DATA SHEET

TDA8764A

10-bit high-speed low-power ADC
Product specification
File under Integrated Circuits, IC11

FEATURES

- 10-bit resolution (binary or gray code)
- Sampling rate up to 60 MHz
- DC sampling allowed
- One clock cycle conversion only
- High signal-to-noise ratio over a large analog input frequency range (9.3 effective bits at 5 MHz full-scale input at $\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz}$)
- No missing codes guaranteed
- In Range (IR) CMOS output
- TTL and CMOS levels compatible digital inputs
- 2.7 to 3.6 V CMOS digital outputs
- Low-level AC clock input signal allowed
- Power dissipation only 312 mW
- Low analog input capacitance, no buffer amplifier required
- No sample-and-hold circuit required.

APPLICATIONS

High-speed analog-to-digital conversion for:

- Video data digitizing
- Radar pulse analysis
- High energy physics research
- Transient signal analysis
- $\Sigma \Delta$ modulators
- Medical imaging.

GENERAL DESCRIPTION

The TDA8764A is a 10-bit high-speed low-power Analog-to-Digital Converter (ADC) for professional video and other applications. It converts the analog input signal into 10-bit binary or gray coded digital words at a maximum sampling rate of 60 MHz . All digital inputs and outputs are TTL and CMOS compatible, although a low-level sine wave clock input signal is allowed.

The device requires an external source to drive its reference ladder.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA8764ATS/6	SSOP28	plastic shrink small outline package; 28 leads; body width 5.3 mm	SOT341-1
TDA8764AHL/6	LQFP32	plastic low profile quad flat package; 32 leads; body $5 \times 5 \times 1.4 \mathrm{~mm}$	SOT401-1

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{CCA}}$	analog supply voltage		4.75	5.0	5.25	V
$\mathrm{~V}_{\mathrm{CCD}}$	digital supply voltage		4.75	5.0	5.25	V
$\mathrm{~V}_{\mathrm{CCO}}$	output stages supply voltage		2.7	3.3	3.6	V
$\mathrm{I}_{\mathrm{CCA}}$	analog supply current		-	29	37	mA
$\mathrm{I}_{\mathrm{CCD}}$	digital supply current		-	33	40	mA
$\mathrm{I}_{\mathrm{CCO}}$	output stages supply current	$\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz} ;$ ramp input	-	0.5	2.0	mA
INL	integral non-linearity	$\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz}$; ramp input	-	± 0.8	± 2	LSB
DNL	differential non-linearity	$\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz}$; ramp input	-	± 0.35	± 0.9	LSB
$\mathrm{f}_{\mathrm{Clk}(\text { max })}$	maximum clock frequency	TDA8764ATS and TDA8764AHL	60	-	-	MHz
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz} ;$ ramp input	-	312	411	mW

10-bit high-speed low-power ADC

BLOCK DIAGRAM

The pin numbers given in parenthesis refer to the TDA8764AHL.

Fig. 1 Block diagram.

10-bit high-speed low-power ADC

PINNING

SYMBOL	PIN		DESCRIPTION
	TDA8764ATS	TDA8764AHL	
CLK	1	5	clock input
$\overline{\text { TC }}$	2	6	twos complement input (active LOW)
$\mathrm{V}_{\text {CCA }}$	3	7	analog supply voltage (5 V)
AGND	4	8	analog ground
n.c.	5	9	not connected
V_{RB}	6	12	reference voltage BOTTOM input
$\mathrm{V}_{\text {RM }}$	7	13	reference voltage MIDDLE input
V_{1}	8	14	analog input voltage
$\mathrm{V}_{\text {RT }}$	9	15	reference voltage TOP input
$\overline{\mathrm{OE}}$	10	16	output enable input (active LOW)
$\mathrm{V}_{\text {CCD }}$	11	17	digital supply voltage (5 V)
DGND	12	18	digital ground
$\mathrm{V}_{\text {cco }}$	13	19	supply voltage for output stages (2.7 to 3.6 V)
OGND	14	20	output ground
GRAY	15	21	gray code input (active HIGH)
D0	16	22	data output; bit 0 (LSB)
D1	17	23	data output; bit 1
D2	18	24	data output; bit 2
D3	19	25	data output; bit 3
D4	20	26	data output; bit 4
D5	21	27	data output; bit 5
D6	22	28	data output; bit 6
D7	23	29	data output; bit 7
D8	24	30	data output; bit 8
D9	25	31	data output; bit 9 (MSB)
IR	26	2	in range data output
n.c.	27	1	not connected
n.c.	28	3	not connected
n.c.	-	4	not connected
n.c.	-	10	not connected
n.c.	-	11	not connected
n.c.	-	32	not connected

Fig. 2 Pin configuration (SSOP28).

Fig. 3 Pin configuration (LQFP32).

10-bit high-speed low-power ADC

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {CCA }}$	analog supply voltage	note 1	-0.3	+7.0	V
$\mathrm{V}_{\text {CCD }}$	digital supply voltage	note 1	-0.3	+7.0	V
$\mathrm{V}_{\text {CCO }}$	output stages supply voltage	note 1	-0.3	+7.0	V
$\Delta \mathrm{V}_{\text {CC }}$	supply voltage difference between $\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}-\mathrm{V}_{\mathrm{CCD}} \\ & \mathrm{~V}_{\mathrm{CCA}}-\mathrm{V}_{\mathrm{CCO}} \\ & \mathrm{~V}_{\mathrm{CCD}}-\mathrm{V}_{\mathrm{CCO}} \\ & \hline \end{aligned}$		$\begin{array}{\|l} -1.0 \\ -1.0 \\ -1.0 \end{array}$	$\begin{aligned} & +1.0 \\ & +4.0 \\ & +4.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{1}	input voltage	referenced to AGND	-0.3	+7.0	V
$\mathrm{V}_{\mathrm{i}(\mathrm{sw)} \text { (p-p) }}$	AC input voltage for switching (peak-to-peak value)	referenced to DGND	-	$\mathrm{V}_{\text {CCD }}$	V
I_{0}	output current		-	10	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	150	${ }^{\circ} \mathrm{C}$

Note

1. The supply voltages $\mathrm{V}_{\mathrm{CCA}}, \mathrm{V}_{\mathrm{CCD}}$ and $\mathrm{V}_{\mathrm{CCO}}$ may have any value between -0.3 and +7.0 V provided that the supply voltage differences $\Delta \mathrm{V}_{\mathrm{CC}}$ are respected.

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\text {th(j-a) }}$	thermal resistance from junction to ambient	in free air		
	SSOP28		110	K/W
	LQFP32		90	K/W

10-bit high-speed low-power ADC

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CCA}}=4.75$ to $5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCD}}=4.75$ to $5.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCO}}=2.7$ to 3.6 V ; AGND and DGND shorted together;
$\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$; typical values measured at $\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{RB}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{RT}}=3.7 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
$\mathrm{V}_{\text {CCA }}$	analog supply voltage		4.75	5.0	5.25	V
$\mathrm{V}_{\text {CCD }}$	digital supply voltage		4.75	5.0	5.25	V
$\mathrm{V}_{\mathrm{CCO}}$	output stages supply voltage		2.7	3.3	3.6	V
$\Delta \mathrm{V}_{\text {CC }}$	supply voltage difference between $\begin{aligned} & \mathrm{V}_{\mathrm{CCA}}-\mathrm{V}_{\mathrm{CCD}} \\ & \mathrm{~V}_{\mathrm{CCA}}-\mathrm{V}_{\mathrm{CCO}} \\ & \mathrm{~V}_{\mathrm{CCD}}-\mathrm{V}_{\mathrm{CCO}} \end{aligned}$		$\begin{array}{\|l} -0.20 \\ -0.20 \\ -0.20 \end{array}$	$\left.\right\|_{-} ^{-}$	$\begin{aligned} & +0.20 \\ & +2.55 \\ & +2.55 \end{aligned}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$
$\mathrm{I}_{\text {CCA }}$	analog supply current		-	29	37	mA
$\mathrm{I}_{\text {CCD }}$	digital supply current		-	33	40	mA
ICco	output stages supply current	$\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz}$; ramp input	-	0.5	2.0	mA

Inputs
Pin CLK (Referenced to DGND); note 1

V_{IL}	LOW-level input voltage		0	-	0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH-level input voltage		2	-	$\mathrm{V}_{\mathrm{CCD}}$	V
I_{IL}	LOW-level input current	$\mathrm{V}_{\mathrm{CLK}}=0.8 \mathrm{~V}$	-1	0	+1	$\mu \mathrm{~A}$
I_{IH}	HIGH-level input current	$\mathrm{V}_{\mathrm{CLK}}=2 \mathrm{~V}$	-	2	10	$\mu \mathrm{~A}$
C_{i}	input capacitance		-	2	-	pF

Pins OE; TC and GRAY (referenced to DGND); see Tables 3 and 4

V_{IL}	LOW-level input voltage		0	-	0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH-level input voltage		2	-	$\mathrm{V}_{\mathrm{CCD}}$	V
I_{IL}	LOW-level input current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-1	-	-	$\mu \mathrm{A}$
I_{IH}	HIGH-level input current	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$	-	-	1	$\mu \mathrm{~A}$

Pin V_{1} (analog input voltage referenced to AGND)

I_{IL}	LOW-level input current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{RB}}=1.3 \mathrm{~V}$	-	0	-	$\mu \mathrm{A}$
I_{H}	HIGH-level input current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{RT}}=3.7 \mathrm{~V}$	-	55	-	$\mu \mathrm{A}$
Y_{i}	input admittance	$\mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz} ;$ note 2				
	R_{i} input resistance		-	45	-	$\mathrm{k} \Omega$
	C_{i} input capacitance		3	5	7	pF

10-bit high-speed low-power ADC

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Reference voltages for the resistor ladder; see Table 1						
$\mathrm{V}_{\text {RB }}$	reference voltage BOTTOM		1.2	1.3	2.2	V
$\mathrm{V}_{\text {RT }}$	reference voltage TOP		3.4	3.7	$\mathrm{V}_{\text {CCA }}-0.8$	V
$\mathrm{V}_{\text {diff(ref) }}$	differential reference voltage $V_{R T}-V_{R B}$		2.2	2.4	3.2	V
$\mathrm{I}_{\text {ref }}$	reference current	$\mathrm{V}_{\text {diff }}=2.4 \mathrm{~V}$	-	17.6	-	mA
$\mathrm{R}_{\text {LAD }}$	resistor ladder		-	136	-	Ω
TC RLAD	temperature coefficient of the resistor ladder		-	1860	-	ppm
			-	253	-	$\mathrm{m} \Omega / \mathrm{K}$
$\mathrm{V}_{\text {offset(B) }}$	offset voltage BOTTOM	$\mathrm{V}_{\text {diff }}=2.4 \mathrm{~V}$; note 3	-	200	-	mV
$\mathrm{V}_{\text {offset(T) }}$	offset voltage TOP	$\mathrm{V}_{\text {diff }}=2.4 \mathrm{~V}$; note 3	-	190	-	mV
$\mathrm{V}_{1(p-p)}$	analog input voltage (peak-to-peak value)	$\mathrm{V}_{\text {diff }}=2.4 \mathrm{~V}$; note 4	1.95	2.01	2.10	V
Outputs						
Pins D9 to D0 and IR (REFERENCED to OGND)						
V_{OL}	LOW-level output voltage	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$	0	-	0.5	V
V_{OH}	HIGH-level output voltage	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CCO}}-0.5$	-	$\mathrm{V}_{\mathrm{CCO}}$	V
l_{Oz}	output current in 3-state mode	$0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CCO}}$	-20	-	+20	$\mu \mathrm{A}$

Switching characteristics

PIn CLK; see Fig.5; note 1

$\mathrm{f}_{\mathrm{Clk}(\max)}$	maximum clock frequency		60	-	-	MHz
$\mathrm{t}_{\mathrm{CPH}}$	clock pulse width HIGH	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	7.0	-	-	ns
$\mathrm{t}_{\mathrm{CPL}}$	clock pulse width LOW	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	3.5	-	-	ns

Analog signal processing

LINEARITY						
INL	integral non-linearity	$\mathrm{f}_{\mathrm{Clk}}=60 \mathrm{MHz} ;$ ramp input	-	± 0.8	± 2	LSB
DNL	differential non-linearity	$\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz}$; ramp input; no missing code	-	± 0.35	± 0.9	LSB
$\mathrm{E}_{\text {offset }}$	offset error	middle code	-	± 1	-	LSB
E_{G}	gain error (from device to device)	note 5	-	± 0.5	-	$\%$

10-bit high-speed low-power ADC

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
BANDWIDTH ($\mathrm{f}_{\text {CLK }}=60 \mathrm{MHz}$)						
B	analog bandwidth	full-scale sine wave; note 6	-	30	-	MHz
		75% full-scale sine wave; note 6	-	45	-	MHz
		small signal at mid-scale; $\mathrm{V}_{\mathrm{I}}= \pm 10 \mathrm{LSB}$ at code 512; note 6	-	700	-	MHz
$\mathrm{t}_{\text {stL }}$	analog input settling time LOW-to-HIGH	full-scale square wave; see Fig.7; note 7	-	5	-	ns
$\mathrm{t}_{\text {stHL }}$	analog input settling time HIGH-to-LOW	full-scale square wave; see Fig.7; note 7	-	5	-	ns
HARMONICS ($\mathrm{f}_{\text {cLK }}=60 \mathrm{MHz}$)						
$\mathrm{H}_{\text {all(FS) }}$	harmonics (full-scale); all components second harmonic third harmonic	$\mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz}$	-	$\left\lvert\, \begin{array}{l\|l} -68 \\ -67 \end{array}\right.$	$\mid-$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
SFDR	spurious free dynamic range	$\mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz}$	-	72	-	dB
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz}$	-	-64	-	dB
		$\mathrm{f}_{\mathrm{i}}=15 \mathrm{MHz}$	-	-57	-	dB
SIGNAL-TO-NOISE RATIO; note 8						
SNR $\mathrm{F}_{\text {S }}$	signal-to-noise ratio (full-scale)	without harmonics; $\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz}$	-	58	-	dB
		without harmonics; $\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=15 \mathrm{MHz}$	53	57	-	dB
Effective bits; note 8						
EB	effective bits	$\begin{aligned} \mathrm{f}_{\mathrm{clk}} & =60 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{i}} & =5 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{i}} & =10 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{i}} & =15 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{i}} & =20 \mathrm{MHz} \end{aligned}$				
			-	9.3	-	bits
			-	8.9	-	bits
			-	8.8	-	bits
			-	8.6	-	bits
Two-TONE; note 9						
TTID	two-tone intermodulation distortion	$\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz}$	-	-67	-	dB
Bit error rate						
BER	bit error rate	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{I}}= \pm 16 \mathrm{LSB} \text { at code } 512 \end{aligned}$	-	10^{-13}	-	times/ sample

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Timing ($\mathrm{f}_{\mathbf{c l k}}=\mathbf{6 0 ~ M H z}$; $\mathrm{C}_{\mathrm{L}}=\mathbf{1 0} \mathbf{~ p F}$); see Fig. 5 and note 10						
t_{ds}	sampling delay time		-	0.7	2	ns
t_{h}	output hold time		4	-	-	ns
t_{d}	output delay time TDA8764ATS	$\mathrm{V}_{\mathrm{CCO}}=2.7 \mathrm{~V}$	-	10	14	ns
		$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}$	-	9	13	ns
t_{d}	output delay time TDA8764AHL	$\mathrm{V}_{\mathrm{CCO}}=2.7 \mathrm{~V}$	-	13	17	ns
		$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}$	-	12	16	ns
C_{L}	digital output load capacitance		-	-	10	pF
SR	slew rate	$\mathrm{V}_{\mathrm{CcO}}=2.7 \mathrm{~V}$	0.2	0.3	-	V/ns

3-state output delay times ($\mathrm{f}_{\mathrm{clk}}=60 \mathrm{MHz}$); see Fig. 6

$\mathrm{t}_{\mathrm{dZH}}$	enable HIGH	$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}$	-	16	20	ns
$\mathrm{t}_{\mathrm{dZL}}$	enable LOW	$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}$	-	30	34	ns
$\mathrm{t}_{\mathrm{dHZ}}$	disable HIGH	$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}$	-	25	30	ns
$\mathrm{t}_{\mathrm{dLZ}}$	disable LOW	$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}$	-	23	27	ns

Notes

1. The rise and fall times of the clock signal must not be less than 0.5 ns .
2. The input admittance is $Y_{i}=\frac{1}{R_{i}}+j \omega C i$
3. Analog input voltages producing code 0 up to and including code 1023:
a) $\mathrm{V}_{\text {offset(B) }}$ (offset voltage BOTTOM) is the difference between the analog input which produces data equal to 00 and the reference voltage BOTTOM $\left(\mathrm{V}_{\mathrm{RB}}\right)$ at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
b) $\mathrm{V}_{\text {offset }(\mathrm{T})}$ (offset voltage TOP) is the difference between V_{RT} (reference voltage TOP) and the analog input which produces data outputs equal to code 1023 at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
4. In order to ensure the optimum linearity performance of such converter architecture the lower and upper extremities of the converter reference resistor ladder (corresponding to output codes 0 and 1023 respectively) are connected to pins V_{RB} and V_{RT} via offset resistors R_{OB} and R_{OT} as shown in Fig.4.
a) The current flowing into the resistor ladder is $I_{L}=\frac{V_{R T}-V_{R B}}{R_{O B}+R_{L}+R_{O T}}$ and the full-scale input range at the converter, to cover code 0 to 1023, is $\mathrm{V}_{\mathrm{I}}=\mathrm{R}_{\mathrm{L}} \times \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{OB}}+\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{OT}}} \times\left(\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}\right)=\dot{0} .8375 \times\left(\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}\right)$
b) Since $R_{L}, R_{O B}$ and $R_{O T}$ have similar behaviour with respect to process and temperature variation, the ratio $\frac{R_{L}}{R_{O B}+R_{L}+R_{O T}}$ will be kept reasonably constant from device to device. Consequently variation of the output codes at a given input voltage depends mainly on the difference $\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}$ and its variation with temperature and supply voltage. When several ADCs are connected in parallel and fed with the same reference source, the matching between each of them is then optimized.
5. $\quad E_{G}=\frac{\left(V_{1023}-V_{0}\right)-V_{i(p-p)}}{V_{i(p-p)}} \times 100$
6. The analog bandwidth is defined as the maximum input sine wave frequency which can be applied to the device. No glitches greater than 2 LSBs, nor any significant attenuation are observed in the reconstructed signal.

10-bit high-speed low-power ADC

7. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale input (square wave signal) in order to sample the signal and obtain correct output data.
8. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8 K acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency (Nyquist frequency). Conversion to signal-to-noise ratio: $\mathrm{S} / \mathrm{N}=\mathrm{EB} \times 6.02+1.76 \mathrm{~dB}$.
9. Intermodulation measured relative to either tone with analog input frequencies of 4.5 and 4.3 MHz . The two input signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter.
10. Output data acquisition: the output data is available after the maximum delay time of t_{d}. It is recommended to have the lowest possible output load. These parameters are guaranteed by characterization and not by production test.

Fig. 4 Explanation of note 4.

10-bit high-speed low-power ADC

Table 1 Output coding and input voltage (typical values; referenced to $A G N D ; V_{R B}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{RT}}=3.7 \mathrm{~V}$; binary/gray codes

STEP	V_{1}	IR	BINARY OUTPUT BITS										GRAY OUTPUT BITS									
			D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
U/F	<1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1.5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	:	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	.
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	.
1022	:	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	1
1023	3.51	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
O/F	>3.51	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0

Table 2 Output coding and input voltage (typical values; referenced to AGND; binary/twos complement codes

STEP	V_{1}	IR	BINARY OUTPUT BITS										TWOS COMPLEMENT OUTPUT BITS									
			D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
U/F	<1.5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	1.5	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	:	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	.
1022	:	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0
1023	3.51	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
O/F	>3.51	0	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1

Table 3 TC mode selection

$\overline{\text { TC }}$	$\overline{\mathbf{O E}}$	D9 to D0	IR
\mathbf{X}	1	high-impedance	high-impedance
0	0	active; twos complement	active
1	0	active; binary	active

Table 4 Gray mode selection

GRAY	$\overline{\mathbf{O E}}$	D9 to D0	IR
X	1	high-impedance	high-impedance
0	0	active; binary	active
1	0	active; gray	active

Fig. 5 Timing diagram.

$\mathrm{f}_{\mathrm{OE}}=100 \mathrm{kHz}$.
Fig. 6 Timing diagram and test conditions of 3-state output delay time.

10-bit high-speed low-power ADC

Fig. 7 Analog input settling-time diagram.

10-bit high-speed low-power ADC

INTERNAL PIN CONFIGURATIONS

Fig. 8 CMOS data and in range outputs.

Fig. 10 OE, GRAY and TC inputs.

Fig. 9 Analog input.

Fig. $11 \mathrm{~V}_{\mathrm{RB}}, \mathrm{V}_{\mathrm{RM}}$ and V_{RT} inputs.

Fig. 12 CLK input.

APPLICATION INFORMATION

The analog and digital supplies should be separated and well decoupled.
An application note is available and describes the design and the realization of a demoboard that uses TDA8764ATS with an application environment.
(1) $V_{R B}, V_{R M}$ and $V_{R T}$ are decoupled to AGND.
(2) Decoupling capacitor for supplies must be placed close to the device.
(3) This resistor is mandatory (33Ω is its minimum value) and must be near the clock source.

Fig. 13 Application diagram (SSOP28).

The analog and digital supplies should be separated and well decoupled.
An application note is available and describes the design and the realization of a demoboard that uses TDA8764AHL with an application environment.
(1) $V_{R B}, V_{R M}$ and $V_{R T}$ are decoupled to $A G N D$.
(2) Decoupling capacitor for supplies must be placed close to the device.
(3) This resistor is mandatory (33Ω is its minimum value) and must be near the clock source.

Fig. 14 Application diagram (LQFP32).

10-bit high-speed low-power ADC

PACKAGE OUTLINES

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \text { A } \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 10.4 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 1.1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT341-1		MO-150			$-95-02-04$	

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{D}	HE_{E}	L	L_{p}	v	w	y	$Z_{D}{ }^{(1)}$	$Z_{E}{ }^{(1)}$	θ
mm	1.60	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	0.25	$\begin{aligned} & 0.27 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	0.5	$\begin{aligned} & 7.15 \\ & 6.85 \end{aligned}$	$\begin{aligned} & 7.15 \\ & 6.85 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.45 \end{aligned}$	0.2	0.12	0.1	$\begin{aligned} & 0.95 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.55 \end{aligned}$	7 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT401-1	136E01	MS-026		\square	$\begin{aligned} & 99-12-27 \\ & 00-01-19 \end{aligned}$

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from
215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $230^{\circ} \mathrm{C}$.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

10-bit high-speed low-power ADC

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD	
	WAVE	REFLOW ${ }^{(1)}$
BGA, LFBGA, SQFP, TFBGA HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS PLCC(3), SO, SOJ LQFP, QFP, TQFP SSOP, TSSOP, VSO	not suitable not suitable ${ }^{(2)}$ suitable not recommended ${ }^{(3)(4)}$ not recommended(5)	suitable suitable suitable suitable suitable

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS ${ }^{(1)}$
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 29704 8141, Fax. +61 297048139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160101 1248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359268 9211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +453329 3333, Fax. +4533293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615 800, Fax. +35896158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, J. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23-20052 MONZA (MI),
Tel. +39 039203 6838, Fax +39 0392036800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +8133740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: AI.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 225710 000, Fax. +48 225710001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11471 5401, Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2451, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2361 7910, Fax. +66 23983447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +18009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 113341 299, Fax.+381 113342553

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 402724825

© Philips Electronics N.V. 2000

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS

