

F-Type

Voltage Controlled Crystal Oscillator (VCXO)

The FTV Voltage Controlled Crystal Oscillator

Features

- Industry Common Pinout
- Commercial or Industrial Temperature Range
- TTL or CMOS Drive Capability
- Hermetic Package
- 5.0 V or 3.3 V Supply

Description

The F-Type Voltage Controlled Crystal Oscillator (VCXO) is used in a phase lock loop applications including clock recovery and frequency translation applications. The metal package is grounded for improved EMI performance.

Pin Information

Table	1. Pin Functio			
Pin	Symbol	Function	14	Ω
1	V _C	VCXO Control Voltage)
7	GND	Case Ground		
8	Output	VCXO Output	4	-
14	V_{DD}	Power Supply Voltage (3.3 or 5.0 V ±10%)	1	, /

Performance Characteristics

Table 2. Electrical Performance								
Parameter	Symbol	Minimum	Typical	Maximum	Units			
Operating Temperature Range	То	0 to 70, -20 To 70, or -40 to 85			°C			
Center Frequency ¹	f ₀	1	-	52	MHz			
Absolute Pull Range			ppm					
Supply Voltage ²	V_{DD}	;	V					
Supply Current	I _{DD}	-	0.45 mA/MHz	35	mA			
Output Voltage Levels ³								
Output High	V _{OH}	$0.9 V_{DD}$	-		V			
Output Low	V _{OL}			$0.1 V_{DD}$	V			
Transition times ³								
Rise Time	T _R	-	-	5.0	ns			
Fall Time	T _F	-	-	5.0	ns			
Fanout		-	-	10	TTL			
Start-Up Time	t _{su}	-	2	-	ms			
Control Voltage	V _C	0.1 V _{DD}	-	0.9 V _{DD}	V			
Fanout	Fo	-	-	10 TTL	Loads			

^{1.} Other frequencies may be available, please contact factory with your special requirements.
2. A 0.1 μF low frequency tantalum bypass capacitor in parallel with a 0.01 μF high frequency ceramic capacitor is recommended. Both should be located as close to the FTU-Type bias pin as is practical 3. Figure 1 defines these parameters. Figure 2 illustrates the equivalent TTL load and operating conditions under which these parameters are specified and tested.

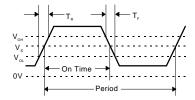


Figure 1. Output Waveform

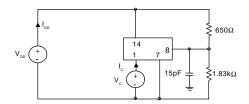


Figure 2. Output Test Conditions (25±5°C)

F-Type VCXO

Handling Precautions

Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. VTI employs a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation.

ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500Ω , capacitance = 100pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained by using these circuit parameters.

Table 3. ESD Threshold Voltage							
Model	Threshold	Unit					
Human-Body (HBM)	1000*	Volts Min.					
Charged-Device (CDM)	500	Volts Min.					
*Mil-STD-883D, Method 3015, Class 1							

Table 4. Mechanical and Environmental Compliance							
Parameter	Conditions						
Mechanical Shock	MIL-STD-883C, 2002.3, A						
Mechanical Vibration	MIL-STD-883C, 2007.1, A						
Temperature Cycle	MIL-STD-883C, 1010, A						
Gross Leak	100% Deionized Water						
Fine Leak	MIL-STD-883C, 1014.7						
Seal Strength	2 lbs Perpendicular to Top and Bottom						
Bend Test	MIL-STD-202E, 211A, C						
Marking	MIL-STD-202E, 215						
Storage Temperature	-55°C to 125°C						

Outline Diagram

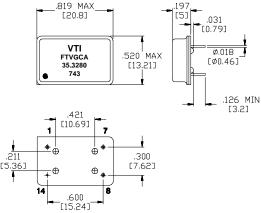


Figure 3 Outline Diagram

Ordering Information

Example Part # ---

Ta	Table 5. Part Numbering										
<u>F</u>			Ţ	<u>V</u> <u>G</u>		<u>C</u>		<u>A</u>			
Package		V	Supply oltage (V)		VCXO Type	,		Operating Temp. (°C		Output Load	
F	4 pin DIP	Т	5.0±10%	٧	VCXO	F	±32	С	0 to 70	Α	TTL 50 ±5%
		D	3.3±10%			G	±50	L	-40 to 85	В	TTL 50 ±10%
						Н	±100	I	-20 to 70	J	CMOS 50 ±5%
					_	Α	±100 TPR			K	CMOS 50 ±10%

Other specifications may be available on request.

For Additional Information Please Contact:

USA: Vectron International • 166 Glover Avenue, Norwalk, CT 06856 • Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON EUROPE: In Denmark, Finland, Ireland, Italy, Israel, Norway, Spain, UK: Tel: 44 (0) 1703 766 288 • Fax: 44 (0) 1703 766 822 In Austria,Belgium,France,Germany,Luxenburg,Netherlands,Sweden,Switzerland:Tel: 49(0)7263 6480 • Fax:49(0)7263 6196 ASIA: In China, Taiwan, Japan: Tel: 01 603 598 0070 • Fax: 01 603 598 0075

In Korea, Singapore, Australia, India: Tel: 01 203 853 4433 • Fax: 01 203 853 1423

rev 1.2, 4/27/98

Vectron International reserves the right to make changes to the product(s) and/or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.