Conditions Freq. = 250 KHz Freq. = DC to 1.5 MHz Freq. = 250 KHz $V_{IN} = 250$ KHz Sine Wave $V_{IN} = 250$ KHz	d: V _{IN} (F 2 KΩ lin ; Data T 3 RPW = Min. 85 300 3 20 2.5	ne-linė, pulse lo 7.5 Ks	Hifier) =1 AC coup ad = 1 k 2). Max.	OmV _F oled. (Ω to Unit

ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit

PREAMPLIFIER-SUMMING AMPLIFIER

	Power Supply Rejection Ratio	$\Delta V_{DD} = 300 \text{ mV}_{pp} @ 500 \text{ KHz}$ Inputs Shorted to V_{CT}	50			dB
	Channel Isolation	Unselected Channel V _{IN} =100 mV _{pp} @ 500 KHz. Selected Channel Input Connected to V _{CT}	40			dB
	Equivalent Input Noise	Power BW = 10 kHz to 1 MHz Inputs Shorted to V _{CT}			10	μV _{rms}
V _{CT}	Center Tap Voltage	_		1.5	1	V

POSTAMPLIFIER-ACTIVE DIFFERENTIATOR

AO, Diff. Voltage Gain + IN, - IN to D1, D2	Freq. = 250 KHz	8.5	11.5	V/V
Bandwidth (- 3dB) + IN, - IN to D1, D2	$C_D = 0.1 \ \mu\text{F}, R_D = 2.5 \ \text{K}\Omega$	3		MHz
Gain Flatness + IN, - IN to D1, D2	Freq. = DC to 1.5 MHz $C_D = 0.1 \mu F$, $R_D = 2.5 K\Omega$		± 1.0	dB
Max. Diff. Output Voltage Swing	V _{IN} = 250 KHz Sine Wave, AC Coupled. ≤ 5 % THD in Voltage across C _D	5.0		V _{pp}
Max. Diff. Input Voltage	V_{IN} = 250 KHz Sine Wave, AC Coupled. \leq 5 % THD in Voltage across C_{D} , R_{G} = 1.5 KΩ	2.5		V _{pp}
 Diff. Input Impedance		10		ΚΩ
Gain Control Accuracy ΔA _R X 100 %	$A_{R} = A_{O}R_{G}/(8 \times 10^{3} + R_{G})$ $R_{G} = 2 \text{ K}\Omega$	- 25	+ 25	%
Threshold Differential Input Voltage	Min. diff. input voltage at post amp. that results in a change of state at RDP $V_{IN}=250~\text{KHz}$ square wave, $C_D=0.1~\mu\text{F}$ $R_D=500~\Omega$, T_R , $T_F\leq0.2~\mu\text{s}$. No overshoot; Data pulse from each V_{IN} transition		3.7	mV _{pp}
Peak Differential Network Current		1.0		mA

ELECTRICAL CHARACTERISTICS (Continued)

Parameter

TIME DOMAIN FILTER $T_{TD} = 0.58 R_{TD} \cdot (C_{TD} + 10^{-11}) +$ - 15 + 15 % Delay Accuracy 150 ns. ΔT_{TD} x 100 % $R_{TD} = 5 \text{ K}\Omega \text{ to } 10 \text{ K}\Omega$ Ттп $C_{TD} = 56 pF$ $V_{IN} = 50 \text{ mV}_{pp} @ 250 \text{ KHz sq.}$ wave

> T_B , $T_F \le 20$ ns, AC coupled. Delay measured from 50 % input amplitude to 1.5 V data pulse $T_{TD} = 0.58 R_{TD} = (C_{TC} + 10^{-11}) +$

 $R_{TD} = 5 \text{ K}\Omega \text{ to } 10 \text{ K}\Omega$ $C_{TD} = 56 \text{ pF to } 240 \text{ pF}$ $R_D = 500 \Omega$ $C_D = 0.1 \, \mu F$.

150 ns.

Test Conditions

Delay Range

Symbol

DATA PULSE - 20 + 20 % $T_{PW} = 0.58 R_{PW} \times (C_{PW} + 8)$ Width Accuracy x 10⁻¹²) + 20 ns ΔT_{PW} x 100 % $R_{PW} = 5 K\Omega \text{ to } 10 K\Omega$ C_{PW} ≥ 36 pF · with measured at 1.5V amplitudes ٧ 2.7 Active Level Output Voltage $I_{OH} = 400 \mu A$ v 0.5 Inactive Level Output $I_{OI} = 4 \text{ mA}$ Leakage -145 1225 Pulse Width $T_{PW} = 0.58 R_{PW} \times (C_{PW} + 8)$ ns x 10⁻¹²) + 20 ns $R_{PW} = 5 K\Omega$ to 10 $K\Omega$

 $C_{PW} = 36 pF to 200 pF$

TEST SCHEMATICS

Figure 1: Preamplifier Characteristics.

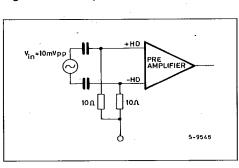
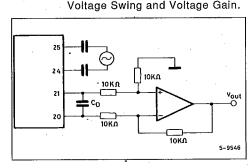


Figure 2: Postamplifier Differential Output Voltage Swing and Voltage Gain.

Max.

2370


Unit

ns

Тур.

Mín.

240

TEST SCHEMATICS (Continued)

T-52-38

Figure 3 : Postamplifier Threshold Differential Input Voltage.

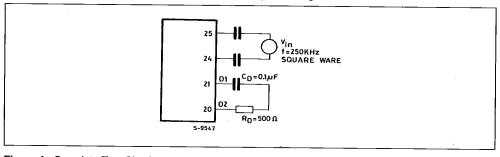
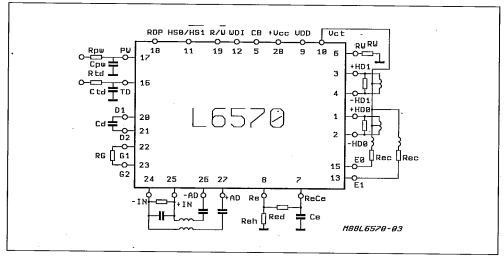



Figure 4 : Complete Test Circuit.

