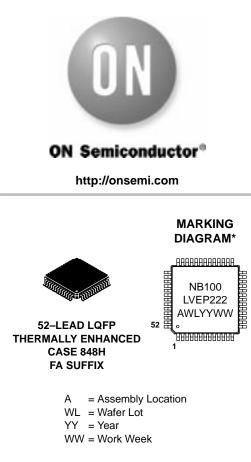
Product Preview 2.5V/3.3V 1:15 Differential ECL/PECL ÷1/÷2 Clock Driver

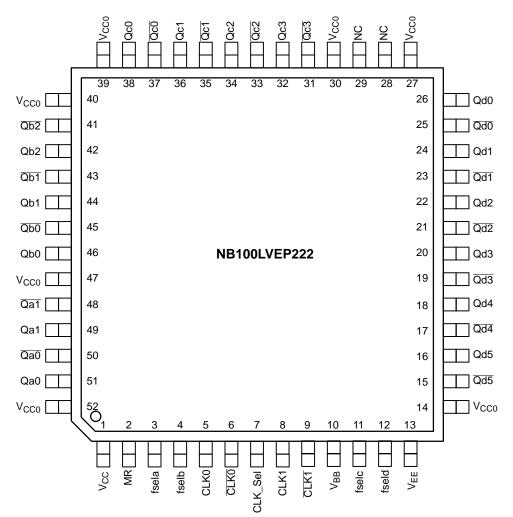
The NB100LVEP222 is a low skew 1:15 differential $\pm 1/\pm 2$ ECL fanout buffer designed with clock distribution in mind. The LVECL/LVPECL input signal pairs can be differential or used single–ended (with V_{BB} output reference bypassed and connected to the unused input of a pair). Either of two fully differential clock inputs may be selected. Each of the four output banks of 2, 3, 4, and 6 differential pairs may be independently configured to fanout 1X or 1/2X of the input frequency. The LVEP222 specifically guarantees low output to output skew. Optimal design, layout, and processing minimize skew within a device and from lot to lot. This device is an improved version of the MC100LVE222 with higher speed capability and reduced skew.


The fsel pins and CLK_Sel pin are asynchronous control inputs. Any changes may cause indeterminate output states requiring an MR pulse to resynchronize any 1/2X outputs (See Figure 3). Unused output pairs should be left unterminated (open) to reduce power and switching noise.

The NB100LVEP222, as with most ECL devices, can be operated from a positive V_{CC} supply in LVPECL mode. This allows the LVEP222 to be used for high performance clock distribution in +2.5/3.3 V systems. In a PECL environment series or Thevenin line, terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to Application Note AN1406/D. For a SPICE model, refer to Application Note AN1560/D.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single–ended LVPECL input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. Single–ended CLK input operation is limited to a V_{CC} ≥ 3.0 V in LVPECL mode, ore V_{EE} ≤ 3.0 V in NECL mode.

- 20 ps Output-to-Output Skew
- 85 ps Part-to-Part Skew
- Selectable 1x or 1/2x Frequency Outputs
- LVPECL Mode Operating Range: $V_{CC} = 2.375$ V to 3.8 V with $V_{EE} = 0$ V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -2.375 V$ to -3.8 V
- Internal Input Pulldown Resistors
- Performance Upgrade to ON Semiconductor's MC100LVE222
- V_{BB} Output


This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping		
NB100LVEP222FA	LQFP-52	160 Units/Tray		
NB100LVEP222FAR2	LQFP-52	1500/Tape & Reel		

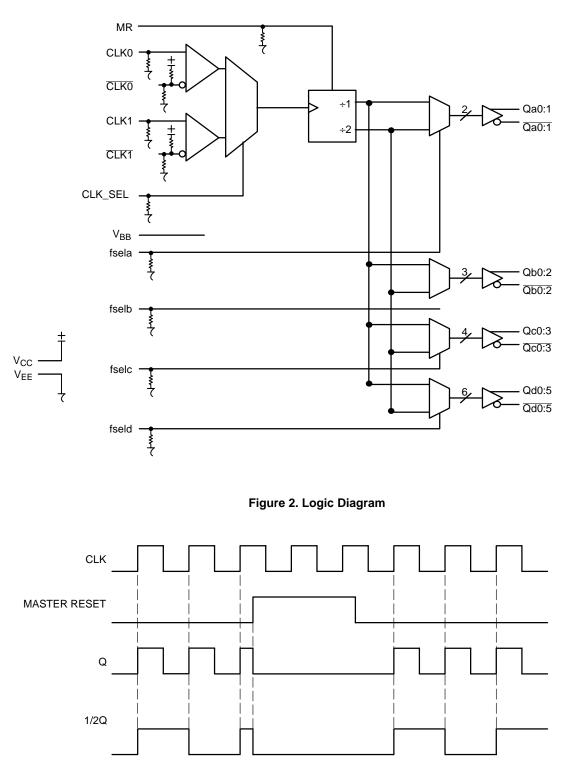
All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to appropriate Power Supply to guarantee proper operation. The thermally conductive exposed pad on package bottom (see package case drawing) must be attached to a heat–sinking conduit. This exposed pad is electrically connected to V_{EE} internally.

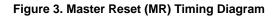
Figure 1. 52–Lead LQFP Pinout (Top View)

PIN DESCRIPTION

PIN	FUNCTION
CLK0*, CLK0**	ECL Differential Input Clock
CLK1*, CLK1**	ECL Differential Input Clock
CLK_Sel*	ECL Clock Select
MR*	ECL Master Reset
Qa0:1, Qa0:1	ECL Differential Outputs
Qb0:2, Qb0:2	ECL Differential Outputs
Qc0:3, Qc0:3	ECL Differential Outputs
Qd0:5, Qd0:5	ECL Differential Outputs
fseln*	ECL \div 1 or \div 2 Select
V _{BB}	Reference Voltage Output
V _{CC} , V _{CCO}	Positive Supply
V _{EE} ***	Negative Supply
NC	No Connect

FUNCTION TABLE


	Fund	ction
Input	L	н
MR CLK_Sel fseln	Active CLK0 ÷1	Reset CLK1 ÷2


* Pins will default LOW when left open.

** Pins will default HIGH when left open.

*** The thermally conductive exposed pad on the bottom of

the package is electrically connected to V_{EE} internally.

ATTRIBUTES

Characteristic	Characteristics				
Internal Input Pulldown Resistor	75 kΩ				
Internal Input Pullup Resistor	37.5 kΩ				
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 100 V > 2 kV			
Moisture Sensitivity (Note 1)		Level 3			
Flammability Rating Oxygen Index		UL 94 V–0 @ 0.125″ 28 to 34			
Transistor Count		821 Devices			
Meets or Exceeds JEDEC Spec EIA/JE	SD78 IC Latchup Test				

1. For additional information, refer to Application Note AND8003/D.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
Vi	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 to 0 6 to 0	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction–to–Ambient) (See Application Information)	0 LFPM 500 LFPM	52 LQFP 52 LQFP	35.6 30	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case) (See Application Information)	0 LFPM 500 LFPM	52 LQFP 52 LQFP	3.2 6.4	°C/W °C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

2. Maximum Ratings are those values beyond which device damage may occur.

LVPECL DC CHARACTERISTICS $V_{CC} = 3.3 \text{ V}; V_{EE} = 0.0 \text{ V}$ (Note 3)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		125			125			125		mA
V _{OH}	Output HIGH Voltage (Note 4)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 4)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single–Ended)	1490		1675	1490		1675	1490		1675	mV
V_{BB}	Output Reference Voltage (Note 5)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 6) (Figure 5)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary + 0.925 V to -0.5 V.
All loading with 50 Ω to V_{CC}-2.0 V.
Single ended input operation is limited V_{CC} ≥ 3.0 V in LVPECL mode.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

input signal.

LVPECL DC CHARACTERISTICS V_{CC} = 2.5 V; V_{EE} = 0 V (Note 7)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		125			125			125		mA
V _{OH}	Output HIGH Voltage (Note 8)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 8)	555	680	895	555	680	895	555	680	895	mV
V _{IH}	Input HIGH Voltage (Single–Ended) (Note 9)	1335		1620	1335		1620	1275		1620	mV
V _{IL}	Input LOW Voltage (Single–Ended) (Note 9)	555		875	555		875	555		875	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 10) (Figure 5)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. NOTE: The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

7. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary + 0.125 V to -1.3 V. 8. All loading with 50 Ω to V_{CC} - 2.0 V. 9. Do not use V_{BB} at V_{CC} < 3.0 V. 10. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential instance. input signal.

LVNECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -3.8 \text{ V}$ to -2.375 V (Note 11)

	–40°C			25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		125			125			125		mA
V _{OH}	Output HIGH Voltage (Note 12)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 12)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1810		-1625	-1810		-1625	-1810		-1625	mV
V_{BB}	Output Reference Voltage (Note 13)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 14) (Figure 5)	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

11. Input and output parameters vary 1:1 with V_{CC} .

12. All loading with 50 Ω to V_{CC} – 2.0 V.

13. Single ended input operation is limited $V_{FF} \leq -3.0V$ in NECL mode.

V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C			25°C			70°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{Opp}	$\begin{array}{l} \mbox{Differential Output Voltage} \\ (Figure 4) & f_{out} < 100 \mbox{ MHz} \\ f_{out} < 0.5 \mbox{ GHz} \\ f_{out} < 1.0 \mbox{ GHz} \end{array}$		500 450 400			600 550 450			600 550 450		mV mV mV
t _{PLH} t _{PHL}	Propagation Delay (Differential) CLKx–Q _X MR–Q _X CLK_SEL–Q _X		875 850 –			875 850 –			875 850 –		ps ps ps
t _{skew}	Within–Device Skew (Note 16) Device–to–Device Skew (Differential) (Note 17)		20 85			20 85			20 85		ps ps
t _{JITTER}	Random Clock Jitter (Figure 4) (RMS)		< 1			< 1			< 1		ps
V _{PP}	Input Swing (Differential) (Note 18) (Figure 5)	400		1200	400		1200			1200	mV
DCO	Output Duty Cycle	49.5	50	50.5	49.5	50	50.5	49.5	50	50.5	%
t _r /t _f	Output Rise/Fall Time 20%-80%		160			160			160		ps

AC CHARACTERISTICS V_{CC} = 2.375 to 3.8 V; V_{EE} = 0.0 V or V_{CC} = 0.0 V; V_{EE} = -2.375 to -3.8 V (Note 15)

15. Measured with LVPECL 750 mV source, 50% duty cycle clock source. All outputs loaded with 50 Ω to V_{CC} – 2 V. 16. Skew is measured between outputs under identical transitions and operating conditions.

Device-to-Device skew for identical transitions at identical V_{CC} levels.
 V_{PP} is the differential input voltage swing required to maintain AC characteristics including t_{PD} and device-to-device skew.

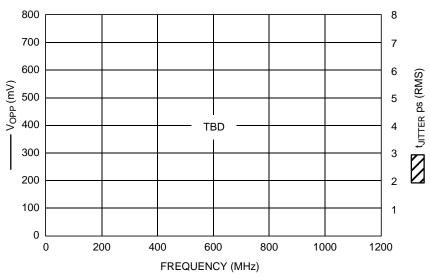


Figure 4. Output Frequency (F_{OUT}) versus Output Voltage (V_{OPP}) and Random Clock Jitter (t_{JITTER})

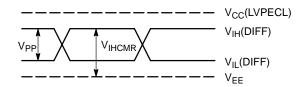
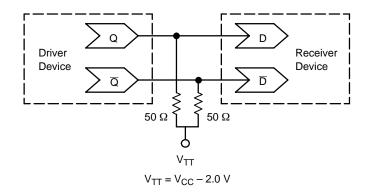
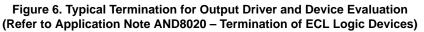




Figure 5. LVPECL Differential Input Levels

Resource Reference of Application Notes

- AN1405 ECL Clock Distribution Techniques
- AND8002 Marking and Date Codes
- AND8009 ECLinPS Plus Spice I/O Model Kit
- AND8020 Termination of ECL Logic Devices

For an updated list of Application Notes, please see our website at http://onsemi.com.

APPLICATIONS INFORMATION

Using the thermally enhanced package of the NB100LVEP222

The NB100LVEP222 uses a thermally enhanced 52-lead LQFP package. The package is molded so that a portion of the leadframe is exposed at the surface of the package bottom side. This exposed metal pad will provide the low thermal impedance that supports the power consumption of the NB100LVEP222 high-speed bipolar integrated circuit and will ease the power management task for the system design. In multilayer board designs, a thermal land pattern on the printed circuit board and thermal vias are recommended to maximize both the removal of heat from the package and electrical performance of the NB100LVEP222. The size of the land pattern can be larger, smaller, or even take on a different shape than the exposed pad on the package. However, the solderable area should be at least the same size and shape as the exposed pad on the package. Direct soldering of the exposed pad to the thermal land will provide an efficient thermal conduit. The thermal vias will connect the exposed pad of the package to internal copper planes of the board. The number of vias, spacing, via diameters and land pattern design depend on the application and the amount of heat to be removed from the package.

Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern.

The recommended thermal land design for NB100LVEP222 applications on multi-layer boards comprises a 4 X 4 thermal via array using a 1.2 mm pitch as shown in Figure 7 providing an efficient heat removal path.

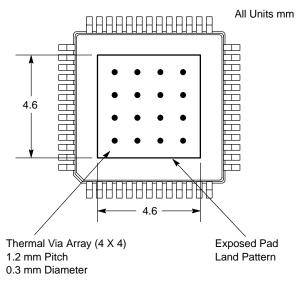
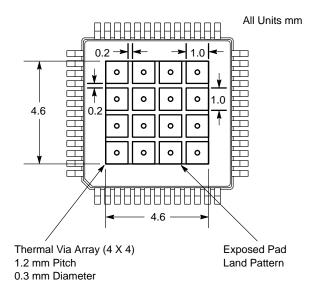



Figure 7. Recommended Thermal Land Pattern

The via diameter should be approximately 0.3 mm with 1 oz. copper via barrel plating. Solder wicking inside the via may result in voiding during the solder process and must be avoided. If the copper plating does not plug the vias, stencil print solder paste onto the printed circuit pad. This will supply enough solder paste to fill those vias and not starve the solder joints. The attachment process for the exposed pad package is equivalent to standard surface mount packages. Figure 8, "Recommended solder mask openings", shows a recommended solder mask opening with respect to a 4 X 4 thermal via array. Because a large solder mask opening may result in a poor rework release, the opening should be subdivided as shown in Figure 8. For the nominal package standoff of 0.1 mm, a stencil thickness of 5 to 8 mils should be considered.

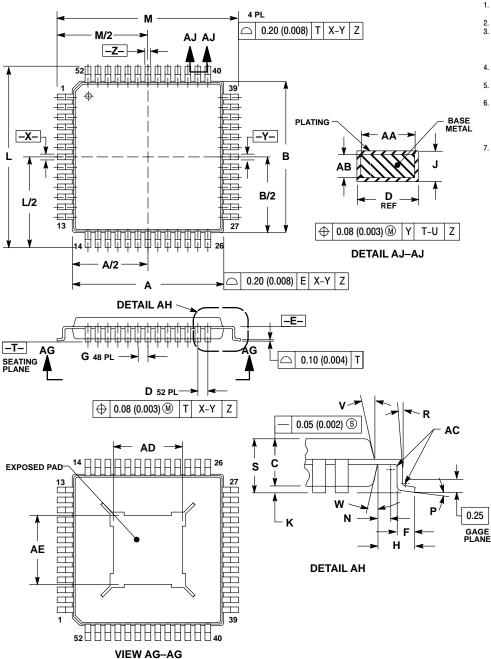
Figure 8. Recommended Solder Mask Openings

Proper thermal management is critical for reliable system operation. This is especially true for high–fanout and high output drive capability products.

For thermal system analysis and junction temperature calculation the thermal resistance parameters of the package is provided:

Table 1.	Thermal	Resistance	*
----------	---------	------------	---

LFPM	θJA °C/W	θJC °C/W
0	35.6	3.2
100	32.8	4.9
500	30.0	6.4


* Junction to ambient and Junction to board, four-conductor layer test board (2S2P) per JESD 51-8

These recommendations are to be used as a guideline, only. It is therefore recommended that users employ sufficient thermal modeling analysis to assist in applying the general recommendations to their particular application to assure adequate thermal performance. The exposed pad of the NB100LVEP222 package is electrically shorted to the substrate of the integrated circuit and V_{EE}. The thermal land should be electrically connected to V_{EE}.

PACKAGE DIMENSIONS

LQFP 52 LEAD EXPOSED PAD PACKAGE CASE 848H-01

ISSUE A

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI 1.
- DIMENSIONING AND FOLLYMOUND FERNING Y14:5M, 1982.
 CONTROLLING DIMENSION: MM.
 DATUM PLANE "E" IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING PLANE.
- DATUM "X", "Y" AND "Z" TO BE DETERMINED AT DATUM PLANE DATUM "E". 5.
- 6.
- DATION PLANE DATION E . DIMENSIONS M AND L TO BE DETERMINED AT SEATING PLANE DATUM "T". DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLAND "E".
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR 7. PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM D DIMENSION BY MORE THAN 0.08 (0.003). DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07 (0.003).

	MILLIN	IETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	10.00	BSC	0.394 BSC				
В	10.00	BSC	0.394 BSC				
С	1.30	1.50	0.051	0.059			
D	0.22	0.40	0.009	0.016			
F	0.45	0.75	0.018	0.030			
G	0.65	BSC	0.026	BSC			
Н	1.00	REF	0.039	BSC			
J	0.09	0.20	0.004	0.008			
K	0.05	0.20	0.002	0.008			
L	12.00	BSC	0.472	BSC			
M	12.00	BSC	0.472	BSC			
N		REF		REF			
Р	0 °	7 °	0 °	7 °			
R	0 °		0 °				
S		1.70		0.067			
V	12 °	REF	12 °	REF			
W	12 °	REF	12 °	REF			
AA	0.20	0.35	0.008	0.014			
AB	0.07	0.16	0.003	0.006			
AC	0.08	0.20	0.003	0.008			
AD	4.58	4.78	0.180	0.188			
AE	4.58	4.78	0.180	0.188			

<u>Notes</u>

<u>Notes</u>

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.