

XR-T5640

# PCM AMI Line Receiver and Clock Recovery Circuit

# GENERAL DESCRIPTION

The XR-T5640 is a monolithic bipolar IC designed for T1 type line receiver application operating at 1.544 M bit/s. It provides all the active circuitry required to perform automatic line build out (ALBO), threshold detection, binary NRZ data and clock recovery.

A clock recovery using crystal filter circuit version of the XR-T5640 is also available as XR-T5740.

#### **FFATURES**

On Chip NRZ Data and Clock Recovery Less than 10 ns Sampling Pulse Over the Operating Range Triple Matched ALBO Ports Single 5.1 Power Supply

# **APPLICATIONS**

T1 PCM Line Receiver T1C PCM Line Receiver (requires external gain) General Purpose Bipolar Line Receiver

#### ABSOLUTE MAXIMUM RATINGS

| Storage Temperature                  | -65°C to +150°C  |
|--------------------------------------|------------------|
| Operating Temperature                | -40°C to +85°C   |
| Supply Voltage                       | -0.5 to +10V     |
| Supply Voltage Surge (10 ms)         | + 25V            |
| Input Voltage (except Pins 2,3,4,17) | - 0.5 to 7V      |
| Input Voltage (Pins 2,3,4,17)        | -0.5 to $+0.5$ V |
| Data Output Voltage (Pins 10,11)     | 20V              |
| Voltage Surge (Pins 5.6.10.11) (10 r | nsec only) 50V   |

#### ORDERING INFORMATION

| Part Number | Package | Operating Temperature |
|-------------|---------|-----------------------|
| XR-T5640    | Ceramic | - 40°C to 85°C        |

#### **FUNCTIONAL BLOCK DIAGRAM**



### SYSTEM DESCRIPTION

The XR-T5640 is designed as a receiver for interfacing T1 PCM carrier lines on plastic or pulp insulated cables. It can also be used as a general purpose alternate mark inversion (AMI) receiver.

The XR-T5640 is a modified version of XR-T5620 PCM repeater IC. It contains all the active circuitry needed to build a T1 line receiver for interfacing up to 6300 ft. The preamplifier, the clock amplifier, threshold detectors, ALBO port, data latches and output drivers are similar to the ones on XR-T5620. Clock extraction is done by means of an L-C tank circuit.

Bipolar +1 and -1 pulses are combined within the IC to form a binary non-return to zero PCM signal at Pin 10. A synchronous clock signal is made available at Pin 11. Both outputs have open collector transistors.

1-447

# XR-T5640

**ELECTRICAL CHARACTERISTICS** 

Test Conditions:  $T_A = 25^{\circ}C$ ,  $V_{CC} = 5.1 \text{ V } \pm 5\%$ 

| PARAMETERS                          | MIN      | TYP | MAX | UNIT | CONDITIONS                                       |
|-------------------------------------|----------|-----|-----|------|--------------------------------------------------|
| Supply Current                      |          | 22  | 30  | mA   | ALBO Off                                         |
| Clock & Data Output Leakage Current |          | 0   | 100 | μΑ   | $V_{pull-up} = 15V$                              |
| Amplifier Pin Voltages              | 2.4      | 2.9 | 3.4 | V    | At Unity DC Gain                                 |
| Amplifier Output Voltage Swing      | 2.2      |     |     | V    |                                                  |
| Amplifier Output Offset Voltage     | - 50     | 0   | 50  | m۷   | $R_S = 8.2 \text{ k}\Omega$                      |
| Amplifier Input Blas Current        | 1 _      |     | 5   | μΑ   |                                                  |
| ALBO on Current                     | 3        |     |     | mA   |                                                  |
| Drive Current                       | <u> </u> | 1   |     | mA   |                                                  |
| AC CHARACTERISTICS                  |          |     |     |      |                                                  |
| Pre-Amplifier                       |          |     |     |      |                                                  |
| AC Gain at 1 MHz                    |          | 50  |     | dB   | Open Loop                                        |
| Input Impedance                     | 20       |     |     | kΩ   |                                                  |
| Output Impedance                    |          |     | 200 | Ω    |                                                  |
| Clock Amplifier                     |          |     |     |      |                                                  |
| AC Gain                             | ļ        | 32  |     | dB   | Open Loop                                        |
| − 3 dB Bandwidth                    | 10       |     |     | MHz  |                                                  |
| Delay                               |          | 10  |     | ns   |                                                  |
| Output Impedance                    |          |     | 200 | Ω    |                                                  |
| ALB0                                |          |     |     |      |                                                  |
| Off Inpedance                       | 20       |     |     | kΩ   |                                                  |
| On Impedance                        |          |     | 25  | Ω    |                                                  |
| CLOCK DATA OUTPUT BUFFERS           |          |     |     |      | $R_L = 130\Omega$ , $V_{pull-up} = 5.1V \pm 5\%$ |
| Rise Time                           |          | 30  |     | ns   |                                                  |
| Fall Time                           |          | 30  |     | ns   |                                                  |
| Output Pulse Width                  |          | 244 |     | ns   |                                                  |
| Sample Pulse Width                  |          | 10  |     | ns   |                                                  |
| Vol                                 | i        | 0.7 |     | V    |                                                  |
| IL sink                             |          | 35  |     | mA   |                                                  |
| THRESHOLDS                          |          |     |     |      |                                                  |
| ALBO                                | 1.4      | 1.5 | 1.6 | ٧    |                                                  |
| Clock Drive Current Peak            |          | 1.0 |     | mA   | At Vo = VALBO Threshold                          |
| Clock Thresholds                    |          |     |     | 1    | 1                                                |
| % of ALBO                           | 63       |     | 75  | %    |                                                  |
| Data Threshold                      | 1        |     |     |      |                                                  |
| % of ALBO                           | 40       | 46  | 52  | %    |                                                  |