
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 2001 Nov 27 2002 May 17

FEATURES

- High power gain
- · Easy power control
- Excellent ruggedness
- Designed for broadband operation (2 to 2.2 GHz)
- Internal input and output matching for high gain and efficiency.

APPLICATIONS

• Common source class-AB operation for PCN, PCS, W-CDMA, CDMA and multicarrier applications in the 2000 to 2200 MHz frequency range, operating at 28 V supply voltage.

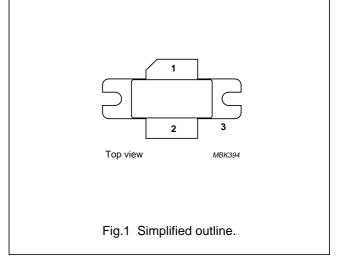
DESCRIPTION

70 W LDMOS power transistor encapsulated in a 2-lead SOT502A flange package with a ceramic cap.

Typical W-CDMA performance for a two-carrier 3GPP W-CDMA signal (test model 1, 64 channels) with 66% clipping (peak/average ratio: 8.5 dB at 0.01% per carrier, probability on CCDF) at a supply voltage of 28 V, an I_{DQ} of 1 A and a channel bandwidth of 3.84 MHz (ACLR and d_{im3} measured in 3.84 MHz bandwidth, adjacent channels measured at ±5 MHz): Frequency: 2135 to 2145 MHz Average output power: 10 W Gain: 13 dB Efficiency: 20% ACLR: -40 dB d_{im3} : -3 dBc.

QUICK REFERENCE DATA

RF performance at $T_h = 25$ °C in a common source test circuit.


MODE OF OPERATION	f	V _{DS}	P _L	G _p	ղը	d _{im}
	(MHz)	(V)	(W)	(dB)	(%)	(dBc)
2-tone, class-AB	f ₁ = 2170; f ₂ = 2170.1	28	65 (PEP)	>11	>30	≤–25

CAUTION

This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B.

PINNING - SOT502A

PIN	DESCRIPTION	
1	drain	
2	gate	
3	source, connected to flange	

BLF2022-70

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER		MAX.	UNIT
V _{DS}	drain-source voltage		65	V
V _{GS}	gate-source voltage		±15	V
I _D	DC drain current	-	9	А
T _{stg}	storage temperature		+150	°C
Tj	junction temperature	_	200	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-h}	thermal resistance from junction to heatsink	T _h = 25 °C; note 1	1.15	K/W

Note

1. Determined under specified RF operating conditions.

CHARACTERISTICS

 $T_i = 25 \ ^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)DSS}	drain-source breakdown voltage	V _{GS} = 0; I _D = 1.4 mA	65	-	_	V
V _{GSth}	gate-source threshold voltage	V _{DS} = 10 V; I _D = 140 mA	4.4	-	5.5	V
I _{DSS}	drain-source leakage current	$V_{GS} = 0; V_{DS} = 26 V$	-	-	10	μA
I _{DSX}	on-state drain current	$V_{GS} = V_{GSth} + 9 V; V_{DS} = 10 V$	18	-	-	A
I _{GSS}	gate leakage current	$V_{GS} = \pm 15 \text{ V}; V_{DS} = 0$	-	-	25	nA
g fs	forward transconductance	V _{DS} = 10 V; I _D = 5 A	-	4.2	_	S
R _{DSon}	drain-source on-state resistance	$V_{GS} = V_{GSth} + 9 V; I_D = 5 A$	-	0.15	-	Ω
C _{rs}	feedback capacitance	$V_{GS} = 0; V_{DS} = 26 V; f = 1 MHz$	-	3.4	_	pF

APPLICATION INFORMATION

RF performance in a common source class-AB circuit. T_h = 25 °C; R_{th j-h} = 1.15 K/W; unless otherwise specified.

MODE OF OPERATION	f	V _{DS}	I _{DQ}	PL	G _p	ղը	d _{im}
	(MHz)	(V)	(mA)	(W)	(dB)	(%)	(dBc)
2-tone, class-AB	f ₁ = 2170; f ₂ = 2170.1	28	500	65 (PEP)	>11	>30	≤–25

Ruggedness in class-AB operation

The BLF2022-70 is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 28 V; I_{DQ} = 500 mA; P_L = 65 W (CW); f = 2170 MHz.

BLF2022-70

MGW531

d3

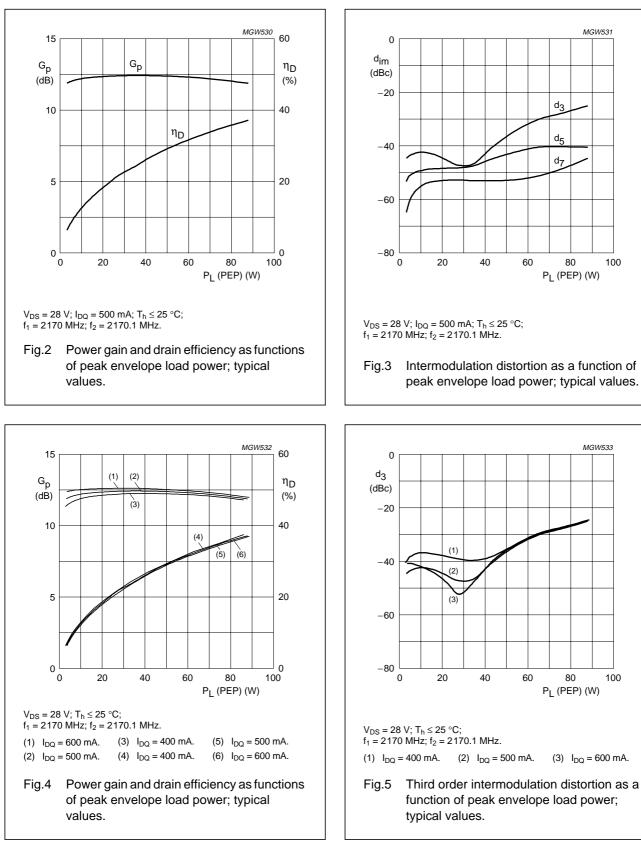
 d_5

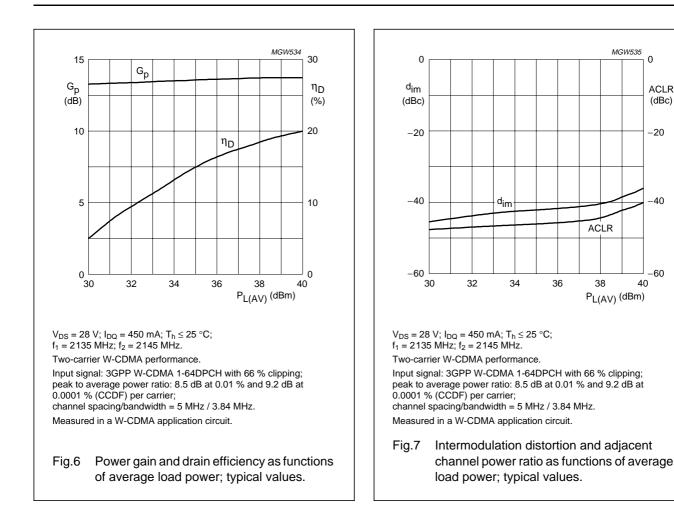
d₇

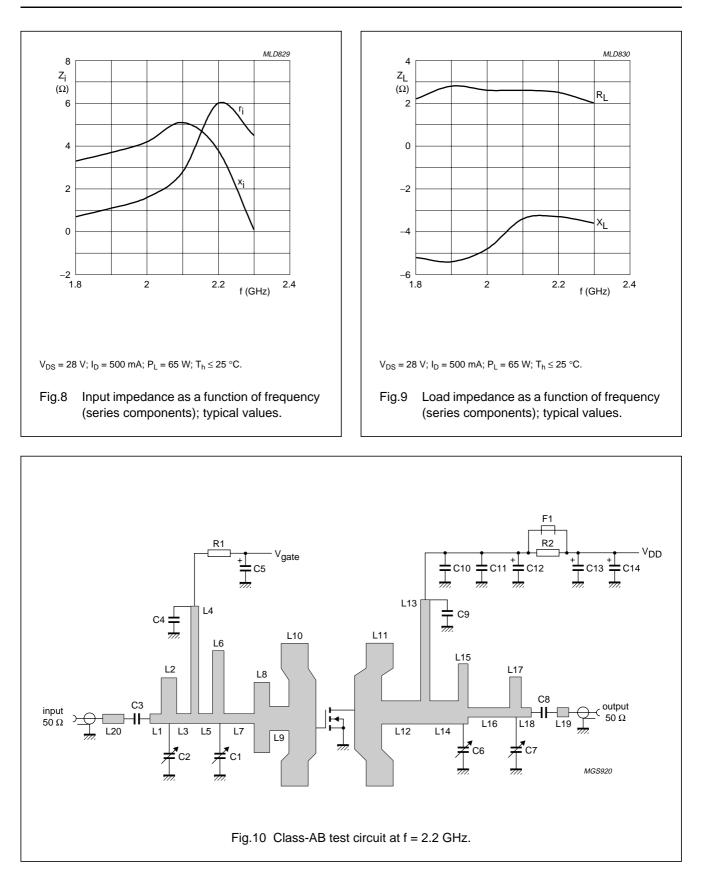
80

P_L (PEP) (W)

100


MGW533


80

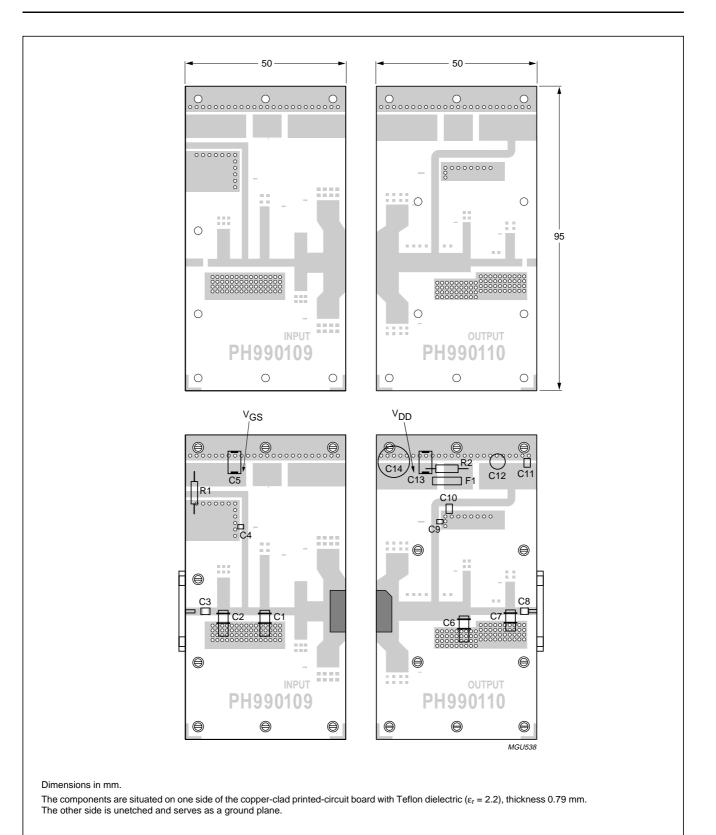

P_L (PEP) (W)

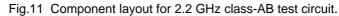
(3) I_{DQ} = 600 mA.

100

BLF2022-70

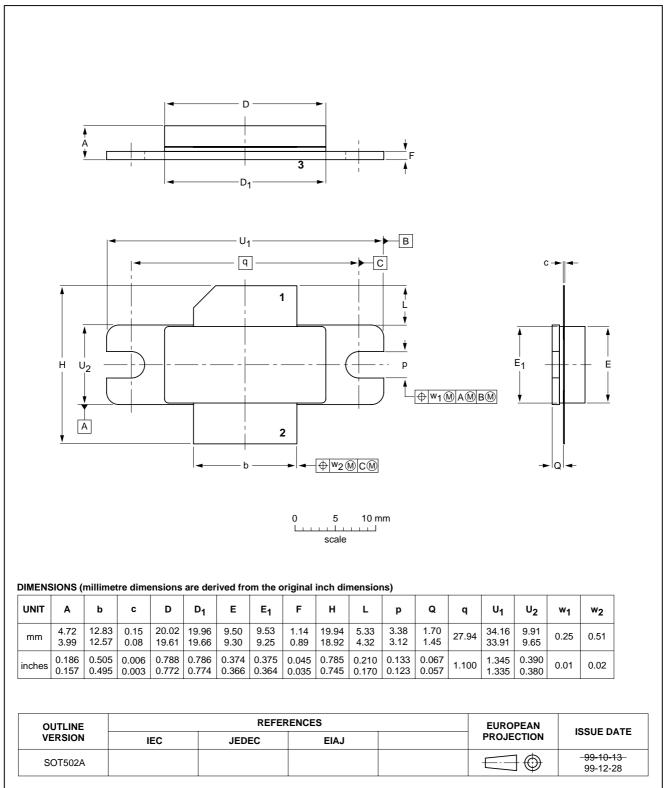
COMPONENT	DESCRIPTION	VALUE	DIMENSIONS	CATALOGUE NO.
C1, C2, C6, C7	Tekelec variable capacitor; type 37281	0.4 to 2.5 pF		
C3, C8	multilayer ceramic chip capacitor; note 1	12 pF		
C4, C9	multilayer ceramic chip capacitor; note 2	12 pF		
C5, C12	electrolytic capacitor	10 μF; 100 V		2222 037 59109
C10	multilayer ceramic chip capacitor; note 1	1 nF		
C11	multilayer ceramic chip capacitor	100 nF		2222 581 16641
C13	tantalum SMD capacitor	4.5 μF; 50 V		
C14	electrolytic capacitor	100 μF; 63 V		2222 037 58101
F1	Ferroxcube chip-bead 8DS3/3/8/9-4S2			4330 030 36301
L1	stripline; note 3	50 Ω	2.9 × 2.4 mm	
L2	stripline; note 3	14.5 Ω	4 × 11.7 mm	
L3	stripline; note 3	50 Ω	3.7 × 2.4 mm	
L4	stripline; note 3	6 Ω	$2 \times 30.8 \text{ mm}$	
L5	stripline; note 3	50 Ω	$3.6 \times 2.4 \text{ mm}$	
L6	stripline; note 3	9.5 Ω	$3 \times 18.8 \text{ mm}$	
L7	stripline; note 3	50 Ω	$7.8 \times 2.4 \text{ mm}$	
L8	stripline; note 3	9.8 Ω	4 × 18.3 mm	
L9	stripline; note 3	24.4 Ω	$5 \times 6.3 \text{ mm}$	
L10, L11	stripline; note 3	5.1 Ω	$7 \times 37 \text{ mm}$	
L12	stripline; note 3	25.4 Ω	10.1 × 6 mm	
L13	stripline; note 3	5.7 Ω	2.4 imes 32.8 mm	
L14	stripline; note 3	25.4 Ω	$7.4 \times 6 \text{ mm}$	
L15	stripline; note 3	11.3 Ω	2.5 × 15.6 mm	
L16	stripline; note 3	50 Ω	$10.8 \times 2.4 \text{ mm}$	
L17	stripline; note 3	16.1 Ω	$3 \times 10.4 \text{ mm}$	
L18	stripline; note 3	50 Ω	$2.3 \times 2.4 \text{ mm}$	
L19	stripline; note 3	50 Ω	$3 \times 2.4 \text{ mm}$	
L20	stripline; note 3	50 Ω	$5.5 \times 2.4 \text{ mm}$	
R1, R2	metal film resistor	10 Ω, 0.6 W		2322 156 11009


List of components (See Figs 10 and 11)


Notes

1. American Technical Ceramics type 100B or capacitor of same quality.

2. American Technical Ceramics type 100A or capacitor of same quality.


3. The striplines are on a double copper-clad printed-circuit board with Teflon dielectric (ϵ_r = 2.2); thickness 0.79 mm.

PACKAGE OUTLINE

Flanged LDMOST ceramic package; 2 mounting holes; 2 leads

BLF2022-70

SOT502A

BLF2022-70

DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

BLF2022-70

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613524/03/pp12

Date of release: 2002 May 17

Document order number: 9397 750 09624

SCA74

Let's make things better.

Philips Semiconductors