
User’s Manual

Target Device
VR4100 Series™

1998©
Printed in Japan

Document No. U13422EJ1V1UM00 (1st edition)
Date Published October 2001 N CP (K)

RX4000
Real-Time Operating System

Fundamental

2 User's Manual U13422EJ1V1UM

[MEMO]

3User's Manual U13422EJ1V1UM

VR4100, VR4102, VR4111, VR4100 Series, and VR Series are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States

and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open

Company, Ltd.

CodeWarrior is a registered trademark of Metroworks Corporation.

Green Hills Software and MULTI are trademarks of United States Green Hills Software, Inc.

PC/AT is a trademark of United States IBM Corp.

TRON is an abbreviation for The Real-time Operating System Nucleus.

ITRON is an abbreviation for Industrial TRON.

4 User's Manual U13422EJ1V1UM

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

M8E 00. 4

The information in this document is current as of April, 1998. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

5User's Manual U13422EJ1V1UM

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-3067-5800
Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.2

6 User's Manual U13422EJ1V1UM

[MEMO]

7User's Manual U13422EJ1V1UM

PREFACE

Readers This manual is applicable to users engaged in the design or development of systems

compatible with the VR4100 Series.

Purpose The purpose of this manual is to provide an understanding to users of the RX4000

shown in the following configuration.

Organization This manual is roughly organized from the following contents.

• Overview

• Nucleus

• Task Management Function

• Synchronous Communication Functions

• Interrupt Management Function

• Memory Pool Management Function

• Time Management Function

• Scheduler

• System Management Functions

• System Initialization

• Interface Library

• System Calls

How to Read This Manual Those who read this manual need to have a general knowledge of electricity, logic

circuits, microcontrollers, the C language and assembly language.

To learn about the hardware functions or command functions of the VR4100 Series.

→ Refer to the User’s Manual for the relevant product.

Conventions Note : Footnote for item marked with Note in the text.

Caution : Information requiring particular attention.

Remark : Supplementary information.

Numerical representation : Binary … XXXX or B’XXXX

Decimal … XXXX

Hexadecimal … 0xXXXX or H’XXXX

Prefix indicating power of 2 (Address space, memory capacity)

K (kilo) 210 = 1024

M (mega) 220 = 10242

8 User's Manual U13422EJ1V1UM

Related documents The related documents indicated in this publication may include preliminary version.

However, preliminary versions are not marked as such.

 Documents related to the VR4100 Series

Document Name Document No.

VR4100™ User’s Manual U10050E

µPD30100 Data Sheet U10428JNote

VR4102™ User’s Manual U12739E

µPD30102 Data Sheet U12543E

VR4111™ User’s Manual U13137E

µPD30111 Data Sheet U13211E

Note Available only in Japanese.

 Documents related to development tools (User’s Manuals)

Product Name Document No.

Fundamental This manual

Technical To be prepared

RX4000 (Real-time OS)

Installation To be prepared

RD4000 (Task Debugger) To be prepared

AZ4000 (System Performance Analyzer) To be prepared

9User's Manual U13422EJ1V1UM

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW ..17
1.1 Overview ..17
1.2 Real-Time OS...17
1.3 Multitask OS ..18
1.4 Features ...18
1.5 Configuration...19
1.6 Applications...20
1.7 Execution Environment..20
1.8 Development Environment ..21
1.9 System Construction Procedure ...22

CHAPTER 2 NUCLEUS ...27
2.1 Overview ..27
2.2 Functions...28

CHAPTER 3 TASK MANAGEMENT FUNCTION..31
3.1 Overview ..31
3.2 Task States ..31
3.3 Generating Tasks..33
3.4 Activating Tasks..34
3.5 Terminating Tasks ..34
3.6 Deleting Tasks...35
3.7 Internal Processing of Task ...35

3.7.1 Acquiring task information ... 36

3.7.2 Task-associated handler ... 37

3.7.3 Task-associated handler registration and canceling registration .. 37

3.7.4 Return from the task-associated handler .. 37

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS ..39
4.1 Overview ..39
4.2 Semaphores...39

4.2.1 Generating semaphores.. 40

4.2.2 Deleting semaphores .. 40

4.2.3 Returning resources .. 40

4.2.4 Acquiring resources... 41

4.2.5 Acquiring semaphore information.. 42

4.2.6 Exclusive control using semaphores ... 42

4.3 Event Flags ..44
4.3.1 Generating event flags .. 44

4.3.2 Deleting event flags... 45

4.3.3 Setting a bit pattern ... 45

4.3.4 Clearing a bit pattern ... 45

4.3.5 Checking a bit pattern ... 45

4.3.6 Acquiring event flag information .. 47

4.3.7 Wait function using event flags.. 47

10 User's Manual U13422EJ1V1UM

4.4 Mailboxes .. 49
4.4.1 Generating mailboxes.. 49

4.4.2 Deleting mailboxes .. 50

4.4.3 Sending a message... 50

4.4.4 Receiving a message .. 51

4.4.5 Messages .. 52

4.4.6 Acquiring mailbox information ... 52

4.4.7 Inter-task communication using mailboxes.. 53

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION... 55
5.1 Overview ... 55
5.2 Interrupt Handler .. 55

5.2.1 Registering interrupt handler ... 56

5.2.2 Internal processing performed by the interrupt handler... 56

5.3 Disabling/Enabling Maskable Interrupt Acceptance... 58
5.4 Changing/Acquiring Interrupt Mask ... 59
5.5 Nonmaskable Interrupts .. 59
5.6 Multiple Interrupts .. 60

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION ... 61
6.1 Overview ... 61
6.2 Management Objects ... 61
6.3 Memory Pool and Memory Blocks.. 62

6.3.1 Generating a memory pool .. 63

6.3.2 Deleting a memory pool... 63

6.3.3 Acquiring a memory block ... 64

6.3.4 Returning a memory block... 65

6.3.5 Acquiring memory pool information ... 65

CHAPTER 7 TIME MANAGEMENT FUNCTION... 67
7.1 Overview ... 67
7.2 System Clock.. 67

7.2.1 Setting and reading the system clock.. 67

7.3 Delayed Task Wake-Up .. 68
7.4 Timeout ... 68
7.5 Cyclically Activated Handler ... 70

7.5.1 Registering a cyclically activated handler.. 71

7.5.2 Activity state of cyclically activated handler... 71

7.5.3 Internal processing performed by cyclically activated handler .. 73

7.5.4 Acquiring cyclically activated handler information ... 74

CHAPTER 8 SCHEDULER .. 75
8.1 Overview ... 75
8.2 Drive Method... 75
8.3 Scheduling Method .. 76

8.3.1 Priority method .. 76

8.3.2 FCFS method .. 76

11User's Manual U13422EJ1V1UM

8.4 Idle Handler..76
8.5 Implementing a Round-Robin Method..77
8.6 Scheduling Lock Function ...80
8.7 Scheduling While the Handler Is Operating ...83

CHAPTER 9 SYSTEM MANAGEMENT FUNCTIONS ...85
9.1 Overview ..85
9.2 System Information Management ...85
9.3 Extended SVC Handler Management ..85
9.4 Exception Handler Management ...85

9.4.1 Exception handler registration... 86

CHAPTER 10 SYSTEM INITIALIZATION ...87
10.1 Overview ..87
10.2 Boot Processing..87
10.3 Hardware Initialization Section..88
10.4 Nucleus Initialization Section ..88
10.5 Software Initialization Section ...88

CHAPTER 11 INTERFACE LIBRARY...89
11.1 Overview ..89
11.2 Processing in the Interface Library...90
11.3 Types of Interface Library ..90

CHAPTER 12 SYSTEM CALLS ..91
12.1 Overview ..91
12.2 Calling System Calls...93
12.3 System Call Function Codes ...93
12.4 Data Types of Parameters ..94
12.5 Parameter Value Range ..95
12.6 System Call Return Values...96
12.7 System Call Extension..97
12.8 Explanation of System Calls..97

12.8.1 Task management system calls .. 100

12.8.2 Task-associated handler function system calls ... 118

12.8.3 Task-associated synchronization system calls ... 124

12.8.4 Synchronous communication system calls.. 132

12.8.5 Interrupt management system calls .. 165

12.8.6 Memory pool management system calls ... 176

12.8.7 Time management system calls .. 187

12.8.8 System management system calls .. 196

APPENDIX A PROGRAMMING METHODS ...205
A.1 Overview ..205
A.2 Keywords ...206
A.3 Reserved Words..206
A.4 Tasks ..207

A.4.1 When CodeWarrior is used ... 207

12 User's Manual U13422EJ1V1UM

A.4.2 When C Cross MIPE Compiler is used.. 209

A.5 Interrupt Handler .. 211
A.5.1 When CodeWarrior is used ... 211

A.5.2 When C Cross MIPE Compiler is used.. 213

A.6 Cyclically Activated Handler ... 215
A.6.1 When CodeWarrior is used ... 215

A.6.2 When C Cross MIPE Compiler is used.. 217

A.7 Extended SVC Handler .. 219
A.7.1 When CodeWarrior is used ... 219

A.7.2 When C Cross MIPE Compiler is used.. 221

A.8 Task-Associated Handler .. 223
A.8.1 When CodeWarrior is used ... 223

A.8.2 When C Cross MIPE Compiler is used.. 225

APPENDIX B INDEX.. 227

13User's Manual U13422EJ1V1UM

LIST OF FIGURES (1/2)

Figure No. Title Page

1-2 System Construction Procedure (When CodeWarrior is used) ... 23

1-2 System Construction Procedure (When C Cross MIPE Compiler is used).. 25

2-1 Nucleus Configuration ... 27

3-1 Task State Transition .. 33

4-1 State of the Semaphore Counter... 42

4-2 State of the Queue (When wai_sem is issued) ... 43

4-3 State of the Queue (When sig_sem is issued) .. 43

4-4 Exclusive Control Using Semaphores ... 43

4-5 State of the Queue (When wai_flg is issued) .. 47

4-6 State of the Queue (When set_flg is issued)... 48

4-7 Wait and Control by Event Flags... 48

4-8 State of Task Queue (When the rcv_msg is issued) ... 53

4-9 State of Task Queue (When the snd_msg is issued) .. 54

4-10 Inter-Task Communication Using Mailboxes ... 54

5-1 Flow of Processing Performed by Directly Activated Interrupt Handler... 55

5-2 Flow of Control if Interrupt Mask Processing is Not Performed... 58

5-3 Flow of Control if the loc_cpu System Call is Issued... 59

5-4 Flow of Processing for Handling Multiple Interrupts .. 60

6-1 Typical Arrangement of Management Objects .. 62

7-1 Flow of Processing After Issue of dly_tsk.. 68

7-2 Flow of Processing After Issue of act_cyc (TCY_ON)... 72

7-3 Flow of Processing After Issue of act_cyc (TCY_ON|TCY_INI) .. 72

8-1 Ready Queue State (1).. 78

8-2 Ready Queue State (2).. 78

8-3 Ready Queue State (3).. 79

8-4 Ready Queue State (4).. 79

8-5 Scheduling When the Round-Robin Method Is Used .. 80

8-6 Flow of Control if Scheduling Processing is Not Delayed.. 81

8-7 Flow of Control if the dis_dsp System Call is Issued... 82

14 User's Manual U13422EJ1V1UM

LIST OF FIGURES (2/2)

Figure No. Title Page

8-8 Flow of Control if the loc_cpu System Call is Issued ... 82

8-9 Flow of Control if the wup_tsk System Call is Issued .. 83

10-1 Flow of System Initialization .. 87

11-1 Positioning of Interface Library .. 89

12-1 System Call Description Format .. 98

A-1 Task Description Format (C).. 207

A-2 Task Description Format (Assembly Language).. 208

A-3 Task Description Format (C).. 209

A-4 Task Description Format (Assembly Language).. 210

A-5 Description Format of Interrupt Handler (C) .. 211

A-6 Description Format of Interrupt Handler (Assembly Language) .. 212

A-7 Description Format of Interrupt Handler (C) .. 213

A-8 Description Format of Interrupt Handler (Assembly Language) .. 214

A-9 Description Format of Cyclically Activated Handler (C) ... 215

A-10 Description Format of Cyclically Activated Handler (Assembly Language) ... 216

A-11 Description Format of Cyclically Activated Handler (C) ... 217

A-12 Description Format of Cyclically Activated Handler (Assembly Language) ... 218

A-13 Description Format of Extended SVC Handler (C) .. 219

A-14 Description Format of Extended SVC Handler (Assembly Language) .. 220

A-15 Description Format of Extended SVC Handler (C) .. 221

A-16 Description Format of Extended SVC Handler (Assembly Language) .. 222

A-17 Task-Associated Handler Description Format (C) ... 223

A-18 Task-Associated Handler Description Format (Assembly Language) ... 224

A-19 Task-Associated Handler Description Format (C) ... 225

A-20 Task-Associated Handler Description Format (Assembly Language) ... 226

15User's Manual U13422EJ1V1UM

 LIST OF TABLES (1/1)

Table No. Title Page

12-1 System Call Function Codes ... 93

12-2 Data Types of Parameters... 94

12-3 Ranges of Parameter Values .. 95

12-4 System Call Return Values.. 96

12-5 Task Management System Calls... 100

12-6 Task-Associated Handler Function System Calls.. 118

12-7 Task-Associated Synchronization System Calls ... 124

12-8 Synchronous Communication System Calls.. 132

12-9 Interrupt Management System Calls ... 165

12-10 Memory Pool Management System Calls.. 176

12-11 Time Management System Calls... 187

12-12 System Management System Calls... 196

16 User's Manual U13422EJ1V1UM

[MEMO]

17User's Manual U13422EJ1V1UM

CHAPTER 1 OVERVIEW

Rapid advances in semiconductor technologies have led to the explosive spread of microprocessors such that they

are now to be found in more fields than many would have imagined only a few years ago. In line with this spread, the

number of processing programs that must be created for ever-newer high-performance, multi-function

microprocessors is also increasing. This rule of growth makes it difficult to create processing programs specific to

given hardware.

For this reason, there is a need for operating systems (OSs) that can fully exploit the capabilities of the latest

generation of microprocessors.

Operating systems are broadly classified into two types: program-development OSs and control OSs. Program-

development OSs are to be found in those environments in which standard OSs (e.g., MS-DOS™, Windows™, and

UNIX™ OS) predominate because the hardware configuration to be used for development can be limited to some

extent (e.g., personal computers).

Conversely, control OSs are incorporated into control units. That is, these OSs are found in those environments

where standard OSs cannot easily be applied because the hardware configuration varies from system to system and

because efficient operation matching the application is required.

At NEC, we developed and marketed the VR4100 series to offer a more powerful microprocessor, and on the other

hand, in consideration of current market conditions, in order to adequately develop the functions of the new high-

performance microprocessor, we developed and marketed RX4000.

RX4000 is a control OS for real-time, multitasking processing; it has been developed to increase the application

range of high-performance, multi-function microprocessors and further improve their generality.

1.1 Overview

RX4000 is a built-in real-time, multitask control OS that provides a highly efficient real-time, multitasking

environment to increase the application range of processor control units.

RX4000 is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.

1.2 Real-Time OS

Control equipment demands systems that can rapidly respond to events occurring both internal and external to the

equipment. Conventional systems have utilized simple interrupt handling as a means of satisfying this demand. As

control equipment has become more powerful, however, it has proved difficult for systems to satisfy these

requirements by means of simple interrupt handling alone.

In other words, the task of managing the order in which internal and external events are processed has become

increasingly difficult as systems have increased in complexity and programs have become ever larger.

To overcome this problem, real-time operating systems have been designed.

The main goals of a real-time OS are to respond to internal and external events rapidly and execute programs in

the optimum order.

CHAPTER 1 OVERVIEW

18 User's Manual U13422EJ1V1UM

1.3 Multitask OS

A “task” is the minimum unit in which a program can be executed by an OS. “Multitasking” is the name given to the

mode of operation in which a single processor processes multiple tasks concurrently.

Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the

processor’s attention to individual tasks on a regular basis (at a certain timing) it appears that the tasks are being

processed simultaneously.

A multitask OS enables the parallel processing of tasks by switching the tasks to be executed as determined by the

system.

A major goal of a multitask OS is to improve the throughput of the overall system through the parallel processing of

multiple tasks.

1.4 Features

RX4000 has the following features:

(1) Conformity with µµµµITRON3.0 specification

As a representative embedded type control OS architecture, RX4000 performs design which is compatible

with µITRON3.0 specifications, and includes all the functions up to level S and all functions except Level E

expanded synchronous communications.

The µITRON3.0 specification applies to a built-in, real-time control OS.

(2) High generality

RX4000 supports system-specific system calls, as well as those defined in the µITRON3.0 specification.

RX4000 thus offers superior application system generality.

RX4000 can be used to create a real-time, multitask OS that is compact and optimum for the user’s needs

because the functions (system calls) to be used by the application system can be selected at system

construction.

(3) Realization of real-time processing and multitasking

RX4000 supports the following functions to realize complete real-time processing and multitasking:

• Task management function

• Task-associated handler function

• Task-associated synchronization function

• Synchronous communication function

• Interrupt management function

• Memory pool management function

• Time management function

• System management function

• Scheduling function

CHAPTER 1 OVERVIEW

19User's Manual U13422EJ1V1UM

(4) Compact design

RX4000 is a real-time, multitask OS that has been designed on the assumption that it will be incorporated into

the target system; it has been made as compact as possible to enable it to be loaded into a system’s ROM.

(5) Application utility support

RX4000 supports the following utility to aid in system construction:

• System Configurator CF4000

(6) Cross tools

RX4000 supports the following cross tools for the VR Series™:

• CodeWarrior™ (Metroworks Corporation)

• C Cross MIPE Compiler (Green Hills Software™, Inc.)

(7) RX830

RX4000 preserves compatibility with RX830 (µITRON Ver. 3.0).

1.5 Configuration

RX4000 consists of three subsystems: the nucleus, interface library, and configurator.

These subsystems are outlined below:

(1) Nucleus

The nucleus forms the heart of RX4000, a system that supports real-time, multitask control. The nucleus

provides the following functions:

• Generation/initialization of a management object

• Processing of a system call issued by a processing program (task/non-task)

• Selection of the processing program (task/non-task) to be executed next, according to an event that occurs

internal to or external to the target system

Management object generation/initialization and system call processing are executed by management

modules. Processing program selection is performed by a scheduler.

CHAPTER 1 OVERVIEW

20 User's Manual U13422EJ1V1UM

(2) Interface library

When a processing program (task/non-task) is written in C, the external function format is used to issue a

system call or call an extended SVC handler. The issue format that can be understood by the nucleus

(nucleus issue format), however, differs from the external function format.

Therefore, the interface library is supported to translate a system call, issued in external function format or an

extended SVC handler called in that format, into the nucleus issue format. The interface library thus acts as

an agent between processing programs and the nucleus.

Furthermore, an interface library compatible with VR Series cross tools from Metroworks Corporation and

Green Hills Software, Inc. are available with RX4000.

(3) Configurator CF4000

To construct a system using RX4000, information files containing the data to be supplied to RX4000 (system

information table, branch table, and system information header file) are required.

As such information files consist of data arranged in a specified format, they can be written using an editor.

However, files written in such a way are relatively difficult to write and subsequently understand.

RX4000 provides a utility for converting a file, created in a description format that offers much better writability

and readability (CF definition file), to an information file.

This utility is Configurator CF4000. Configurator CF4000 takes a CF definition file, created in a specific

format, as its input and outputs information files, such as system information tables, branch tables, or system

information header files.

1.6 Applications

RX4000 is applicable for the following devices.

• Automobiles, robots and other control systems.

• Measuring instruments

• Exchangers, numerical controls, communication controls, plant controls and other control devices.

• Facsimile, copier and other OA machines.

• Medical treatment devices, space monitoring devices and other data collection and data calculation systems.

1.7 Execution Environment

This section explains the processing environment required by RX4000.

• Processor

VR4100 Series

µPD30100 (Other name: VR4100)

µPD30102 (Other name: VR4102)

µPD30111 (Other name: VR4111)

CHAPTER 1 OVERVIEW

21User's Manual U13422EJ1V1UM

• Peripheral hardware

RX4000 provides sample source files for that portion that is dependent on the hardware configuration of the

execution environment (system initialization: boot processing and hardware initialization section).

Therefore, simply rewriting the system initialization for each target system eliminates the need to use a specific

peripheral hardware.

• Memory requirements

The amount of memory required for RX4000 to execute processing is shown below.

Nucleus text section: approximately 8 K to 18 Kbytes

Nucleus data section: approximately 2 K to 3 Kbytes

The maximum sizes shown above are applied when the system configuration specifies that the maximum

priority range is set and that all the functions (system calls) provided by RX4000 are to be used. Therefore, by

limiting the priority range or functions to be used, the required amount of memory can be reduced.

1.8 Development Environment

This section explains the hardware and software environments required to develop an application system.

(1) Hardware environment

(a) Host machine

• IBM-PC/AT™-compatible machine (Windows 95 base)

• PC-9800 Series (Windows 95 base)

(2) Software environment

(a) Cross Tools

• CodeWarrior (Metroworks Corporation)

• C Cross MIPE Compiler (Green Hills Software, Inc.)

(b) Debuggers

• PARTNER (Kyoto Microcomputer, Ltd.)

• MULTI™ (Green Hills Software Inc.)

(c) Task debugger

• RD4000 (NEC)

(d) System performance analyzer

• AZ4000 (NEC)

CHAPTER 1 OVERVIEW

22 User's Manual U13422EJ1V1UM

1.9 System Construction Procedure

System construction involves incorporating created load modules into a target system, using the file group copied

from the RX4000 distribution media (floppy disk) to the user development environment (host machine).

The RX4000 system construction procedure is outlined below.

For details, refer to the RX4000 User’s Manual Installation.

(1) Creating a CF definition file

(2) Creating an information definition file

• System information table (SIT)

• System call table (SCT)

• System information header file

Furthermore, these information tables are created using a configurator.

(3) Creating system initialization

• Boot processing

• Hardware initialization section

• Software initialization section

(4) Creating processing programs

• Task

• Task-associated handler

• Interrupt handler

• Cyclically activated handler

• Exception handler

• Extended SVC handler

• Interface library for an extended SVC handler

These programs are created using the C language or assembly language.

(5) Creating an initialization data save area (When CodeWarrior is used only)

(6) Creating a link directive file

(7) Creating a load module

(8) Incorporating the load module into the system

An example of the system construction procedure when CodeWarrior is used is shown in Figure 1-1 and an

example of the system construction procedure when the C Cross MIPE Compiler is used is shown in Figure 1-2.

CHAPTER 1 OVERVIEW

23User's Manual U13422EJ1V1UM

Figure 1-1. System Construction Procedure (When CodeWarrior is used)

CF definition file
sys.cf

SIT file
sit.s

SCT file
sct.s

User task
task.c

ConfiguratorConfiguratorConfigurator

User handler
inthdr.c
cychdr.c
sighdr.c
exchdr.c
svchdr.c
svcif.s
idlhdr.s

Header file
sit.h

Boot routine
boot.s
init.c
entry.s
rompcrt.s

Compiler/AssemblerCompiler/AssemblerCompiler/Assembler

SIT file
sit.o

Boot routine
boot.o
init.o
entry.o
rompcrt.o

User task
task.o

User handler
inthdr.o
cychdr.o
sighdr.o
exchdr.o
svchdr.o
svcif.o
idlhdr.o

SCT file
sct.o

Nucleus library
sample.lnk
rxcore.o
librx.a
libch.a
Runtime Library

Link editorLink editorLink editor

Load module (not including ROM information)
sample.out

Information generation tool in ROMInformation generation tool in ROMInformation generation tool in ROM

Including ROM information
Load module
sample.rom

CHAPTER 1 OVERVIEW

24 User's Manual U13422EJ1V1UM

The files shown in Figure 1-1 are as follows:

• CF definition file

sys.cf: CF definition file

• SIT files

sit.s: System information table

• SCT files

sct.s: Branch table

• User task

task.c: Task

• User handler

inthdr.c: Interrupt handler

cychdr.c: Cyclically activated handler

sighdr.c: Task-associated handler

exchdr.c: Exception handler

svchdr.c: Extended SVC handler

svcif.s: Interface library for an extended SVC handler

idlhdr.s: Idle handler

• Boot routine

boot.s: Boot processing

init.c: Hardware initialization section

entry.s: Hardware initialization section (interrupt/exception entry)

rompcrt.s: Initialization data save area

• Header file

sit.h: System information header file

• Nucleus library

sample.lnk: Link directive file

rxcore.o: Nucleus common section

librx.a: Nucleus library

libch.a: Interface library for system calls

• Load modules

sample.out: Not including ROM information

sample.rom: Including ROM information

CHAPTER 1 OVERVIEW

25User's Manual U13422EJ1V1UM

Figure 1-2. System Construction Procedure (When C Cross MIPE Compiler is used)

CF definition file
sys.cf

SIT file
sit.c

SCT file
sct.c

User task
task.c

ConfiguratorConfiguratorConfigurator

User handler
inthdr.c
cychdr.c
sighdr.c
exchdr.c
svchdr.c
svcif.c
idlhdr.mip

Header file
sit.h

Boot routine
boot.mip
init.c
entry.mip

Compiler/AssemblerCompiler/AssemblerCompiler/Assembler

SIT file
sit.o

Boot routine
boot.o
init.o
entry.o

User task
task.o

User handler
inthdr.o
cychdr.o
sighdr.o
exchdr.o
svchdr.o
svcif.o
idlhdr.o

SCT file
sct.o

Nucleus library
sample.lnk
rxcore.o
librx.a
libch.a
Runtime Library

Link editorLink editorLink editor

Load module (not including ROM information)
sample.rom

CHAPTER 1 OVERVIEW

26 User's Manual U13422EJ1V1UM

The files shown in Figure 1-2 are as follows:

• CF definition file

sys.cf: CF definition file

• SIT files

sit.c: System information table

• SCT files

sct.c: Branch table

• User task

task.c: Task

• User handler

inthdr.c: Interrupt handler

cychdr.c: Cyclically activated handler

sighdr.c: Task-associated handler

exchdr.c: Exception handler

svchdr.c: Extended SVC handler

svcif.c: Interface library for an extended SVC handler

idlhdr.mip: Idle handler

• Boot routine

boot.mip: Boot processing

init.c: Hardware initialization section

entry.mip: Hardware initialization section (interrupt/exception entry)

• Header files

sit.h: System information header file

• Nucleus library

sample.lnk: Link directive file

rxcore.o: Nucleus common section

librx.a: Nucleus library

libch.a: Interface library for system calls

• Load modules

sample.rom: Including ROM information

27User's Manual U13422EJ1V1UM

CHAPTER 2 NUCLEUS

This chapter explains concerning the nucleus which is the core of RX4000.

2.1 Overview

The nucleus forms the heart of RX4000, a system that supports real-time, multitask control. The nucleus provides

the following functions:

• Generation/initialization of a management object

• Processing of a system call issued by a processing program (task/non-task)

• Selection of the processing program (task/non-task) to be executed next, according to an event that occurs

internal to or external to the target system

Management object generation/initialization and system call processing are executed by management modules.

Program selection is performed by a scheduler.

The configuration of the RX4000 nucleus is shown below.

Figure 2-1. Nucleus Configuration

Scheduler

Memory pool managementTime management

System management Interrupt management

Synchronous communication
management

Other

Task management
Task-associated handler
Task-associated
synchronization

CHAPTER 2 NUCLEUS

28 User's Manual U13422EJ1V1UM

2.2 Functions

The nucleus consists of a scheduler and various kinds of management modules.

This section overviews the functions of the management modules and scheduler.

See CHAPTERS 3 TASK MANAGEMENT FUNCTION through 8 SCHEDULER for details of the individual

functions.

(1) Task management function

This module manipulates and manages the states of a task, the minimum unit in which processing is

performed by RX4000. For example, the module can generate, start, run, stop, terminate, and delete a task.

The handler which accompanies the task is also managed.

(2) Synchronous communication function

This module enables three functions related to synchronous communication between tasks: exclusive control,

wait, and communication.

Exclusive control function: Semaphore

Wait function: Event flag

Communication function: Mailbox

(3) Interrupt management function

This module executes the processing related to a maskable interrupt, such as the registration of an indirectly

activated interrupt mask, return from a directly activated interrupt handler, and change or acquisition of the

interrupt-enabled level.

(4) Memory pool management function

This module manages the memory area specified at configuration, dividing it into the following two areas:

• RX4000 area

Management objects

Memory pool

• Processing program (task/non-task) area

Text area

Data area

Stack area

RX4000 also applies dynamic memory pool management. For example, RX4000 provides a function for

obtaining and returning a memory area to be used as a work area as required.

By exploiting this ability to dynamically manage memory, the user can utilize a limited memory area with

maximum efficiency.

CHAPTER 2 NUCLEUS

29User's Manual U13422EJ1V1UM

(5) Time management function

This module supports a timer operation function (such as delayed wake-up of a task or activation of a

cyclically activated handler) that is based on clock interrupts generated by the software clock.

(6) Scheduler

By monitoring the dynamically changing states of tasks, this module manages and determines the order in

which tasks are executed and optimally assigns tasks a processing time.

RX4000 determines the task execution order according to assigned priority levels and by applying the FCFS

method. When started, the scheduler determines the priority levels assigned to the tasks, selects an

optimum task from those ready to be executed (run or ready state), and optimally assigns tasks a processing

time.

Remark In RX4000, the smaller the value of the priority assigned to the task, the higher the priority.

30 User's Manual U13422EJ1V1UM

[MEMO]

31User's Manual U13422EJ1V1UM

CHAPTER 3 TASK MANAGEMENT FUNCTION

This chapter describes the task management function performed by RX4000.

3.1 Overview

Tasks are execution entities of arbitrary sizes, such that they are difficult to manage directly. RX4000 manages

task states and tasks themselves by using management objects that correspond to tasks on a one-to-one basis.

Remark A task uses the execution environment information provided by a program counter, work registers, and

the like when it executes processing. This information is called the task context. When the task

execution is switched, the current task context is saved and the task context for the next task is loaded.

3.2 Task States

The task changes its state according to how resources required to execute the processing are obtained, whether

an event occurs, and so on.

RX4000 classifies task states into the following seven types:

(1) non_existent state

A task in this state has not been generated or has been deleted.

A task in the non_existent state is not managed by RX4000 even if its execution entity is located in memory.

(2) dormant state

A task in this state has just been generated or has already completed its processing.

A task in the dormant state is not scheduled by RX4000.

This state differs from the wait state in the following points:

• All resources are released.

• The task context is initialized when the processing is resumed.

• A state manipulation system call causes an error.

(3) ready state

A task in this state is ready to perform its processing. This task has been waiting for a processing time to be

assigned because another task having a higher (or the same) priority level is being performed.

A task in the ready state is scheduled by RX4000.

CHAPTER 3 TASK MANAGEMENT FUNCTION

32 User's Manual U13422EJ1V1UM

(4) run state

A task in this state has been assigned a processing time and is currently performing its processing.

Within the entire system, only a single task can be in the run state at any one time.

(5) wait state

A task in this state has been stopped because the requirements for performing its processing are not

satisfied.

The processing of this task is resumed from the point at which it was stopped. As a task context required to

resume the processing, the values that were being used immediately before the stop are restored.

RX4000 further divides tasks in the wait state into the following six groups, according to the conditions which

caused the transition to the wait state:

Wake-up wait state: A task enters this state if the counter for the task (registering the number of
times the wake-up request has been issued) indicates 0x0 upon the issue of
an slp_tsk or tslp_tsk system call.

Resource wait state: A task enters this state if it cannot obtain a resource from the relevant
semaphore upon the issue of a wai_sem or twai_sem system call.

Event flag wait state: A task enters this state if a relevant event flag does not satisfy a
predetermined condition upon the issue of a wai_flg or twai_flg system call.

Message wait state: A task enters this state if it cannot receive a message from the relevant
mailbox upon the issue of a rcv_msg or trcv_msg system call.

Memory block wait state: A task enters this state if it cannot obtain a memory block from the relevant
memory pool upon the issue of a get_blk or tget_blk system call.

Timeout wait state: A task enters this state upon the issue of a dly_tsk system call.

(6) suspend state

A task in this state has been forcibly stopped by another task.

The processing of this task is resumed from the point at which it was stopped. As a task context required for

resuming the processing, the values that were being used immediately before the stop are restored.

Remark RX4000 supports nesting of more than one level of the suspend state.

(7) wait_suspend state

This state is a combination of the wait and suspend states.

A task in this state has entered the wait state upon exiting from the suspend state, or has entered the

suspend state upon exiting from the wait state.

Task status transitions are shown in Figure 3-1.

CHAPTER 3 TASK MANAGEMENT FUNCTION

33User's Manual U13422EJ1V1UM

Figure 3-1. Task State Transition

3.3 Generating Tasks

To generate a task under RX4000, two types of interfaces are provided: A task is generated statically at system

initialization (in the nucleus initialization section), or is generated dynamically according to a system call issued from a

processing program.

Task generation under RX4000 consists of three steps: A task management area (management object) is

allocated in system memory. Then, the allocated task management area is initialized. Finally, the task state is

changed from the non_existent state to the dormant state.

ready state run state

Wait released

Wait released

Wait condition

Termination and deletion
non_existent state

dispatch

preempt

Stop

Stop Resume

Resume

wait_suspend state

suspend state

Forced termination
Forced
termination

dormant state

Activation Termination

Deletion Creation

wait state

CHAPTER 3 TASK MANAGEMENT FUNCTION

34 User's Manual U13422EJ1V1UM

(1) Static registration of a task

To register a task statically, specify that task during configuration.

RX4000 generates a task according to the information defined in the information files (system information

table and system information header file) at system initialization, and makes the task manageable.

(2) Dynamic registration of a task

To register a task dynamically, issue a cre_tsk system call from a processing program (task).

RX4000 generates a task according to the information specified with parameters upon the issue of a cre_tsk

system call, and makes the task manageable.

3.4 Activating Tasks

In task activation under RX4000, a task is switched from the dormant state to the ready state, and scheduled.

Furthermore, a task is activated by issuing a sta_tsk system call, specifying the task by the parameters.

3.5 Terminating Tasks

In task termination under RX4000, a task is switched from the ready state, run state, wait state, suspend state, or

wait_suspend state to the dormant state and excluded from the schedule by RX4000.

Under RX4000, a task can be terminated in either of the following two ways:

Normal termination: A task terminates upon completing all processing and when it need not be subsequently

scheduled.

Forced termination: When a number of troubles occur during processing and processing must be terminated

immediately, this determines whether the task itself terminates or termination is

accomplished from another task.

The task terminates upon the issue of the following system calls.

• ext_tsk system call

A task which issued the ext_tsk system call is switched from the run state to the dormant state.

• exd_tsk system call

A task which issued the exd_tsk system call is switched from the run state to the non_existent state.

• ter_tsk system call

A task specified by the parameters is forcibly switched to the dormant state.

CHAPTER 3 TASK MANAGEMENT FUNCTION

35User's Manual U13422EJ1V1UM

3.6 Deleting Tasks

In task deletion under RX4000, a task is switched from the run or dormant state to the non_existent state, and

excluded from management by RX4000.

A task is deleted upon the issue of the following system calls.

• exd_tsk system call

The task which issued the exd_tsk system call is switched from the run state to the non_existent state.

• del_tsk system call

The task specified by the parameters is switched from the dormant state to the non_existent state.

3.7 Internal Processing of Task

RX4000 utilizes a unique means of scheduling to switch tasks.

Therefore, when describing a task’s processing, please be careful of the following points.

(1) Saving/restoring the registers

When switching tasks, RX4000 saves and restores the contents of work registers in line with the function call

conventions of VR series cross tool. This eliminates the need for coding processing to save the contents at

the beginning of a task and that to restore the contents at the end.

If a task coded in assembly language uses a register for a register variable, however, the processing for

saving the contents of that register must be coded at the beginning of the task, and that for restoring the

contents at the end.

(2) Stack switching

When switching tasks, RX4000 switches to the special task stack of the selected task. The processing for

switching the stack need not be coded at the beginning and end of the task.

(3) Limitations imposed on system calls

Some of the RX4000 system calls cannot be issued within a task.

The following system calls can be issued within a task:

• Task management system calls

cre_tsk del_tsk sta_tsk ext_tsk exd_tsk

ter_tsk dis_dsp ena_dsp chg_pri rot_rdq

rel_wai get_tid ref_tsk

• Task-associated handler function system calls.

vdef_sig vsnd_sig vchg_sms vref_sms

CHAPTER 3 TASK MANAGEMENT FUNCTION

36 User's Manual U13422EJ1V1UM

• Task-associated synchronization system calls

sus_tsk rsm_tsk frsm_tsk slp_tsk tslp_tsk

wup_tsk can_wup

• Synchronous communication system calls

cre_sem del_sem sig_sem wai_sem preq_sem

twai_sem ref_sem cre_flg del_flg set_flg

clr_flg wai_flg pol_flg twai_flg ref_flg

cre_mbx del_mbx snd_msg rcv_msg prcv_msg

trcv_msg ref_mbx

• Interrupt management system calls

def_int loc_cpu unl_cpu dis_int ena_int

chg_ims reg_ims

• Memory pool management system calls

cre_mpl del_mpl get_blk pget_blk tget_blk

rel_blk ref_mpl

• Time management system calls

set_tim get_tim dly_tsk def_cyc act_cyc

ref_cyc

• System management system calls

get_ver ref_sys def_svc viss_svc def_exc

3.7.1 Acquiring task information

Task information is acquired upon the issue of a ref_tsk system call.

• ref_tsk system call

Task information (such as extended information or the current priority) for the task specified by the parameters

is acquired.

The contents of the task information are as follows:

• Extended information

• Current priority

• Task state

• Type of the wait state

• ID number of the object to be processed (semaphore, event flag, etc.)

• Number of wake-up requests

• Number of suspend requests

CHAPTER 3 TASK MANAGEMENT FUNCTION

37User's Manual U13422EJ1V1UM

3.7.2 Task-associated handler

The task-associated handler is a task exclusive routine which performs processing of external phenomena

(signals) generated by each task, and it positioned as an extension of the task which generated the phenomenon. For

that reason, handler execution is done in the context of the object task. Also, the task-associated handler has the

same priority order as the object task and is scheduled at the same level as the task.

3.7.3 Task-associated handler registration and canceling registration

Registration and canceling registration of a task-associated handler is accomplished by issuing the vdef_sig

system call.

3.7.4 Return from the task-associated handler

Return processing from the task-associated handler is accomplished by issuing a return command at the end of the

handler.

• return (INT retcd) Command

The task-associated handler which is currently being run is terminated by the return processing method

specified by the parameter. The following values can be specified in the parameter.

TRC_RET (0) : Normal return

TRC_TSKEXT (−1) : Return and terminate task normally

38 User's Manual U13422EJ1V1UM

[MEMO]

39User's Manual U13422EJ1V1UM

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

This chapter describes the synchronous communication functions performed by RX4000.

4.1 Overview

In an environment where multiple tasks are executed concurrently (multitasking), a result produced by a preceding

task may determine the next task to be executed or affect the processing performed by the subsequent task. In other

words, some task execution conditions vary with the processing performed by another task, or the processing

performed by some tasks is related.

Therefore, liaison functions between tasks are required, so that task execution will be suspended to await the result

output by another task or until necessary conditions have been established to enable the processing to be continued.

In RX4000, these functions are called “synchronization functions.” The synchronization functions include a wait

function and an exclusive control function. RX4000 provides semaphores that act as the exclusive control function

and event flags that act as the wait function.

For multitasking, an inter-task communication function is also required to enable one task to receive the processing

result from another.

In RX4000, this function is called a “communication function.” RX4000 provides mailboxes that act as the

communication function.

4.2 Semaphores

Multitasking requires a function to prevent the resource contention which would occur when concurrently operating

multiple tasks attempt to use a limited number of resources such as memory, coprocessors, files, and programs. To

implement this contention preventive function, RX4000 provides non-negative counter-type semaphores.

The following system calls are used to dynamically manipulate a semaphore:

cre_sem : Generates a semaphore

del_sem : Deletes a semaphore

sig_sem : Returns a resource

wai_sem : Acquires a resource

preq_sem : Acquires a resource (by polling)

twai_sem : Acquires a resource (with timeout setting)

ref_sem : Acquires semaphore information

Remark In RX4000, those elements required to execute tasks are called resources. In other words, resources

comprehensively refer to hardware components such as processor, memory, and input/output

equipment, as well as software components such as files and programs.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

40 User's Manual U13422EJ1V1UM

4.2.1 Generating semaphores

RX4000 provides two interfaces for generating semaphores. One enables the static generation of a semaphore

during system initialization (in the nucleus initialization section). The other dynamically generates a semaphore by

issuing a system call from within a processing program.

To generate a semaphore in RX4000, an area in system memory shall be allocated for managing that semaphore

(as an object of management by RX4000), then initialized.

(1) Static registration of a semaphore

To statically register a semaphore, specify it during configuration.

RX4000 generates that semaphore according to the semaphore information defined in the information file

(including system information tables and system information header subfiles) during system initialization. The

semaphore is subsequently managed by RX4000.

(2) Dynamic registration of a semaphore

To dynamically register a semaphore, issue the cre_sem system call from within a processing program (task).

RX4000 generates that semaphore according to the information specified with parameters when the cre_sem

system call is issued. The semaphore is subsequently managed by RX4000.

4.2.2 Deleting semaphores

A semaphore is deleted by issuing the del_sem system call.

• del_sem system call

The del_sem system call deletes the semaphore specified with the parameter.

That semaphore is then no longer managed by RX4000.

If a task is queued into the queue of the semaphore specified by this system call parameter, that task shall be

removed from the queue, after which it will leave the wait state (the resource wait state) and enter the ready

state.

E_DLT is returned to the task released from the wait state as the value returned in response to a system call

(wai_sem or twai_sem) that triggered the transition of the task to the wait state.

4.2.3 Returning resources

A resource is returned by issuing the sig_sem system call.

• sig_sem system call

By issuing the sig_sem system call, the task returns a resource to the semaphore specified by parameter (the

semaphore counter is incremented by 0x1).

If a task or tasks are queued into the queue of the semaphore specified by this system call parameter, the

relevant resource is passed to the first task in the queue without being returned to the semaphore (thus, the

semaphore counter is not incremented).

Then, that task is removed from the queue, after which it leaves the wait state (the resource wait state) and

enters the ready state. Or, it leaves the wait_suspend state and enters the suspend state.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

41User's Manual U13422EJ1V1UM

4.2.4 Acquiring resources

A resource is acquired by issuing a wai_sem, preq_sem, or twai_sem system call.

• wai_sem system call

By issuing a wai_sem system call, the task acquires a resource from the semaphore specified by a parameter

(the semaphore counter is decremented by 0x1.)

After issuing this system call, if the task cannot acquire the resource from the specified semaphore (no idle

resource exists), the task itself is queued into the queue of this semaphore. Thus, the task leaves the run state

and enters the wait state (the resource wait state).

The resource wait state is canceled in the following cases, and the task returns to the ready state.

• When a sig_sem system call is issued.

• When a del_sem system call is issued and the specified semaphore is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

Remark When a task queues in the wait queue of the specified semaphore, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that semaphore was generated (during

configuration or when a cre_sem system call was issued).

• preq_sem system call

By issuing the preq_sem system call, the task acquires a resource from the semaphore specified by a

parameter (the semaphore counter is decremented by 0x1.)

After this system call is issued, if the task cannot acquire the resource from the specified semaphore (no idle

resource exists), E_TMOUT is returned as the return value.

• twai_sem system call

By issuing the twai_sem system call, the task acquires a resource from the semaphore specified by a

parameter (the semaphore counter is decremented by 0x1.)

After issuing this system call, if the task cannot acquire the resource from the specified semaphore (no idle

resource exists), the task itself is queued into the queue of this semaphore. Thus, the task leaves the run state

and enters the wait state (the resource wait state).

The resource wait state is canceled in the following cases, and the task returns to the ready state.

• When the given wait time specified by a parameter has elapsed.

• When a sig_sem system call is issued.

• When a del_sem system call is issued and the specified semaphore is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

Remark When a task queues in the wait queue of the specified semaphore, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that semaphore was generated (during

configuration or when a cre_sem system call was issued).

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

42 User's Manual U13422EJ1V1UM

4.2.5 Acquiring semaphore information

Semaphore information is acquired by issuing the ref_sem system call.

• ref_sem system call

By issuing the ref_sem system call, the task acquires the semaphore information (extended information,

queued tasks, etc.) for the semaphore specified by parameter.

The semaphore information consists of the following:

• Extended information

• Whether tasks are queued

• The number of currently available resources

• The maximum number of resources specified when the semaphore was generated

4.2.6 Exclusive control using semaphores

The following is an example of using semaphores to manipulate the tasks under exclusive control.

Conditions

• Task priority

Task A > Task B

• State of tasks

Task A: run state

Task B: ready state

• Semaphore attributes

Number of resources initially assigned to the semaphore: 0x1

Maximum number of resources that can be assigned to the semaphore: 0x5

Tasks queuing order: FIFO

(1) Task A issues the wai_sem system call.

The number of resources assigned to this semaphore and managed by RX4000 is 0x1. Thus, RX4000

decrements the semaphore counter by 0x1.

At this time, task A does not enter the wait state (the resource wait state). Instead, it remains in the run state.

The relevant semaphore counter changes as shown in Figure 4-1.

Figure 4-1. State of the Semaphore Counter

Number of resources: 0x1
Before issuing
the system call

Number of resources: 0x0After issuing
the system call

Task A: wai_sem

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

43User's Manual U13422EJ1V1UM

(2) Task A issues the wai_sem system call.

The number of resources assigned to this semaphore and managed by RX4000 is 0x0. Thus, RX4000

changes the state of task A from run to the wait state (resource wait state) and places the task at the end of

the queue for this semaphore.

The queue of this semaphore changes as shown in Figure 4-2.

Figure 4-2. State of the Queue (When wai_sem is issued)

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task A: wai_sem

Task A

(3) As task A enters the resource wait state, the state of task B changes from ready to run.

(4) Task B issues the sig_sem system call.

At this time, the state of task A that has been placed in the queue of this semaphore changes from the

resource wait state to ready state.

The queue of this semaphore changes as shown in Figure 4-3.

Figure 4-3. State of the Queue (When sig_sem is issued)

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task B: sig_sem

Task A

(5) The state of task A having the higher priority changes from ready to run.

At the same time, task B leaves the run state and enters the ready state.

Figure 4-4 shows the transition of exclusive control in steps (1) to (5).

Figure 4-4. Exclusive Control Using Semaphores

wai_sem

sig_sem

Task A
Priority: High

Task B
Priority: Low

wai_sem

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

44 User's Manual U13422EJ1V1UM

4.3 Event Flags

In multitask processing, an intertask wait function, in which other tasks wait to resume execution of processing until

the results of processing by a given task are output, is necessary. In such a case, it is good to have a function for

other tasks to judge whether or not the “processing results output” event has occurred or not, and in RX4000, an

event flag is presented in order to realize this kind of function.

An event flag is a set of data consisting of 1-bit flags that indicate whether a particular event has occurred. 32-bit

event flags are used in RX4000. 32 bits are handled as a set of information with each bit or a combination of bits

having a specific meaning.

The following system calls regarding event flags are used to dynamically manipulate an event flag:

cre_flg : Generates an event flag.

del_flg : Deletes an event flag.

set_flg : Sets a bit pattern.

clr_flg : Clears a bit pattern.

wai_flg : Checks a bit pattern.

pol_flg : Checks a bit pattern (by polling).

twai_flg : Checks a bit pattern (with timeout setting).

ref_flg : Acquires event flag information.

4.3.1 Generating event flags

RX4000 provides two interfaces for generating event flags. One is for statically generating an event flag during

system initialization (in the nucleus initialization section). The other is for dynamically generating an event flag by

issuing a system call from within a processing program.

To generate an event flag in RX4000, an area in system memory shall be allocated for managing that event flag

(as an object of management by RX4000), then initialized.

(1) Static registration of an event flag

To statically register an event flag, specify it during configuration.

RX4000 generates that event flag according to the event flag information defined in the information file

(including system information tables and system information header subfiles) during system initialization.

Subsequently, the event flag is managed by RX4000.

(2) Dynamic registration of an event flag

To dynamically register an event flag, issue the cre_flg system call from within a processing program (task).

RX4000 generates that event flag according to the information specified by a parameter when the cre_flg

system call is issued. Subsequently, the event flag is managed by RX4000.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

45User's Manual U13422EJ1V1UM

4.3.2 Deleting event flags

An event flag is deleted by issuing a del_flg system call.

• del_flg system call

The del_flg system call deletes the event flag specified by a parameter.

Then, that event flag is no longer managed by RX4000.

If a task is queued into the queue of the event flag specified by this system call parameter, that task shall be

removed from the queue, after which it will leave the wait state (the event flag wait state) and enter the ready

state.

E-DLT is returned to the task released from the wait state as the return value for the system call (wai_flg or

twai_flg) that triggered the transition of the task to the wait state.

4.3.3 Setting a bit pattern

Setting of the event flag bit pattern is accomplished by issuing the set_flg system call.

• set_flg system call

The set_flg system call sets a bit pattern for the event flag specified by a parameter.

When this system call is issued, if the given condition for a task queued into the queue of the specified event

flag is satisfied, that task shall be removed from the queue.

Then, this task will leave the wait state (the event flag wait state) and enter the ready state. Or, it will leave the

wait_suspend state and enter the suspend state.

4.3.4 Clearing a bit pattern

Clearing of the event flag bit pattern is accomplished by issuing the clr_flg system call.

• clr_flg system call

The clr_flg system call clears the bit pattern of the event flag specified by a parameter.

When this system call is issued, if the bit pattern of the specified event flag has already been cleared to zero, it

is not regarded as an error. Pay particular attention to this point.

4.3.5 Checking a bit pattern

Checking of the event flag bit pattern is accomplished by issuing the wai_flg, pol_flg, or twai_flg system call.

• wai_flg system call

The wai_flg system call checks whether the bit pattern is set to satisfy the wait condition required for the event

flag specified by a parameter.

If the bit pattern does not satisfy the wait condition required this point call is queued at the end of the queue of

this event flag. Thus, the task leaves the run state and enters the wait state (the event flag wait state).

The event flag wait state is canceled in the following cases, and the task returns to the ready state.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

46 User's Manual U13422EJ1V1UM

• When a set_flg system call is issued and the required wait condition is set.

• When a del_mbx system call is issued and this event flag is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

• pol_flg system call

The pol_flg system call checks whether the bit pattern is set to satisfy the wait condition required for the event

flag specified by a parameter.

If the bit pattern does not satisfy the wait condition required for the event flag specified by this system call

parameter, E_TMOUT is returned as the return value.

• twai_flg system call

The twai_flg system call checks whether the bit pattern is set to satisfy the wait condition required for the event

flag specified by a parameter.

If the bit pattern does not satisfy the wait condition required for the event flag specified by this system call

parameter, the task that issues this system call is queued at the end of the queue for this event flag. Thus, the

task leaves the run state and enters the wait state (the event flag wait state).

The event flag wait state is canceled in the following cases, and the task returns to the ready state.

• Once the given wait time specified by parameter has elapsed.

• When a set_flg system call is issued and the required wait condition is set.

• When a del_mbx system call is issued and this event flag is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

Also, the event flag wait conditions and processing when the conditions are established can be specified as follows

in RX4000.

(1) Wait conditions

• AND wait

The wait state continues until all bits to be set to 1 in the required bit pattern have been set in the relevant

event flag.

• OR wait

The wait state continues until any bit to be set to 1 in the required bit pattern has been set in the relevant

event flag.

(2) When the condition is satisfied

• Clearing a bit pattern

When the wait condition specified for the event flag is satisfied, the bit pattern for the event flag is cleared.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

47User's Manual U13422EJ1V1UM

4.3.6 Acquiring event flag information

Event flag information is acquired by issuing the ref_flg system call.

• ref_flg system call

By issuing the ref_flg system call, the task acquires the event flag information (extended information, queued

tasks, etc.) for the event flag specified by a parameter.

Details of event flag information are as follows:

• Extended information

• Whether tasks are queued

• Current bit pattern

4.3.7 Wait function using event flags

The following is an example of manipulating the tasks under wait and control using event flags.

Conditions

• Task priority

Task A > Task B

• State of tasks

Task A : run state

Task B : ready state

• Event flag attributes

Initial bit pattern : 0x0

The number of tasks that can be placed in the queue : One task

(1) Task A issues the wai_flg system call. The required bit pattern is 0x1 and the wait condition is

TWF_ANDW|TWF_CLR.

The current bit pattern of the relevant event flag managed by RX4000 is 0x0. Thus, RX4000 changes the

state of task A from run to wait (the event flag wait state). Then, task A is queued at the end of the queue for

this event flag.

The queue of this event flag changes as shown in Figure 4-5.

Figure 4-5. State of the Queue (When wai_flg is issued)

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task A: wai_flg

Task A

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

48 User's Manual U13422EJ1V1UM

(2) As task A enters the event flag wait state, the state of task B changes from ready to run.

(3) Task B issues the set_flg system call. The bit pattern is set to 0x1.

This bit pattern satisfies the wait condition for task A that has been queued into the queue of the relevant

event queue. Thus, task A leaves the event flag wait state and enters the ready state.

Since TWF_CLR was specified when task A issued the wai_flag system call, the bit pattern of this event flag

is cleared.

The queue for this event flag changes as shown in Figure 4-6.

Figure 4-6. State of the Queue (When set_flg is issued)

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task B: set_flg

Task A

(4) The state of task A having the higher priority changes from ready to run.

At the same time, task B leaves the run state and enters the ready state.

Figure 4-7 shows the transition of wait and control by event flags in steps (1) to (4).

Figure 4-7. Wait and Control by Event Flags

wai_flg

set_flg

Task A
Priority: High

Task B
Priority: Low

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

49User's Manual U13422EJ1V1UM

4.4 Mailboxes
Multitasking requires an inter-task communication function, so that the tasks can be informed of the results output

by other tasks. To implement this function, RX4000 provides mailboxes.

The mailboxes used in RX4000 have two different queues, one dedicated to tasks and the other dedicated to

messages. They can be used for both an inter-task message communication function and an inter-task wait function.

The following mailbox-related system calls are used to dynamically operate a mailbox.

cre_mbx : Generates a mailbox.

del_mbx : Deletes a mailbox.

snd_msg : Sends a message.

rcv_msg : Receives a message.

prcv_msg : Receives a message (by polling).

trcv_msg : Receives a message (with timeout setting).

ref_mbx : Acquires mailbox information

4.4.1 Generating mailboxes

RX4000 provides two interfaces for generating mailboxes. One is for statically generating a mailbox during system

initialization (in the nucleus initialization section). The other is for dynamically generating a mailbox by issuing a

system call from within a processing program.

To generate a mailbox in RX4000, an area in system memory shall be allocated for managing that mailbox (as an

object of management by RX4000), then initialized.

(1) Static registration of a mailbox

To statically register a mailbox, specify it during configuration.

RX4000 generates the mailbox according to the mailbox information defined in the information file (including

system information tables and system information header subfiles) during system initialization. Subsequently,

the mailbox is managed by RX4000.

(2) Dynamic registration of a mailbox

To dynamically register a mailbox, issue the cre_mbx system call from within a processing program (task).

RX4000 generates the mailbox according to the information specified by a parameter when the cre_mbx

system call is issued. Subsequently, the mailbox is managed by RX4000.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

50 User's Manual U13422EJ1V1UM

4.4.2 Deleting mailboxes

A mailbox is deleted by issuing the del_mbx system call.

• del_mbx system call

The del_mbx system call deletes the mailbox specified by a parameter.

Then, that mailbox is no longer managed by RX4000.

If a task is queued into the task queue of the mailbox specified by this system call parameter, that task shall
be removed from the task queue, after which it will leave the wait state (the message wait state) and enter
the ready state.

E-DLT is returned to the task released from the wait state as the return value for the system call (rcv_msg or
trcv_msg) that triggered the transition of the task to the wait state.

4.4.3 Sending a message

A message is sent from a task by issuing a snd_msg system call.

• snd_msg system call

Upon the issue of a snd_msg system call, the task transmits a message to the mailbox specified by a

parameter.

If a task or tasks are queued into the task queue of the mailbox specified by this system call parameter, the

message is delivered to the first task in the task queue without being queued into the mailbox.

Then, the first task is removed from the queue, after which it leaves the wait state (the message wait state) and

enters the ready state. Or, it leaves the wait_suspend state and enters the suspend state.

If no tasks are queued in the task wait queue of the object mail box, the message is placed in the message

wait queue of the object mail box.

Remark Queuing of a message into the message wait queue of the mailbox specified by the system call

parameter is performed in the order (FIFO or according to priority) specified when the mailbox was

generated (when configuring or when the cre_mbx system call is issued).

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

51User's Manual U13422EJ1V1UM

4.4.4 Receiving a message

A message is received by the task upon the issue of the rcv_msg, prcv_msg, or trcv_msg system call.

• rcv_msg system call

Upon the issue of a rcv_msg system call, the task receives a message from the mailbox specified by a

parameter.

If the task cannot receive a message from the mailbox specified by this system call parameter (no message

exists in the message queue of that mailbox), the task that issued this system call is queued at the end of the

task queue for this mailbox. Thus, the task leaves the run state and enters the wait state (the message wait

state).

The message wait state is canceled in the following cases and the task returns to the ready state.

• When a snd_msg system call is issued.

• When a del_mbx system call is issued and this mailbox is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

Remark When a task queues in the task wait queue of the specified mailbox, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that mailbox was generated (during

configuration or when a cre_mbx system call was issued).

• prcv_msg system call

Upon the issue of the prcv_msg system call, the task receives a message from the mailbox specified by a

parameter.

If the task cannot receive a message from the mailbox specified by this system call parameter (no message

exists in the message queue for that mailbox), E_TMOUT is returned as the return value.

• trcv_msg system call

Upon the issue of the trcv_msg system call, the task receives a message from the mailbox specified by a

parameter.

If the task cannot receive a message from the mailbox specified by this system call parameter (no message

exists in the message queue for that mailbox), the task that issued this system call is queued at the end of the

task queue for this mailbox. Thus, the task leaves the run state and enters the wait state (the message wait

state).

The message wait state is canceled in the following cases and the task returns to the ready state.

• When the given time specified by parameter has elapsed.

• When a snd_msg system call is issued.

• When a del_mbx system call is issued and this mailbox is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

Remark When a task queues in the task wait queue of the specified mailbox, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that mailbox was generated (during

configuration or when a cre_mbx system call was issued).

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

52 User's Manual U13422EJ1V1UM

4.4.5 Messages

Under RX4000, all items of information exchanged between tasks, via mailboxes, are called “messages.”

Messages can be transmitted to an arbitrary task via a mailbox. In inter-task communication under RX4000,

however, only the start address of a message is delivered to a receiving task, enabling the task to access the

message. The contents of the message are not copied to any other area.

(1) Allocating message areas

NEC recommends that the memory pool managed by RX4000 be allocated for messages. To make a

memory pool area available for a message, the task should issue a get_blk, pget_blk, or tget_blk system call.

The first four bytes of each message are used as the block for linkage to the message queue when queued.

Therefore, if areas other than the memory pool are allocated for messages, these message areas must be

aligned with a 4-byte boundary.

(2) Composition of messages

RX4000 does not prescribe the length and composition of messages to be transmitted to mailboxes. The

message length, except for the first four bytes, and its composition shall be defined by the tasks that

communicate with each other via mailboxes.

Caution RX4000 prescribes that the first four bytes of each message are used as the block for

linkage to the message queue when queued. For this reason, when a message is

transmitted to the relevant mailbox, the first four bytes of the message must be set to 0x0

before the snd_msg system call is issued.

If the first four bytes of the message are set to a value other than 0x0 when the snd_msg

system call is issued, RX4000 determines that this message has already been queued into

the message queue. Thus, RX4000 does not send the message to the mailbox and returns

E_OBJ as the return value.

4.4.6 Acquiring mailbox information

Mailbox information is acquired by issuing a ref_mbx system call.

• ref_mbx system call

Upon the issue of a ref_mbx system call, the task acquires the mailbox information (extended information,

queued tasks, etc.) for the mailbox specified by a parameter.

The mailbox information consists of the following:

• Extended information

• Whether tasks are queued

• Whether messages are queued

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

53User's Manual U13422EJ1V1UM

4.4.7 Inter-task communication using mailboxes

The following is an example of manipulating the tasks under inter-task communication using mailboxes.

Conditions

• Task priority

Task A > Task B

• State of tasks

Task A: run state

Task B: ready state

• Mailbox attributes

Task queuing order: FIFO

Message queuing order: FIFO

(1) Task A issues a rcv_msg system call.

No message is queued into the message queue of the relevant mailbox managed by RX4000. Thus, RX4000

changes the state of task A from run to wait (the message wait state). The task is queued at the end of the

task queue for this mailbox.

The task queue for this mailbox changes as shown in Figure 4-8.

Figure 4-8. State of Task Queue (When the rcv_msg is issued)

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task A: rcv_msg

Task A

(2) As task A enters the message wait state, the state of task B changes from ready to run.

(3) Task B issues the get_blk system call.

By means of this system call, a memory pool area is allocated for a message (as a memory block).

(4) Task B writes a message into this memory block.

(5) Task B issues the snd_msg system call.

This changes the state of task A that has been placed in the task wait for the relevant mailbox from the

message wait state to ready state.

The task queue for this mailbox changes as shown in Figure 4-9.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

54 User's Manual U13422EJ1V1UM

Figure 4-9. State of Task Queue (When the snd_msg is issued)

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task B: snd_msg

Task A

(6) The state of task A having the higher priority changes from ready to run.

At the same time, task B leaves the run state and enters the ready state.

(7) Task A issues the rel_blk system call

This releases the memory block allocated for the message in the memory pool.

The flow of communications between tasks as explained in (1) to (7) is shown in Figure 4-10.

Figure 4-10. Inter-Task Communication Using Mailboxes

Task A
Priority: High

Task B
Priority: Low

rcv_msg

snd_msg

rel_blk

A message is generated

get_blk

55User's Manual U13422EJ1V1UM

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

This chapter describes the interrupt management function provided by RX4000.

5.1 Overview

The RX4000 interrupt management function enables the following:

• Management of an interrupt handler

• Setting the interrupt mask

• Return from an interrupt handler

• Processing the actual interrupt

5.2 Interrupt Handler

An interrupt handler is a routine dedicated to interrupt processing. Upon the occurrence of an interrupt, the

interrupt handler is initiated immediately and handled independently of all other tasks. Therefore, if a task having the

highest priority in the system is being executed upon the occurrence of an interrupt, its processing is suspended and

control is passed to the interrupt handler.

The interrupt handler is started after interrupt preprocessing by RX4000 (saving register, stack switching, etc.) is

executed.

If a system call is issued while the interrupt handler is performing processing, scheduling is performed in a way

specific to RX4000.

That is, if a system call (chg_pri, sig_sem, etc.) that requires task scheduling is issued during processing by the

interrupt handler, RX4000 merely queues the tasks into the queue. The actual processing of task scheduling is

batched and deferred until a return from the interrupt handler has been made (by issuing an ret_int system call and

return instruction).

The flow of the interrupt handler’s operation is shown in Figure 5-1.

Figure 5-1. Flow of Processing Performed by Directly Activated Interrupt Handler

Scheduling

return (TSK_NULL)

Task RX4000 Directly activated interrupt handler

Occurrence of an interrupt

Interrupt preprocessing

Interrupt post processing

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

56 User's Manual U13422EJ1V1UM

5.2.1 Registering interrupt handler

RX4000 provides two interfaces for registering an interrupt handler. One involves registering it statically during

system initialization (in the nucleus initialization section). The other involves registering it dynamically by issuing a

system call from within a processing program.

To register an interrupt handler with RX4000, an area in system memory shall be allocated for managing the

interrupt handler (as an object of RX4000 management), then initialized.

(1) Static registration of an interrupt handler

To register an interrupt handler statically, specify it during configuration.

RX4000 performs the processing required to register the interrupt handler, based on the relevant information

defined in the information file (including system information tables and system information header subfiles)

during system initialization. The interrupt handler is subsequently managed by RX4000.

(2) Dynamic registration of an interrupt handler

To dynamically register an interrupt handler, issue the def_int system call from within a processing program

(task or non-task).

RX4000 performs the processing required to register the interrupt handler, according to the information

specified by the parameters when the def_int system call is issued. The interrupt handler is subsequently

managed by RX4000.

5.2.2 Internal processing performed by the interrupt handler

When describing the processing to be performed by the interrupt handler, note the following:

(1) Saving/restoring the registers

Based on the function call protocol for the cross tools for the VR Series, RX4000 saves the work registers and

restores them. Therefore, it is not necessary to describe processing related to save/restoration of the work

registers.

Caution RX4000 does not switch the gp register when control is passed to the interrupt handler.

(2) Stack switching

RX4000 performs stack switching when control is passed to the interrupt handler and also upon return from

the interrupt handler. Therefore, the interrupt handler does not have to switch to the interrupt handler stack

when it starts, nor switch to the original stack upon the completion of its processing. Stack switching should

not, therefore, be described in the coding for the interrupt handler.

If the interrupt handler stack is not defined during configuration, however, stack switching is not performed by

RX4000. In this case, the system continues to use the stack being used upon the occurrence of the interrupt.

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

57User's Manual U13422EJ1V1UM

(3) Limitations imposed on system calls

Some of the system calls in RX4000 cannot be issued within the interrupt handler.

The following lists the system calls that can be issued during the processing of an interrupt handler:

• Task management system calls

sta_tsk chg_pri rot_rdq rel_wai get_tid

rer_tsk

• Task-associated handler function system call

vsnd_sig

• Task-associated synchronization system calls

sus_tsk rsm_tsk frsm_tsk wup_tsk can_wup

• Synchronous communication system calls

sig_sem preq_sem ref_sem set_flg clr_flg

pol_flg ref_flg snd_msg prcv_msg ref_mbx

• Interrupt management system calls

def_int ret_int ret_wup dis_int ena_int

chg_ims ref_ims

• Memory pool management system calls

pget_blk rel_blk ref_mpl

• System management system calls

get_ver ref_sys def_svc viss_svc def_exc

(4) Return processing from the interrupt handler

Return processing from the interrupt handler is performed by issuing a return instruction upon the completion

of interrupt handler operation.

• return (TSK_NULL) instruction

Performs return from the indirectly activated interrupt handler.

• return (ID tskid) instruction

Issues a wake-up request to the task specified by the parameters, then returns from the indirectly activated

interrupt handler.

When a system call (chg_pri, sig_sem, etc.) that requires task scheduling is issued during processing by an

interrupt handler, RX4000 merely queues the tasks into the queue. The actual processing of task scheduling

is batched and deferred until return from the interrupt handler has been made (by issuing a return instruction).

Caution The return instruction does not notify the external interrupt controllers that operation of the

interrupt handler has terminated (the EOI command is not issued). Therefore, if a return is

made from an interrupt handler that was initiated by an external interrupt request,

notification of the termination of interrupt handler operation must be posted to the relevant

interrupt controller before these system calls are issued.

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

58 User's Manual U13422EJ1V1UM

5.3 Disabling/Enabling Maskable Interrupt Acceptance

RX4000 provides a function for disabling or enabling the acceptance of maskable interrupts, so that whether

maskable interrupts are accepted can be specified from a user processing program.

This function is used by issuing the following system calls from within a task or interrupt handler.

• loc_cpu system call

The loc_cpu system call disables the acceptance of maskable interrupts, as well as the performing of dispatch

processing (task scheduling).

Once this system call has been issued, control is not passed to any other task or interrupt handler until the

unl_cpu system call is issued.

• unl_cpu system call

The issue of the unl_cpu system call enables the acceptance of maskable interrupts, and resuming dispatch

processing (task scheduling).

• dis_int system call

Disables the acceptance of a maskable interrupt.

• ena_int system call

Enables the acceptance of a maskable interrupt.

Figure 5-2 shows the flow of control if an interrupt is not masked and Figure 5-3 shows the flow of control if the

loc_cpu system call is issued.

Figure 5-2. Flow of Control if Interrupt Mask Processing is Not Performed

return

Interrupt handler
Task A
Priority: Low

Task B
Priority: High

slp_tsk

wup_tsk

slp_tsk

Occurrence of an interrupt

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

59User's Manual U13422EJ1V1UM

Figure 5-3. Flow of Control if the loc_cpu System Call is Issued

Interrupt handler
Task A
Priority: Low

Task B
Priority: High

slp_tsk

return

slp_tsk

wup_tsk

loc_cpu

unl_cpu

Occurrence of an interrupt

5.4 Changing/Acquiring Interrupt Mask

The interrupt mask setting is changed and acquired using chg_ims or acquired using ref_ims.

• chg_ims system call

Upon the issue of a chg_ims system call, the interrupt mask setting of the processor is changed to the value

specified by the parameter.

• ref_ims system call

Upon the issue of an ref_ims system call, the task acquires the interrupt mask setting of the processor.

5.5 Nonmaskable Interrupts

A nonmaskable interrupt is not subject to management based on interrupt priority and has priority over all other

interrupts. It can be accepted even if the processor is placed in the interrupt disabled state (clearing IE bit of status

register).

Therefore, even while processing is being executed by RX4000 or an interrupt handler, a non-maskable interrupt

can be accepted.

If a system call is issued during the processing of an interrupt handler that supports non-maskable interrupts, its

operation cannot be assured under RX4000.

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

60 User's Manual U13422EJ1V1UM

5.6 Multiple Interrupts

The occurrence of another interrupt while processing is being performed by an interrupt handler is called “multiple

interrupts.” RX4000 also responds to multiple interrupt.

All interrupt handlers, however, start their operation in the interrupt-disabled state (clearing IE bit of status register).

To enable the acceptance of multiple interrupts, the canceling of the interrupt disabled state should be described in

the interrupt handler.

Figure 5-4 shows the flow of the processing for handling multiple interrupts.

Figure 5-4. Flow of Processing for Handling Multiple Interrupts

return

return

Occurrence of an interrupt

Occurrence of an interrupt

Task RX4000

Scheduling

Interrupt-disabled state

Interrupt-disabled state

Interrupt-enabled state

Interrupt-enabled state

Interrupt-disabled state canceled

Interrupt handlerInterrupt handler

Interrupt preprocessing

Interrupt preprocessing

61User's Manual U13422EJ1V1UM

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

This chapter describes the memory pool management function of RX4000.

6.1 Overview

RX4000 statically generates and initializes those objects that are under its management during system

initialization. These objects include information tables for managing the overall system and management blocks for

implementing the functions (such as semaphores and event flags).

RX4000 is provided with a dynamic memory pool management function, so that memory areas can be acquired as

required and released once they become unnecessary. The user can thus dynamically allocate the memory for

objects, enabling the efficient use of the memory space.

6.2 Management Objects

The following lists the objects required for implementing the functions provided by RX4000.

These management objects are generated and initialized during system initialization, according to the information

specified at configuration (for tasks, semaphores, etc.).

• System base table

• Task management block

• Semaphore management block

• Event flag management block

• Mailbox management block

• Memory pool management block

• Memory block management block

• Cyclically activated handler management block

• Memory pool

• Task stack

• Interrupt handler stack

Figure 6-1 shows a typical arrangement of the management objects.

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

62 User's Manual U13422EJ1V1UM

Figure 6-1. Typical Arrangement of Management Objects

Task stack

Interrupt handler stack

Event flag management block

System base table

Semaphore management block

Memory pool management block

Mailbox management block

Memory pool

High Address

Low Address

Cyclically activated handler management block

Task management block

6.3 Memory Pool and Memory Blocks

RX4000 performs dynamic memory pool management, so that a memory area can be provided for a processing

program (task or interrupt handler) when requested. Furthermore, the memory pool offered by RX4000 has a variable

length.

The memory pool consists of memory blocks and is allocated in units of memory blocks.

Dynamic generation of a memory pool and access to the memory pool are performed using the following memory

pool-related system calls:

cre_mpl : Generates a memory pool.

del_mpl : Deletes the memory pool.

get_blk : Acquires a memory block.

pget_blk : Acquires a memory block (by polling).

tget_blk : Acquires a memory block (with timeout setting).

rel_blk : Release a memory block.

ref_mpl : Acquires memory pool information.

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

63User's Manual U13422EJ1V1UM

6.3.1 Generating a memory pool

RX4000 provides two interfaces for generating (registering) a memory pool. One enables static generation during

system initialization (in the nucleus initialization section). The other enables dynamic generation by issuing a system

call from within a processing program.

To generate a memory pool with RX4000, certain areas in system memory are allocated to enable management of

the memory pool (as an object of RX4000 management) and for the memory pool entity, then initialized.

(1) Static registration of a memory pool

To register a memory pool statically, specify it during configuration.

RX4000 generates the memory pool, based on the information defined in the information file (including

system information tables and system information header subfiles) during system initialization. The memory

pool is subsequently managed by RX4000.

(2) Dynamic registration of a memory pool

To dynamically register a memory pool, issue the cre_mpl system call from within a processing program

(task).

RX4000 generates the memory pool, according to the information specified by the parameters when the

cre_mpl system call is issued. The memory pool is subsequently managed by RX4000.

6.3.2 Deleting a memory pool

A memory pool is deleted upon the issue of a del_mpl system call.

• del_mpl system call

The del_mpl system call deletes the memory pool specified by the parameter.

Subsequently, that memory pool is no longer subject to management by RX4000.

If a task is queued into the queue of the memory pool specified by this system call parameter, that task shall be

removed from the queue, leave the wait state (the memory block wait state) then enter the ready state.

E-DLT is returned, to the task that was released from the wait state, as the return value for the system call

(get_blk or tget_blk) that triggered the transition of the task to the wait state.

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

64 User's Manual U13422EJ1V1UM

6.3.3 Acquiring a memory block

A memory block is acquired by issuing a get_blk, pget_blk, or tget_blk system call.

Caution In RX4000, memory clear is not performed when a memory block is acquired. Therefore,

the acquired memory block’s contents are undefined.

• get_blk system call

Upon the issue of the get_blk system call, the processing program (task) acquires a memory block from the

memory pool specified by a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified memory pool

(because no free block of the required size exists), the task itself is enqueued into the queue of this memory

pool. Thus, the task leaves the run state and enters the wait state (the memory block wait state).

The memory block wait state is canceled in the following cases and the task returns to the ready state.

• When a rel_blk system call is issued and a memory block of the required size is returned.

• When a del_mpl system call is issued and the specified memory pool is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the waits state is forcibly canceled.

Remark When a task queues in the wait queue of the specified memory pool, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that memory pool was generated (during

configuration or when a cre_mpl system call was issued).

• pget_blk system call

Upon the issue of the pget_blk system call, the processing program (task) acquires a memory block from the

memory pool specified by a parameter.

For this system call, if the task cannot acquire the block from the memory pool specified by this system call

parameter (because no free block of the required size exists), E_TMOUT is returned as the return value.

• tget_blk system call

By issuing a tget_blk system call, the processing program (task) acquires a memory block from the memory

pool specified by a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified memory pool

(because no free block of the required size exists), the task itself is enqueued into the queue of this memory

pool. Thus, the task leaves the run state and enters the wait state (the memory block wait state).

The memory block wait state is canceled in the following cases and the task returns to the ready state.

• When the wait time specified by a parameter has elapsed.

• When a rel_blk system call is issued and a memory block of the required size is returned.

• When a del_mpl system call is issued and the specified memory pool is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the waits state is forcibly canceled.

Remark When a task queues in the wait queue of the specified memory pool, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that memory pool was generated (during

configuration or when a cre_sem system call was issued).

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

65User's Manual U13422EJ1V1UM

6.3.4 Returning a memory block

A memory block is returned upon the issue of an rel_blk system call.

• rel_blk system call

Upon the issue of an rel_blk system call, a processing program (task) returns a memory block to the memory

pool specified by a parameter.

For this system, if the memory block returned by this system call is of the size required by the first task in the

queue of the specified memory pool, this block is passed to that task.

Thus, the first task is removed from the queue, leaves the wait state (the memory block wait state), and enters

the ready state. Or, it leaves the wait_suspend state and enters the suspend state.

Cautions 1. The contents of a returned memory block are not cleared automatically by RX4000.

Thus, the contents of a memory block may be undefined when that memory block is

returned.

2. Treat a memory pool which returns a memory block the same as a memory block

specified when issuing the get_blk, pget_blk or tget_blk system call.

6.3.5 Acquiring memory pool information

Memory pool information is acquired by issuing an ref_mpl system call.

• ref_mpl system call

Upon the issue of an ref_mpl system call, the processing program (task) acquires the memory pool information

(extended information, queued tasks, etc.) for the memory pool specified by a parameter.

The memory pool information consists of the following:

• Extended information

• Whether tasks are queued

• Total amount of free space

• The maximum memory block size to be acquired

66 User's Manual U13422EJ1V1UM

[MEMO]

67User's Manual U13422EJ1V1UM

CHAPTER 7 TIME MANAGEMENT FUNCTION

This chapter describes the time management function of RX4000.

7.1 Overview

Time management of RX4000 is performed using CP0 timer interrupts which can be generated periodically by

software.

If a timer interrupt is issued, the RX4000 system clock processing is called and system clock update as well as

processing related to time, called timer operations (such as task delay rise, time out and starting of the period start

handler) is executed.

7.2 System Clock

The system clock is a software timer that provides the time (in units of milliseconds, with a width of 48 bits) used for

time management by RX4000.

The system clock is set to 0×0000 0000 0000 at system initialization and updated in units of the basic clock cycle

(specified at configuration) each time system clock processing is performed.

Caution The system clock managed by RX4000 shall have a fixed width of 48 bits. RX4000 ignores

any overflow (that exceeding 48 bits) for the clock value.

7.2.1 Setting and reading the system clock

The system clock setting is executed by issuing the set_tim system call, and reading by issuing the get_tim system

call.

• set_tim system call

The set_tim system call sets the time specified by a parameter to the system clock.

• get_tim system call

The get_tim system call stores the current time of the system clock into the packet specified by a parameter.

CHAPTER 7 TIME MANAGEMENT FUNCTION

68 User's Manual U13422EJ1V1UM

7.3 Delayed Task Wake-Up

Delayed task wake-up changes the state of a task from run to wait (the timeout wait state) and leaves the task in

this state for a given period. Once this period elapses, the task is released from the wait state and returns to the

ready state.

Delayed task wake-up is performed by issuing a dly_tsk system call.

• dly_tsk system call

Upon the issue of a dly_tsk system call, the state of the task from which this system call was issued changes

from run to wait (the timeout wait state).

The timeout wait state is canceled in the following cases and the task returns to the ready state.

• Upon the elapse of the delay specified by a parameter.

• Upon the issue of a rel_wai system call and the forcible cancelation of the wait state.

Figure 7-1 shows the flow of the processing after the issue of the dly_tsk system call.

Figure 7-1. Flow of Processing After Issue of dly_tsk

Task A
Priority: High

Task B
Priority: Low

dly_tsk (Delay time)

Delay time

7.4 Timeout

If the conditions required for a certain action are not satisfied when that action is requested by a task, the timeout

function changes the state of the task from run to wait (wake-up wait state, resource wait state, etc.) and leaves the

task in the wait state for a given period. Once that period elapses, the timeout function releases the task from the wait

state. Then, the task returns to the ready state.

The timeout function is enabled by issuing a tslp_tsk, twai_sem, twai_flg, trcv_msg, or tget_blk system call.

CHAPTER 7 TIME MANAGEMENT FUNCTION

69User's Manual U13422EJ1V1UM

• tslp_tsk system call

Upon the issue of a tslp_tsk system call, one request for wake-up, issued for the task from which this system

call is issued, is canceled (the wake-up request counter is decremented by 0x1).

If the wake-up request counter of the task from which this system call is issued currently indicates 0x0, the

wake-up request is not canceled (decrement of the wake-up request counter) and the task enters the wait state

(the wake-up wait state) from the run state.

The wake-up wait state is canceled in the following cases, and the task returns to the ready state.

• When the given wait time specified by a parameter has elapsed.

• When a wup_tsk system call is issued.

• When a ret_wup system call is issued.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

• twai_sem system call

Upon the issue of a twai_sem system call, the task acquires a resource from the semaphore specified by a

parameter (the semaphore counter is decremented by 0x1).

After the issue of this system call, if the task cannot acquire a resource from the semaphore specified by a

parameter (no free resource exists), the task itself is enqueued into the queue of this semaphore. Thus, the

task leaves the run state and enters the wait state (the resource wait state).

The resource wait state is canceled in the following cases, and the task returns to the ready state.

• When the given wait time specified by a parameter has elapsed.

• When a sig_sem system call is issued.

• When a del_sem system call is issued and the specified semaphore is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

• twai_flg system call

The twai_flg system call checks whether the bit pattern is set so as to satisfy the wait condition required for the

event flag specified by a parameter.

If the bit pattern does not satisfy the wait condition required for the event flag specified by this system call

parameter, the task from which this system call is issued is enqueued at the end of the queue of this event flag.

Thus, the task leaves the run state and enters the wait state (the event flag wait state).

The event flag wait state is canceled in the following cases, and the task returns to the ready state.

• When the given wait time specified by a parameter has elapsed.

• When a set_flg system call is issued and the required wait condition is satisfied.

• When a del_flg system call is issued and the specified event flag is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

CHAPTER 7 TIME MANAGEMENT FUNCTION

70 User's Manual U13422EJ1V1UM

• trcv_msg system call

Upon the issue of a trcv_msg system call, the task receives a message from the mailbox specified by a

parameter.

After the issue of this system call, if the task cannot receive a message from the specified mailbox (no

messages exist in the message queue of that mailbox), the task itself is enqueued at the end of the task queue

of this mailbox. Thus, the task leaves the run state and enters the wait state (the message wait state).

The message wait state is canceled in the following cases, and the task returns to the ready state.

• When the given time specified by a parameter has elapsed.

• When a snd_msg system call is issued.

• When a del_mbx system call is issued and this mailbox is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

• tget_blk system call

Upon the issue of a tget_blk system call, the task acquires a memory block from the memory pool specified by

a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified memory pool

(because no free block of the required size exists), the task itself is enqueued into the queue of this memory

pool. Thus, the task leaves the run state and enters the wait state (the memory block wait state).

The memory block wait state is canceled in the following cases, and the task returns to the ready state.

• When the given wait time specified by a parameter has elapsed.

• When a rel_blk system call is issued and a memory block of the required size is returned.

• When a del_mpl system call is issued and the specified memory pool is deleted.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

• When a vsnd_sig system call is issued and the wait state is forcibly canceled.

7.5 Cyclically Activated Handler

The cyclically activated handler is an exclusive period processing routine which starts immediately when a

predetermined start time arrives, and is a processing program which has optimally small overhead within the periodic

processing program described by the user until execution is started.

The cyclically activated handler is treated as independent of the task. For this reason, even if a task with the

highest priority order is being executed in the system, that processing is interrupted and the system switches to the

cyclically activated handler’s control.

The following system calls and instructions relevant to a cyclically activated handler are used in the dynamic

operation of a cyclically activated handler.

def_cyc : Registers a cyclically activated handler.

act_cyc : Controls the activity state of the cyclically activated handler.

ref_cyc : Acquires cyclically activated handler information.

return : Performs return from the cyclically activated handler.

CHAPTER 7 TIME MANAGEMENT FUNCTION

71User's Manual U13422EJ1V1UM

7.5.1 Registering a cyclically activated handler

RX4000 provides two interfaces for registering a cyclically activated handler. One enables static registration during

system initialization (in the nucleus initialization section). The other enables dynamic registration by issuing a system

call from within a processing program.

To register a cyclically activated handler with RX4000, an area in system memory shall be allocated for managing

the cyclically activated handler (to be managed by RX4000), then initialized.

(1) Static registration of a cyclically activated handler

To statically register a cyclically activated handler, specify it during configuration.

RX4000 performs the processing for registering the cyclically activated handler, based on the information

defined in the information file (including system information tables and system information header subfiles)

during system initialization. The cyclically activated handler is subsequently managed by RX4000.

(2) Dynamic registration of a cyclically activated handler

To dynamically register a cyclically activated handler, issue the def_cyc system call from within a processing

program (task or non-task).

RX4000 performs the processing for registering the cyclically activated handler, according to the information

specified by a parameter when the def_cyc system call is issued.

The cyclically activated handler is subsequently managed by RX4000.

7.5.2 Activity state of cyclically activated handler

The activity state of a cyclically activated handler is used as a criterion for determining whether RX4000 initiates

the cyclically activated handler.

The activity state is set when the cyclically activated handler is registered (during configuration or when a def_cyc

system call is issued). However, RX4000 allows the user to change the activity state of the cyclically activated

handler from a user processing program.

• act_cyc system call

Upon the issue of an act_cyc system call, the activity state of the cyclically activated handler is switched

ON/OFF, as specified with the parameter.

TCY_OFF : Switches the activity state of the cyclically activated handler to OFF.

TCY_ON : Switches the activity state of the cyclically activated handler to ON.

TCY_INI : Initializes the cycle counter of the cyclically activated handler.

While RX4000 is running, the cycle counter continues to count even when the activity state of the cyclically

activated handler is OFF. In some cases, when an act_cyc system call is issued to switch the activity state of the

cyclically activated handler from OFF to ON, the first restart request could be issued sooner than the activation time

interval specified when it was registered (during configuration or upon the issue of the def_cyc system call). To

prevent this, the user must specify (TCY_INI) to initialize the cycle counter as well as (TCY_ON) to restart the

cyclically activated handler when issuing the act_cyc system call. Then, the first restart request will be issued in sync

with the time interval, specified when it was registered.

Figures 7-2 and 7-3 show the flow of the processing after the issue of an act_cyc system call from a processing

program to switch the activity state of the cyclically activated handler from OFF to ON.

In the figures, ∆T is assumed to be the activation time interval, specified for the cyclically activated handler when it

was registered.

CHAPTER 7 TIME MANAGEMENT FUNCTION

72 User's Manual U13422EJ1V1UM

Figure 7-2. Flow of Processing After Issue of act_cyc (TCY_ON)

Note ∆∆∆∆T is the time until counting by the cycle counter is finished.

Figure 7-3. Flow of Processing After Issue of act_cyc (TCY_ON|TCY_INI)

 T

Cyclically activated handler

 Note

act_cyc (TCY_ON)

Task

act_cyc (TCY_OFF)

 T
return

return

 T

Cyclically activated handler

 T

act_cyc (TCY_ON|TCY_INI)

Task

act_cyc (TCY_OFF)

 T
return

return

CHAPTER 7 TIME MANAGEMENT FUNCTION

73User's Manual U13422EJ1V1UM

7.5.3 Internal processing performed by cyclically activated handler

After the occurrence of a timer interrupt, RX4000 performs preprocessing for interruption before control is passed

to the cyclically activated handler. When control is returned from the cyclically activated handler, RX4000 performs

interrupt post processing.

When describing the processing to be performed by the activated interrupt handler, note the following:

(1) Saving/restoring the registers

Based on the function call protocol for VR Series cross tool, RX4000 saves the work registers when control is

passed to the cyclically activated handler, and restores them upon the return of control from the handler.

Therefore, the cyclically activated handler does not have to save the work registers when it starts, nor restore

them upon the completion of its processing. Save/restoration of the registers should not be coded in the

description of the cyclically activated handler.

(2) Stack switching

RX4000 performs stack switching when control is passed to the cyclically activated handler and upon a return

from the handler. Therefore, the cyclically activated handler does not have to switch to the interrupt handler

stack when it starts, nor switch to the original stack upon the completion of its processing. However, if the

interrupt handler stack is not defined during configuration, stack switching is not performed and system

continues to use that stack being used upon the occurrence of an interrupt.

(3) Limitations imposed on system calls

There are some RX4000 system calls which cannot be executed within the cyclically activated handler.

The following lists the system calls that can be issued during the processing performed by a cyclically

activated handler:

• Task management system calls

sta_tsk chg_pri rot_rdq rel_wai get_tid

rer_tsk

• Task-associated handler function system call

vsnd_sig

• Task-associated synchronization system calls

sus_tsk rsm_tsk frsm_tsk wup_tsk can_wup

• Synchronous communication system calls

sig_sem preq_sem ref_sem set_flg clr_flg

pol_flg ref_flg snd_msg prcv_msg ref_mbx

• Interrupt management system calls

def_int ret_int ret_wup dis_int ena_int

chg_ims ref_ims

• Memory pool management system calls

pget_blk rel_blk ref_mpl

• System management system calls

get_ver ref_sys def_svc viss_svc def_exc

CHAPTER 7 TIME MANAGEMENT FUNCTION

74 User's Manual U13422EJ1V1UM

(4) Return processing from the cyclically activated handler

Return processing from the cyclically activated handler is performed by issuing an return instruction upon the

completion of the processing performed by cyclically activated handler.

When a system call (chg_pri, sig_sem, etc.) that requires task scheduling is issued during the processing of a

cyclically activated handler, RX4000 merely queues that task into the queue. The actual task scheduling is

batched and deferred until return from the cyclically activated handler has been completed (by issuing an

return instruction).

7.5.4 Acquiring cyclically activated handler information

Information related to a cyclically activated handler is acquired by issuing an ref_cyc system call.

• ref_cyc system call

By issuing an ref_cyc system call, the task acquires information (including extended information, remaining

time, etc.) related to the cyclically activated handler specified by a parameter.

The cyclically activated handler information consists of the following:

• Extended information

• Time remaining until the next start of the cyclically activated handler

• Current activity state

75User's Manual U13422EJ1V1UM

CHAPTER 8 SCHEDULER

This chapter explains the task scheduling performed by RX4000.

8.1 Overview

By monitoring the dynamically changing task states, the RX4000 scheduler manages and determines the

sequence in which tasks are executed, and assigns a processing time to a specific task.

8.2 Drive Method

The RX4000 scheduler uses an event-driven technique, in which the scheduler operates in response to the

occurrence of some event.

The “occurrence of some event” means the issue of a system call that may cause a task state change, the issue of

a return instruction that causes a return from a handler, or the occurrence of a clock interrupt.

When these phenomena occur, task scheduling processing is executed with the scheduler driving.

The following system calls can be used to drive the scheduler.

• Task management system calls

sta_tsk ext_tsk exd_tsk ena_dsp chg_pri

rot_rdq rel_wai

• Task-associated synchronization system calls

rsm_tsk frsm_tsk slp_tsk tslp_tsk wup_tsk

• Synchronous communication system calls

del_sem sig_sem wai_sem twai_sem del_flg

set_flg wai_flg twai_flg del_mbx snd_msg

rcv_msg trcv_msg

• Interrupt management system calls

ret_int ret_wup unl_cpu

• Memory pool management system calls

del_mpl get_blk tget_blk rel_blk

• Time management system calls

dly_tsk

CHAPTER 8 SCHEDULER

76 User's Manual U13422EJ1V1UM

8.3 Scheduling Method

RX4000 uses the priority and FCFS (First-Come, First-Served) scheduling method. When driven, the scheduler

checks the priority of each task that can be executed (in the ready state), selects the optimum task, and assigns a

processing time to the selected task.

8.3.1 Priority method

Each task is assigned a priority that determines the sequence in which it will be executed.

The scheduler checks the priority of each task that can be executed (in the ready state), selects the task having the

highest priority, and assigns a processing time to the selected task.

Remark In RX4000, a task to which a smaller value is assigned as the priority level has a higher priority.

8.3.2 FCFS method

RX4000 can assign the same priority to more than one task. Because the priority method is used for task

scheduling, there is the possibility of more than one task having the highest priority being selected.

Among those tasks having the highest priority, the scheduler selects the first to become executable (that task

which has been in the ready state for the longest time) and assigns a processing time to the selected task.

8.4 Idle Handler

The idle handler is started from the scheduler if all the tasks are not in the run state or not in the ready state, that

is, if there is not even one task which is an object of RX4000 scheduling.

The idle handler is a processing routine prepared for utilize the power mode functions offered by the VR4100

effectively.

(1) Idle handler generation and activation

The idle handler is generated by system initialization (nucleus initialization section) and is started from the

scheduler.

The idle handler is a handler defined by RX4000 and operations (generation, activating, terminating, deleting,

etc.) cannot be executed with respect to the idle handler from a user’s processing program (task/non-task).

(2) Processing within the idle handler

The role of the idle handler is to switch the processor to the low power mode. Then the idle handler issues a

STANDBY, SUSPEND, or HIBERNATE command.

CHAPTER 8 SCHEDULER

77User's Manual U13422EJ1V1UM

Furthermore, the processor low power mode is canceled for the following two reasons.

• Issue of an external interrupt (maskable interrupt, nonmaskable interrupt).

If an interrupt is issued, the relevant interrupt handler is started and the processor is returned from the low

power mode to the normal mode.

However, in an interrupt handler which corresponds to a nonmaskable interrupt, issue of a system call is

prohibited, so when processing is completed, the processor is again switched to the low power mode.

• Reset

In the reset sequence, since operation starts from initialization processing (boot processing), the low power

mode is canceled.

8.5 Implementing a Round-Robin Method

In scheduling based on the priority and FCFS methods, even if tasks have the same priority as that currently

running, they cannot be executed unless that task to which a processing time has been assigned first enters another

state or relinquishes control of the processor.

RX4000 provides system calls such as rot_rdq to implement a scheduling method (round-robin method) that can

overcome the problem incurred by the priority and FCFS methods.

The round-robin method can be implemented as follows:

Conditions

• Task priority

Task A = task B = task C

• State of tasks

Task A: run state

Task B: ready state

Task C: ready state

• Cyclically activated handler X attributes

Activity state: ON

Activation interval: ∆T (unit: basic clock period)

Processing: Rotation of the ready queues (issue of the rot_rdq system call)

(1) Task A is currently running.

The other tasks (B and C) have the same priority as task A, but they cannot be executed unless task A enters

another state or relinquishes control of the processor.

The ready queue becomes as shown in Figure 8-1.

CHAPTER 8 SCHEDULER

78 User's Manual U13422EJ1V1UM

Figure 8-1. Ready Queue State (1)

Task A

Run state

Task B

Ready state

Task C

Ready state

Handler X

Activation wait state

Priority

High

Low

Ready queue

(2) Cyclically activated handler X starts when the predetermined period of time has passed.

In this way, processing of task A is interrupted and cyclically activated handler processing is executed.

The ready queue changes to the state shown in Figure 8-2.

Figure 8-2. Ready Queue State (2)

Task A

Run state

Task B

Ready state

Task C

Ready state

Handler X

Processing execution state

Priority

High

Low

Ready queue

CHAPTER 8 SCHEDULER

79User's Manual U13422EJ1V1UM

(3) Cyclically activated handler X issues a rot_rdq system call.

In this way, task A is queued at the tail end of the ready queue in accordance with its priority level.

The ready queue changes to the state shown in Figure 8-3.

Figure 8-3. Ready Queue State (3)

Task B

Ready state

Task C

Ready state

Handler X

Processing execution state

Task A

Run state

Priority

High

Low

Ready queue

(4) Cyclically activated handler X issues a return instruction and processing is terminated.

In this way, task A changes from the run state to the ready state and task B changes from the ready state to

the run state.

Figure 8-4 shows the ready queue state at this time.

Figure 8-4. Ready Queue State (4)

Task B

Run state

Task C

Ready state

Task A

Ready state

Handler X

Activation wait state

Priority level

High

Low

Ready queue

(5) By issuing the rot_rdq system call from the cyclically activated handler that is started at constant intervals,

that scheduling method (round-robin method) in which tasks are switched every time the specified period (∆T)

elapses is implemented.

Figure 8-5 shows the processing flow when the round-robin method is used.

CHAPTER 8 SCHEDULER

80 User's Manual U13422EJ1V1UM

Figure 8-5. Scheduling When the Round-Robin Method Is Used

 T

 T

 T

Handler X Task A
Priority: Low

Task B
Priority: Low

Task C
Priority: Low

rot_rdq (Priority: Low)

rot_rdq (Priority: Low)

rot_rdq (Priority: Low)

return

return

return

8.6 Scheduling Lock Function

In RX4000 a function is offered which drives the scheduler from a user processing program (task) and which

disables or enables task scheduling processing (dispatch processing).

These functions are implemented by issuing the following system calls from within a task.

• dis_dsp system call

Disables dispatching (task scheduling).

If this system call is issued, control is not passed to another task until the ena_dsp system call is issued.

CHAPTER 8 SCHEDULER

81User's Manual U13422EJ1V1UM

• ena_dsp system call

Enable dispatching (task scheduling).

When this system call is issued, dispatching which was disabled by the issue of the dis_dsp system call is

resumed.

When the dis_dsp system call has been issued, if a system call that requires task scheduling (such as chg_pri

or sig_sem) is issued, RX4000 merely executes processing such as queue operation until the ena_dsp system

call is issued. Actual scheduling is delayed and executed at one time upon the issue of the ena_dsp system

call.

• loc_cpu system call

Disables the acceptance of maskable interrupts, then disables dispatching (task scheduling).

If this system call is issued, control will not be passed to another task or handler until the unl_cpu system call is

issued.

• unl_cpu system call

Enables the acceptance of maskable interrupts, then restarts dispatching (task scheduling).

If a maskable interrupt has occurred between the issue of the loc_cpu system call and that of the unl_cpu

system call, transfer of control to the corresponding interrupt handling (processing of the interrupt handler) is

delayed until unl_cpu system call is issued. Also, if a system call which is necessary for task scheduling

processing (such as chg_pri or sig_sem) is issued during the interval after the loc_cpu system call is issued

and until the unl_cpu system call is issued, only processing of wait queue operations is delayed until the

unl_cpu system call is issued, being performed by batch processing.

The flow of control if scheduling processing is not delayed is shown in Figure 8-6 and the flow of control if the

dis_dsp and loc_cpu system calls are issued is shown in Figure 8-7 and Figure 8-8.

Figure 8-6. Flow of Control if Scheduling Processing is Not Delayed

Task A
Priority: Low

Task B
Priority: High Interrupt handler

wup_tsk

ret_int

slp_tsk
Occurrence of an interrupt

CHAPTER 8 SCHEDULER

82 User's Manual U13422EJ1V1UM

Figure 8-7. Flow of Control if the dis_dsp System Call is Issued

Task A
Priority: Low

Task B
Priority: High Interrupt handler

wup_tsk

ena_dsp

ret_int

slp_tsk

dis_dsp

Occurrence of an interrupt

Figure 8-8. Flow of Control if the loc_cpu System Call is Issued

Task A
Priority: Low

Task B
Priority: High Interrupt handler

unl_cpu

wup_tsk

ret_int

slp_tsk

loc_cpu
Occurrence of an interrupt

CHAPTER 8 SCHEDULER

83User's Manual U13422EJ1V1UM

8.7 Scheduling While the Handler Is Operating

To quickly terminate handlers (interrupt handlers and cyclically activated handlers), RX4000 delays the driving of

the scheduler until processing within the handler terminates.

Therefore, if a system call that requires task scheduling (such as chg_pri or sig_sem) is issued, RX4000 merely

executes processing such as queue operation until the completion of return processing from the handler (such as

ret_int system call or the issue of return instruction). Actual scheduling is delayed and executed at one time upon the

completion of return processing.

Figure 8-9 shows the control flow when a handler issues a system call that requires scheduling.

Figure 8-9. Flow of Control if the wup_tsk System Call is Issued

Task A
Priority: Low

Task B
Priority: High Interrupt handler

wup_tsk

ret_int

slp_tsk
Occurrence of an interrupt

84 User's Manual U13422EJ1V1UM

[MEMO]

85User's Manual U13422EJ1V1UM

CHAPTER 9 SYSTEM MANAGEMENT FUNCTIONS

This chapter describes system management functions performed by RX4000.

9.1 Overview

The following processing is performed by RX4000 in system management.

• System information management

• Extended SVC handler management

• Exception handler management

9.2 System Information Management

Acquires system information about the RX4000 version or system status (task execution conditions, interrupt

enabled/disabled state, etc.) through the issuing of system calls.

9.3 Extended SVC Handler Management

Registers and issues extended SVC handlers, etc.

An extended SVC handler is a function which is defined as an extended system call by the user. However, an

exclusive interface library is necessary for calling an extended SVC handler.

For details, refer to the RX4000 User’s Manual Installation.

9.4 Exception Handler Management

The exception handler is an exclusive exception processing routine which is started immediately when an

exception occurs, and is positioned as an extension of the processing program which issued the exception (task/non-

task).

In RX4000, two types of exception handler interface, one for the CPU exception handler and the other for the

system call exception handler, are offered. However, these handlers can only be registered one at a time for each

application system.

(1) CPU exception handler

The CPU exception handler is a processing routine which is started when a CPU exception occurs.

When a CPU exception occurs, RX4000 transfers CPU exception information with the following structure to

the exception handler as arguments.

CHAPTER 9 SYSTEM MANAGEMENT FUNCTIONS

86 User's Manual U13422EJ1V1UM

• Structure of CPU exception information T_EXCCPUINFO

typedef struct t_exccpuinfo {

ID tskid; /* Task ID No. */

VW cause; /* Cause of exception */

VP pc; /* Virtual address of instruction which caused the exception */

} T_EXCCPUINFO;

However, if a CPU exception occurs in a non-task, 0x0 is transferred as the task ID No.

(2) System call exception handler

The system call exception handler is a processing routine which starts when an exception occurs due to the

issue of a system call.

In RX4000, if a system call exception occurs, system call exception information with the following structure is

transferred to the exception handler as arguments.

• Structure of system call exception information T_EXCSYSINFO

typedef struct t_excsysinfo {

ID tskid; /* Task ID No. */

FN sysno; /* Function code */

ER ercd; /* Error code */

VP pc; /* Virtual address of system call which caused the exception */

} T_EXCSYSINFO;

However, if a system call exception occurs in a non-task, 0x0 is transferred as the task ID No.

9.4.1 Exception handler registration

In RX4000, two types of interface are provided for registering exception handlers, one for “static registration in

system initialization (nucleus initialization section)” and the other for “issuing system calls from inside the processing

program and dynamic registration.”

In RX4000, exception handler registration is securing an area in system memory for managing the exception

handler (management object), then initializing it.

(1) In the case of static registration

In the case of static registration of an exception handler, it is specified when the system is being configured.

In RX4000, during system initialization, exception handler registration processing is performed based on the

information defined in the information file (system information table, system information header file) and

becomes a management object.

(2) In the case of dynamic registration

In the case of dynamic registration, the def_exc system call is issued from inside the processing program

(task/non-task).

In RX4000, when the def_exc system call is issued, exception handler registration processing is performed

based on the information specified in the parameters, and becomes a management object.

87User's Manual U13422EJ1V1UM

CHAPTER 10 SYSTEM INITIALIZATION

This chapter explains the system initialization performed by RX4000.

For details of the system initialization, refer to the RX4000 User’s Manual Installation.

10.1 Overview

System initialization consists of initializing the hardware required by RX4000, as well as initializing the software.

Namely, in RX4000, the processing performed immediately after the system has been started is system

initialization.

Figure 10-1 shows the flow of system initialization.

Figure 10-1. Flow of System Initialization

VR4100 Series reset entry

Boot processing

Nucleus

Scheduler Initial task

Hardware
initialization section

Nucleus
initialization section

Software
initialization section

10.2 Boot Processing

Boot processing is the first function executed in system initialization.

Boot processing involves the following:

• Setting of the gp registers

• Initialization of a memory area without initial values

• Calling of the hardware initialization section

• Transfer of control to the nucleus initialization section

CHAPTER 10 SYSTEM INITIALIZATION

88 User's Manual U13422EJ1V1UM

10.3 Hardware Initialization Section

The hardware initialization section is a function for initializing the hardware in the execution environment (target

system), and the section performs copying of initialization data. Since other contents are dependent on hardware

configuration of execution environment, the user should describe the hardware initialization section.

10.4 Nucleus Initialization Section

The nucleus initialization section generates and initializes the management objects based on the information (such

as task information or semaphore information) described in the information files (system information table and system

information header file).

The nucleus initialization section performs the following processing:

• Interrupt initialization

• Timer initialization

• Memory pool generation and initialization

• Generation/initialization of management objects

• Activation of an initial task

• Calling of the software initialization section

• Transfer of control to the scheduler

10.5 Software Initialization Section

The software initialization section is a function for arranging the user’s software environment.

The software initialization section performs the following processing:

• Enabling of a clock interrupt

• Returns control to the nucleus initialization section

89User's Manual U13422EJ1V1UM

CHAPTER 11 INTERFACE LIBRARY

This chapter explains the interface library.

For details of the interface library, refer to the RX4000 User’s Manual Installation.

11.1 Overview

In RX4000, an interface library is provided which is positioned midway between the user processing program and

the RX4000 nucleus. The interface library has a function for transferring control after performing setting of each type

of necessary information, etc. for enabling processing by the nucleus.

When a processing program (task/non-task) is written in C, external function format is used to issue a system call

or to call an extended SVC handler. The issue format that the nucleus can understand (nucleus issue format),

however, differs from the external function format.

Then it becomes necessary to carry out the procedure for converting the system call issue format or expanded

SVC handler calling format from the external function format to the nucleus issuing format (interfacing). There is an

interface which performs the role of intermediary between the processing program and the nucleus for each system

call. All these interfaces collected together are called the interface library.

Figure 11-1 shows the positioning of the interface library in RX4000.

Figure 11-1. Positioning of Interface Library

Task

Issue of a system call
External function
format

Interface library

Interface processing
Nucleus issue format

Nucleus

System call processing

By providing an interface library, it becomes easy to separate the nucleus and the user processing program. For

example, even if it becomes necessary to change the user’s processing program after the nucleus body has been

loaded in ROM, it becomes unnecessary to change the ROM where the nucleus body is stored. It also becomes

possible to create it with the load module divided.

In RX4000, an interface library is provided which is compatible with the following cross tools for the VR Series.

• For CodeWarrior (Metroworks Corporation)

• For C Cross MIPE Compiler (Green Hills Software, Inc.)

CHAPTER 11 INTERFACE LIBRARY

90 User's Manual U13422EJ1V1UM

11.2 Processing in the Interface Library

The following processing is performed in the interface library.

• Setting of the necessary information in tables managed by the nucleus.

• Setting the necessary data in registers.

• After setting system call error values (However, errors set in the nucleus are excepted), it returns to the

processing program.

11.3 Types of Interface Library

There are two types of interface library offered with RX4000, one with a function for checking system call

parameters, and one without this function. The type of interface library which will be incorporated is specified during

configuration.

The use of library with the parameter check function always return return values, if the parameters specified when

a system call is issued are incorrect. On the other hand, the use of library without the parameter check function may

not return return values, if the parameters specified when a system call is issued are incorrect.

Utilization of these two library types can be divided in accordance with the use. For example, during debugging, by

use of the library with the parameter check function and by use of the library without the parameter check function

during the actual build-in, improvements in program performance and capacity reductions can be realized.

Remark Errors in which return values are returned with the library which does not have a parameter check

function are marked by “*” in the system call return value column in CHAPTER 12 SYSTEM CALLS.

Caution When the library without the parameter check function is used, if errors occur in which return

values are not returned, the operation of the application system cannot be guaranteed.

91User's Manual U13422EJ1V1UM

CHAPTER 12 SYSTEM CALLS

This chapter describes the system calls supported by RX4000.

12.1 Overview

A system call is a procedure or function for invoking RX4000 service routines from the user’s processing programs

(tasks/non-tasks). The user can use system calls to indirectly manipulate those resources (such as counters and

queues) that are managed directly by RX4000.

RX4000 supports its own six system calls as well as the 68 defined in the µITRON3.0 specifications, thus

enhancing the versatility of application systems.

System calls can be classified into the following eight groups, according to their functions.

(1) Task management system calls (13)

cre_tsk del_tsk sta_tsk ext_tsk exd_tsk

ter_tsk dis_dsp ena_dsp chg_pri rot_rdq

rel_wai get_tid ref_tsk

These system calls are used to manipulate the status of a task.

This group provides functions for creating, activating, terminating, and deleting a task, a function for enabling

and disabling dispatch processing, a function for changing the task priority, a function for rotating a task ready

queue, a function for forcibly releasing a task from the wait state, and a function for referencing the task

status.

(2) Task-associated handler function system calls (5)

vdef_sig vret_sig vsnd_sig vchg_sms vref_sms

This is the group of system calls which perform handler operations associated to tasks.

(3) Task-associated synchronization system calls (7)

sus_tsk rsm_tsk frsm_tsk slp_tsk tslp_tsk

wup_tsk can_wup

These system calls perform synchronous operations associated with tasks.

This group provides a function for placing a task in the suspend state and restarting a suspend task, a

function for placing a task in the wake-up wait state and waking up a task currently in the wake-up wait state,

and another function for canceling a task wake-up request.

CHAPTER 12 SYSTEM CALLS

92 User's Manual U13422EJ1V1UM

(4) Synchronous communication system calls (22)

cre_sem del_sem sig_sem wai_sem preq_sem

twai_sem ref_sem cre_flg del_flg set_flg

clr_flg wai_flg pol_flg twai_flg ref_flg

cre_mbx del_mbx snd_msg rcv_msg prcv_msg

trcv_msg ref_mbx

These system calls are used for the synchronization (exclusive control and queuing) and communication

between tasks.

This group provides a function for manipulating semaphores, a function for manipulating events and flags,

and a function for manipulating mailboxes.

(5) Interrupt management system calls (9)

def_int ret_int ret_wup loc_cpu unl_cpu

dis_int ena_int chg_ims ref_ims

These system calls perform processing that is dependent on the maskable interrupts.

This group provides a function for registering an interrupt handler and subsequently canceling the

registration, a function for returning from a interrupt handler, and a function for setting and changing an

interrupt-enabled level.

(6) Memory pool management system calls (7)

cre_mpl del_mpl get_blk pget_blk tget_blk

rel_blk ref_mpl

These system calls allocate memory.

This group provides a function for creating and deleting a memory pool, a function for getting and releasing a

memory block, and a function for referencing the status of a memory pool.

(7) Time management system calls (6)

set_tim get_tim dly_tsk def_cyc act_cyc

ref_cyc

These system calls perform processing that is dependent on time.

This group provides a function for setting or referencing the system clock, a function for placing a task in the

timeout wait state, a function for registering a cyclically activated handler and subsequently canceling the

registration, and a function for controlling and referencing the state of a cyclically activated handler.

(8) System management system calls (5)

get_ver ref_sys def_svc viss_svc def_exc

These system calls perform processing that varies with the system.

This group provides a function for obtaining version information, a function for referencing the system status,

a function for registering an extended SVC handler and subsequently canceling the registration, and a

function for calling an extended SVC handler.

CHAPTER 12 SYSTEM CALLS

93User's Manual U13422EJ1V1UM

12.2 Calling System Calls

System calls issued from processing programs (tasks/non-tasks) written in C are called as C functions. Their

parameters are passed as arguments.

When issuing system calls from processing programs written in assembly language, set parameters and a return

address according to the function calling rules of the C compiler, used before calling them with the JAL instruction.

Caution RX4000 declares the prototype of a system call in the stdrx.h file. Accordingly, when

issuing a system call from a processing program, the following must be coded to include

the header file:

#include <stdrx.h>

12.3 System Call Function Codes

The system calls supported by RX4000 are assigned function codes conforming to the µITRON3.0 specifications.

Table 12-1 lists the function codes assigned to system codes.

In RX4000, a value of 1 or greater is used when registering an extended SVC handler user described.

Table 12-1. System Call Function Codes

Function code Classified

–256 to –225 RX4000 original system calls

–224 to –5 System calls conforming to the µITRON3.0 specifications

–4 to 0 Reserved by the system

1 or more Extended SVC handler

CHAPTER 12 SYSTEM CALLS

94 User's Manual U13422EJ1V1UM

12.4 Data Types of Parameters

The system calls supported by RX4000 have parameters that are defined based on data types that conform to the

µITRON3.0 specifications.

Table 12-2 lists the data types of the parameters specified upon the issue of a system call.

Table 12-2. Data Types of Parameters

Macro Data type Description

B char Signed 8-bit integer

H short Signed 16-bit integer

W long Signed 32-bit integer

UB unsigned char Unsigned 8-bit integer

UH unsigned short Unsigned 16-bit integer

UW unsigned long Unsigned 32-bit integer

VB char Variable data type value (8 bits)

VH short Variable data type value (16 bits)

VW long Variable data type value (32 bits)

*VP void Variable data type value (pointer)

(*FP) () void Program start address

(*VFP) () int Program start address (with return value)

INT int Signed 32-bit integer (processor width)

UINT unsigned int Unsigned 32-bit integer (processor width)

FN short Function code

ID short ID number of object

BOOL_ID short Pool value or task ID No.

HNO short Handler number

ATR unsigned short Object attribute

ER long Error code

PRI short Task priority

TMO long Wait time

CYCTIME long Cyclically activated time interval (residual time)

DLYTIME long Delay time

CHAPTER 12 SYSTEM CALLS

95User's Manual U13422EJ1V1UM

12.5 Parameter Value Range

Some of the system call parameters supported by RX4000 have a range of permissible values, while others allow

the use of only system reserved specific values.

Table 12-3 lists the ranges of parameter values that can be specified upon the issue of a system call.

Table 12-3. Ranges of Parameter Values

Parameter type Value range

Task ID No. 0x0 to max_cnt (0x7FFF)

Semaphore ID No. 0x0 to max_cnt (0x7FFF)

Event flag ID No. 0x0 to max_cnt (0x7FFF)

Mailbox ID No. 0x0 to max_cnt (0x7FFF)

Memory pool ID No. 0x0 to max_cnt (0x7FFF)

Specification number of cyclically activated handler 0x1 to max_cnt (0x7FFF)

Function code of extended SVC handler 0x1 to max_cnt (0x7FFF)

Interrupt handler specification No. 0x0 to 0x7

Task priority 0x8 to max_cnt (0xFC)

Message priority 0x1 to 0x7FFF

Maximum number of semaphore resources 0x1 to max_cnt (0x7FFF FFFF)

Wait time –0x1 to 0x7FFF FFFF

Activation time interval of cyclically activated handler 0x1 to 0x7FFF FFFF

Delay time 0x1 to 0x7FFF FFFF

System clock time 0x0 to 0x7FFF FFFF FFFF

Task stack size 0x0 to 0x7FFF FFFF

Memory pool size 0x1 to 0x7FFF FFFF

Memory block size 0x1 to 0x7FFF FFFF

Remarks max_cnt: A value specified during system configuration.

Values in () indicate the maximum value that can be set by the user during configuration.

CHAPTER 12 SYSTEM CALLS

96 User's Manual U13422EJ1V1UM

12.6 System Call Return Values

The system call return values supported by RX4000 are based on the µITRON3.0 specifications.

Table 12-4 lists the system call return values.

Table 12-4. System Call Return Values

Macro Value Description

E_OK 0 Normal termination

E_NOMEM –10 An area for objects cannot be allocated.

E_NOSPT –11 A system call with the CF not defined, or an unregistered extended SVC

handler was called.

E_RSATR –24 Invalid object attribute specification

E_PAR –33 Invalid parameter specification

E_ID –35 Invalid ID number specification

E_NOEXS –52 No relevant object exists.

E_OBJ –63 The status of the specified object is invalid.

E_OACV –66 An unauthorized ID number was specified.

E_CTX –69 The state in which a system call is issued is invalid.

E_QOVR –73 A count exceeded 127.

E_DLT –81 A relevant object was deleted.

E_TMOUT –85 Timeout

E_RLWAI –86 A wait state was forcibly canceled by the rel_wai system call.

EV_SIGNAL –225 A wait state was forcibly canceled by the vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

97User's Manual U13422EJ1V1UM

12.7 System Call Extension

RX4000 supports the extension of system calls (functions coded by users are registered in the nucleus as

extended system calls).

No limitations are imposed on those functions registered as extended SVC handler; standard system calls (system

calls supported by RX4000) can also be included. If, however, standard system calls that can be issued only in the

task state are included, the issue state of the extended SVC handler is limited to “issuable only from task.”

Extended SVC handler are positioned as user-defined system calls, despite their having properties similar to tasks.

That is, like standard system calls, the scheduler is started upon the termination of processing and an optimum task is

selected.

If a standard system call is included in an extended SVC handler, note that control may pass to another task that is

currently processing an extended SVC handler because the scheduler is also started upon the termination of a

standard system call.

12.8 Explanation of System Calls

The following explains the system calls supported by RX4000, in the format shown below.

CHAPTER 12 SYSTEM CALLS

98 User's Manual U13422EJ1V1UM

Figure 12-1. System Call Description Format

I/O Parameter Description

Overview5

C format6

Parameter(s)7

Explanation8

Return value(s)9

1 2 3

4

()

CHAPTER 12 SYSTEM CALLS

99User's Manual U13422EJ1V1UM

(1) Name

Indicates the name of the system call.

(2) Semantics

Indicates the source of the name of the system call.

(3) Function code

Indicates the function code of the system call.

(4) Origin of system call

Indicates where the system call can be issued.

Task: The system call can be issued only from a task.
Non-task: The system call can be issued only from a non-task (interrupt handler, and

cyclically activated handler).
Task/non-task: The system call can be issued from both a task and non-task.
Task-associated handler Can be issued from a task-associated handler only.
Interrupt handler: The system call can be issued only from a interrupt handler.
Cyclically activated handler: The system call can be issued only from a cyclically activated handler.

(5)

Outlines the functions of the system call.

(6)

Indicates the format to be used when describing a system call to be issued in C.

(7)

System call parameters are explained in the following format.

I/O Parameter Description

A B C

A: Parameter classification
I ... Parameter input to RX4000

O ... Parameter output from RX4000

B: Parameter data type

C: Description of parameter

8

Explains the function of a system call.

9

Indicates a system call’s return value using a macro and value.

Return value marked with an asterisk (*): Value returned by both RX4000 having and that not
having the parameter check function

Return value not marked with an asterisk (*): Value returned only by RX4000 having the parameter
check function

Overview

C format

Parameter(s)

Explanation

Return value

CHAPTER 12 SYSTEM CALLS

100 User's Manual U13422EJ1V1UM

12.8.1 Task management system calls

This section explains that group of system calls (task management system calls) that are used to manipulate the

task status.

Table 12-5 lists the task management system calls.

Table 12-5. Task Management System Calls

System call Function

cre_tsk Generates another task.

del_tsk Deletes another task.

sta_tsk Activates another task.

ext_tsk Terminates the task which issued the system call.

exd_tsk Terminates the task which issued the system call, then deletes it.

ter_tsk Forcibly terminates another task.

dis_dsp Disables dispatch processing.

ena_dsp Enable dispatch processing.

chg_pri Change the priority of a task.

rot_rdq Rotates a task ready queue.

rel_wai Forcibly releases another task from wait state.

get_tid Acquires ID number of task which issued the system call.

ref_tsk Acquires task information.

CHAPTER 12 SYSTEM CALLS

101User's Manual U13422EJ1V1UM

Create Task (–17)

 cre_tsk
Task

Overview

Generates another task.

C format

• When an ID number is specified

#include <stdrx.h>

ER ercd = cre_tsk(ID tskid, T_CTSK *pk_ctsk);

• When an ID number is not specified

#include <stdrx.h>

ER ercd = cre_tsk(ID_AUTO, T_CTSK *pk_ctsk, ID *p_tskid);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

I T_CTSK *pk_ctsk; Activation address of packet storing the task creation information

O ID *p_tskid; Address of area used to store an ID number

• Structure of task creation information T_CTSK

typedef struct t_ctsk {

VP exinf; /* Extended information */

ATR tskatr; /* Task attribute */

FP task; /* Task activation address */

PRI itskpri; /* Task initial priority (assigned upon activation) */

INT stksz; /* Task stack size */

VP gp; /* Specific GP register value for task */

} T_CTSK;

Explanation

RX4000 supports two types of interfaces for task creation: one for which an ID number is specified for task
creation, and another for which an ID number is not specified.

• When an ID number is specified

A task having an ID number specified in tskid is created based on the information specified in pk_ctsk.

The specified task changes from the non-existent state to the dormant state, in which it is managed by

RX4000.

CHAPTER 12 SYSTEM CALLS

102 User's Manual U13422EJ1V1UM

• When an ID number is not specified

A task is created based on the information specified in pk_ctsk.

The specified task changes from the non_existent state to the dormant state, in which it is managed by

RX4000.

An ID number is allocated by RX4000 and the allocated ID number is stored in the area specified in p_tskid.

The following describes task creation information in detail.

exinf ... Extended information

exinf is an area for storing user-specific information on a specified task. It can be used as

necessary by the user.

Information set in exinf can be acquired dynamically by issuing the ref_tsk system call from a

processing program (task/non-task).

tskatr ... Task attribute

Bit 0 .. Task language

TA_ASM(0): Assembly language

TA_HLNG(1): C

Bit 10 .. Existence of specific GP register value specification

TA_DPID(1): A specific GP register value is specified.

Bit 12 .. Maskable interrupt acceptance enabled or disabled

TA_ENAINT(0): When a task is activated, the acceptance of maskable

interrupts is enabled.

TA_DISINT(1): When a task is activated, the acceptance of maskable

interrupts is disabled.

Task language

015

tskatr

8 7

Existence of specific GP register value specification

Maskable interrupt acceptance enabled or disabled

task ... Task activation address

itskpri ... Task initial priority (assigned upon activation)

stksz ... Stack size of task (bytes)

gp ... Specific GP register value for task

Remark When the value 1 of bit 10 of tskatr is other than TA_DPID, the contents of gp are meaningless.

CHAPTER 12 SYSTEM CALLS

103User's Manual U13422EJ1V1UM

Return value

*E_OK 0 Normal termination

*E_NOMEM –10 An area for task management block cannot be allocated.

E_RSATR –24 Invalid specification of attribute tskatr

E_PAR –33 Invalid parameter specification

− The start address of packet storing task creation information is invalid (pk_ctsk =
0).

− Invalid activation address specification (task = 0)

− Invalid initial priority specification (itskpri ≤ 0, maximum priority < itskpri)

− The address of the area used to store an ID number is invalid (p_tskid = 0)

(When a task is created with no ID number specified)

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_OBJ –63 A task having a specified ID number is created.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

E_CTX –69 The cre_tsk system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

104 User's Manual U13422EJ1V1UM

Delete Task (–18)

 del_tsk
Task

Overview

Deletes another task.

C format

#include <stdrx.h>

ER ercd = del_tsk(ID tskid);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call changes the task specified in tskid from the dormant state to the non-existence state. This
releases the task from the control of RX4000.

Furthermore, if delete your own task, issue the exd_tsk system call.

Caution This system call does not queue delete requests. Accordingly, if a specified task is not in

the dormant state, this system call returns E_OBJ as a return value.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is not in the dormant state.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

E_CTX –69 The del_tsk system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

105User's Manual U13422EJ1V1UM

Start Task (–23)

 sta_tsk
Task/nontask

Overview

Activates another task.

C format

#include <stdrx.h>

ER ercd = sta_tsk(ID tskid, INT stacd);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

I INT stacd; Activation code

Explanation

This system call changes the task specified with tskid from the dormant state to the ready state.

The specified task is scheduled by RX4000.

For stacd, specify the activation code to be passed to the specified task. The specified task can be manipulated
by handling the activation code as if it were a function parameter.

Caution This system call does not queue activation requests. Accordingly, when a specified task is

not in the dormant state, this system call returns E_OBJ as the return value.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is not in the dormant state.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

106 User's Manual U13422EJ1V1UM

Exit Task (–21)

 ext_tsk
Task

Overview

Terminates the task which issued the system call.

C format

#include <stdrx.h>

void ext_tsk(void);

Parameter

None.

Explanation

This system call changes the state of the task from the run state to the dormant state.

The task is excluded from RX4000 scheduling.

Remark 1. This system call initializes “task creation information”, specified at task creation (at configuration or

upon the issue of a cre_tsk system call).

2. If a task is coded in assembly language, code the following to terminate the task.

jr _ext_tsk

Cautions 1. If this system call is issued from a non-task or in the dispatch disabled state, its operation is

not guaranteed.

2. This system call does not release those resources (semaphore count, memory block, etc.)

that were acquired before the termination of the task. Accordingly, the user has to release

such resources before issuing this system call.

Return value

None.

CHAPTER 12 SYSTEM CALLS

107User's Manual U13422EJ1V1UM

Exit and DeleteTask (–22)

 exd_tsk
Task

Return value

Terminates the task which issued the system call, then deletes it.

C format

#include <stdrx.h>

void exd_tsk(void);

Parameter

None.

Explanation

This system call changes the task from the run state to the non-existent state.

This releases the task from the control of RX4000.

Remark If a task is coded in assembly language, perform coding as follows to terminate the task:

jr _ext_tsk

Cautions 1. If this system call is issued from a non-task or in the dispatch disabled state, its operation is

not guaranteed.

2. This system call does not release those resources (semaphore count, memory block, etc.)

that were acquired before the termination of the task. Accordingly, the user has to release

such resources before issuing this system call.

Return value

None.

CHAPTER 12 SYSTEM CALLS

108 User's Manual U13422EJ1V1UM

Terminate Task (–25)

 ter_tsk
Task

Overview

Forcibly terminates another task.

C format

#include <stdrx.h>

ER ercd = ter_tsk(ID tskid);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call forcibly changes the state of the task specified in tskid to the dormant state.

However, if a task-associated handler is registered in the object task and the tasks force end processing is not

masked, the task-associated handler will start. The handler will operate as a part of the task, but it has a higher

priority level than other tasks.

Remark This system call initializes the “task creation information” specified at task creation (at configuration or

upon the issue of a cre_tsk system call).

Cautions 1. This system call does not queue termination requests. Accordingly, if a specified task is

not in the ready, wait, suspend, or wait_suspend state, this system call returns E_NOEXS or

E_OBJ as the return value.

2. This system call does not release those resources (semaphore count, memory block, etc.)

that were acquired before the termination of the specified task. Therefore, release such

resources at the user side or within the task-associated handler before issuing this system

call.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is that task which issued this system call, or the task is in the

dormant state.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

E_CTX –69 The ter_tsk system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

109User's Manual U13422EJ1V1UM

Disable Dispatch (–30)

 dis_dsp
Task

Overview

Disables dispatch processing.

C format

#include <stdrx.h>

ER ercd = dis_dsp(void);

Parameter

None.

Explanation

This system call disables dispatch processing (task scheduling).

Dispatch processing is disabled until the ena_dsp system call is issued after this system call has been issued.

If a system call such as chg_pri or sig_sem is issued to schedule tasks after the dis_dsp system call is issued but

before the ena_dsp system call is issued, RX4000 merely performs operations on a queue and delays actual

scheduling until the ena_dsp system call is issued, at which time the processing is performed at one time.

Cautions 1. This system call does not queue disable requests. Accordingly, if the dis_dsp system call

has already been issued and dispatch processing has been disabled, no processing is

performed and a disable request is not handled as an error.

2. If a system call such as wait_sem and wai_flg is issued, causing the state of the task to

change to the wait state after the dis_dsp system call is issued but before the ena_dsp

system call is issued, RX4000 returns E_CTX as the return value, regardless of whether the

wait conditions are satisfied.

Return value

*E_OK 0 Normal termination

*E_CTX –69 Context error

− The dis_dsp system call was issued from a non-task.

− The dis_dsp system call was issued after the loc_cpu system call was issued.

CHAPTER 12 SYSTEM CALLS

110 User's Manual U13422EJ1V1UM

Enable Dispatch (–29)

 ena_dsp
Task

Overview

Enable dispatch processing.

C format

#include <stdrx.h>

ER ercd = ena_dsp(void);

Parameter

None.

Explanation

This system call enables dispatch processing (task scheduling).

If a system call such as chg_pri and sig_sem is issued to schedule tasks after the dis_dsp system call is issued

but before the ena_dsp system call is issued, RX4000 merely performs operations on a queue and delays actual

scheduling until the ena_dsp system call is issued, at which time the processing is performed at one time.

Caution This system call does not queue resume requests. Accordingly, if the ena_dsp system call has

already been issued and dispatch processing has been resumed, no processing is performed.

The resume request is not handled as an error.

Return value

*E_OK 0 Normal termination

*E_CTX –69 Context error

− The ena_dsp system call was issued from a non-task.

− The ena_dsp system call was issued after the loc_cpu system call had been
issued.

CHAPTER 12 SYSTEM CALLS

111User's Manual U13422EJ1V1UM

Change Priority (–27)

 chg_pri
Task/nontask

Overview

Changes the priority of a task.

C format

#include <stdrx.h>

ER ercd = chg_pri(ID tskid, PRI tskpri);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

TSK_SELF(0): Task which issued this system call

Value: Task ID number

I PRI tskpri; Task priority

TPRI_INI(0): Task initial priority

Value: Task priority

Explanation

This system call changes the value of the task priority specified in tskid to that specified in tskpri.

If the object task is in the run state or the ready state, this system call executes priority change processing and

queues the object task at the tail end of the ready queue in accordance with its priority.

Remarks 1. If a specified task is placed in a queue according to its priority, the issue of the chg_pri system call

may change the wait order.

Example When three tasks (task A: priority 10, task B: priority 11, task C: priority 12) are placed

in a semaphore queue according to their priority, and if the priority of task B is changed

from 11 to 9, then the wait order of the queue changes as shown below.

Semaphore

Semaphore Task A
Priority: 10

Task A
Priority: 10

Task B
Priority: 11

Task C
Priority: 12

Task C
Priority: 12

Task B
Priority: 9

chg_pri (Task B, 9)

CHAPTER 12 SYSTEM CALLS

112 User's Manual U13422EJ1V1UM

Remarks 2. The value specified by tskpri is active until the next chg_pri system call is issued, or until the object

task changes to the dormant state.

3. The task priority in RX4000 becomes higher as its value decreases.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid priority specification (tskpri < 0, maximum priority < tskpri)

E_ID –35 Invalid ID number specification

− maximum number of tasks created < tskid

− When the chg_pri system call was issued from a non-task, TSK_SELF was
specified in tskid.

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is in the dormant state.

E_OACV –66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

113User's Manual U13422EJ1V1UM

Rotate Ready Queue (–28)

 rot_rdq
Task/nontask

Overview

Rotates a task ready queue.

C format

#include <stdrx.h>

ER ercd = rot_rdq(PRI tskpri);

Parameter

I/O Parameter Description

I PRI tskpri; Task priority

TPRI_RUN(0): Priority of task in run state

Value: Task priority

Explanation

This system call queues the first task in a ready queue to the end of the queue according to the priority specified in
tskpri.

Notes 1. If no task of a specified priority exists in a ready queue, this system call performs no processing. This

is not regarded as an error.

2. By issuing the rot_rdq system call at regular intervals, round-robin scheduling can be achieved.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid priority specification (tskpri < 0, maximum priority < tskpri)

CHAPTER 12 SYSTEM CALLS

114 User's Manual U13422EJ1V1UM

Release Wait (–31)

 rel_wai
Task/nontask

Overview

Forcibly releases another task from the wait state.

C format

#include <stdrx.h>

ER ercd = rel_wai(ID tskid);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call forcibly releases the task, specified in tskid, from the wait state.

The specified task is excluded from a queue, and its states changes from the wait state to the ready state, or from

the wait_suspend state to the suspend state.

For a task released from the wait state by the rel_wai system call, E_RLWAI is returned as the return value of the

system call (slp_tsk, wai_sem, etc.) that caused transition to the wait state.

Caution The rel_wai system call does not release the suspend state.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is in neither the wait nor wait_suspend state.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

115User's Manual U13422EJ1V1UM

Get Task Identifier (–24)

 get_tid
Task/nontask

Overview

Acquires a task ID number.

C format

#include <stdrx.h>

ER ercd = get_tid(ID *p_tskid);

Parameter

I/O Parameter Description

O ID *p_tskid; Address of an area used to store an ID number

Explanation

This system call stores, in the area specified in p_tskid, the ID number of the task which issued this system call.

Caution If this system call is issued from a non-task, FALSE (0) is stored in the area specified in p_tskid.

Return value

*E_OK 0 Normal termination

 E_PAR –33 The address of the area used to store an ID number is invalid (p_tskid = 0).

CHAPTER 12 SYSTEM CALLS

116 User's Manual U13422EJ1V1UM

Refer Task Status (–20)

 ref_tsk
Task/nontask

Overview

Acquires task information.

C format

#include <stdrx.h>

ER ercd = ref_tsk(T_RTSK *pk_rtsk, ID tskid);

Parameters

I/O Parameter Description

O T_RTSK *pk_rtsk; Start address of packet used to store task information

I ID tskid; Task ID number

TSK_SELF(0): Task which issued this system call

Value: Task ID number

• Structure of task information T_RTSK

typedef struct t_rtsk {

VP exinf; /* Extended information */

PRI tskpri; /* Current priority */

UNIT taskstat; /* Task status */

UNIT tskwait; /* Wait cause */

ID wid; /* ID number of wait object */

INT wupcnt; /* Number of wake-up requests */

INT suscnt; /* Number of suspend requests */

} T_RTSK;

Explanation

This system call stores the task information (extended information, current priority, etc.) specified in tskid in the

packet specified in pk_rtsk.

The following describes the task information in detail.

exinf ... Extended information

tskpri ... Current priority

CHAPTER 12 SYSTEM CALLS

117User's Manual U13422EJ1V1UM

tskstat ... Task state

TTS_RUN(H’01): run state

TTS_RDY(H’02): ready state

TTS_WAI(H’04): wait state

TTS_SUS(H’08): suspend state

TTS_WAS(H’0c): wait_suspend state

TTS_DMT(H’10): dormant state

tskwait ... Type of wait state

TTW_SLP(H’0001): Wake-up wait state

TTW_DLY(H’0002): Timeout wait state

TTW_FLG(H’0010): Event flag wait state

TTW_SEM(H’0020): Resource wait state

TTW_MBX(H’0040): Message wait state

TTW_MPL(H’1000): Memory block wait state

wid ... ID number of wait object (semaphore, event, flag, etc.)

wupcnt ... Number of wake-up requests

suscnt ... Number of suspend requests

Remarks 1. When the value of tskstat is other than TTS_WAI or TTS_WAS, the contents of tskwait will be

undefined.

2. When the value of tskwait is other than TTW_FLG, TTW_SEM, TTW_MBX, or TTW_MPF, the

contents of wid will be undefined.

Return value

*E_OK 0 Normal termination

E_PAR –33 The start address of the packet used to store task information is invalid (pk_rtsk = 0)

E_ID –35 Invalid ID number specification

− Maximum number of tasks created < tskid

− When the ref_tsk system call was issued from a non-task, TSK_SELF was
specified in tskid.

*E_NOEXS –52 The specified task does not exist.

E_OACV –66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

118 User's Manual U13422EJ1V1UM

12.8.2 Task-associated handler function system calls

This section explains that group of system call (task-associated handler function system calls) that are associated

to tasks and perform handler operations.

Table 12-6 lists the task-associated handler function system calls.

Table 12-6. Task-Associated Handler Function System Calls

System call Function

vdef_sig Registers and cancels registration of task-associated handlers.

vsnd_sig Sends signals.

vchg_sms Changes signal masks.

vref_sms Acquires signal masks.

CHAPTER 12 SYSTEM CALLS

119User's Manual U13422EJ1V1UM

Define Signal Handler (–241)

 vdef_sig
Task

Overview

Registers and cancels registration of task-associated handlers.

C format

#include <stdrx.h>

ER ercd = vdef_sig(T_CMPL *pk_dsig);

Parameters

I/O Parameter Description

O T_DSIG *pk_dsig; Start address of the packet where the task-associated handler’s registration

information is stored.

• Structure of task-associated handler registration information T_DSIG

typedef struct t_dsig {

ATR sigatr; /* Task-associated handler attribute */

FP sighdr; /* Task-associated handler activate address */

UINT isigms; /* Signal mask value during task-associated handler

registration

*/

VP gp; /* Specific GP register value for task-associated handler */

} T_DSIG;

Explanation

Registers a task-associated handler which starts when an external occurrence (signal) is communicated to the

task based on the information specified by pk_dsig.

Detailed task-associated handler registration information is shown below.

sigatr ... Attribute of task-associated handler

Bit 0 .. Language in which the task-associated handler is coded

TA_ASM(0): Assembly language

TA_HLNG(1): C

Bit 10 .. Existence of specific GP register value specification

TA_PID(1): Specifies a specific GP register value

Language in which the
task-associated handler is coded

015

sigatr

8 7

Existence of specific GP register value specification

CHAPTER 12 SYSTEM CALLS

120 User's Manual U13422EJ1V1UM

sighdr ... Task-associated handler activate address

isigms ... Signal mask value during task-associated handler registration

gp ... Specific GP register value for task-associated handler

If a task-associated handler is already registered when this system call is registered, it is not treated as an error,

but the task-associated handler specified by this system call is newly registered.

Also, if NADR (-1) is set in the area specified by pk_dsig when this system call is issued, the task-associated

handler’s registeration is canceled.

Remark When the value 1 of bit 10 of sigatr is other than TA_PID, the contents of gp are meaningless.

Return value

*E_OK 0 Normal termination

E_RSATR –24 Invalid specification of attribute sigatr.

E_PAR –33 Invalid parameter specification.

− The start address of the packet storing task-associated handler registration
information is invalid (pk_dsig = 0).

− Invalid activation address specification (sighdr = 0).

E_CTX –69 The vdef_sig system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

121User's Manual U13422EJ1V1UM

Send Signal (–247)

 vsnd_sig
Task/nontask

Overview

Sends signals.

C format

#include <stdrx.h>

ER ercd = vsnd_sig(ID tskid, UINT ssigno);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

I UINT ssigno; Signal number of the sending signal.

Explanation

This sends the signals specified by ssigno to the task specified by tskid. If a task-associated handler is defined in

the object task, and if the specified signal is not masked, the task-associated handler activates.

In this way, the object task-associated handler becomes an object of RX4000 scheduling. Also, if the object task

is in the wait state at this time (resources wait state, message wait state, etc.), it is forcibly released.

An EV_SIGNAL is returned to a task for which the wait state (resources wait state, message wait state, etc.) was

released by issue of the vsnd_sig system call as the return value of a system call (wai_sem, rcv_msg, etc.) which

becomes an opportunity for that task to change to the wait state again.

The object task-associated handler can operate handling ssigno in the same way as a function parameter. This

parameter can be used to judge signals in the task-associated handler.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid signal number specification (ssigno<4, 7< ssigno, ssigno<12, 31< ssigno)

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid).

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is in the dormant state.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

122 User's Manual U13422EJ1V1UM

Change Signal Mask (–243)

 vchg_sms
Task

Overview

Changes the signal mask.

C format

#include <stdrx.h>

ER ercd = vchg_sms(UINT sigms);

Parameter

I/O Parameter Description

I UINT sigms; Signal mask

Explanation

Changes the signal mask of the task to the signal mask specified by sigms.

In RX4000, there are 32 levels of signal factors and enable or disable can be specified for each respective level. If

each signal is enabled, 0 is set and if each is disabled, 1 is set.

Return value

*E_OK 0 Normal termination

E_CTX –69 The vchg_sms system call was issued from a non-task

CHAPTER 12 SYSTEM CALLS

123User's Manual U13422EJ1V1UM

Refer Signal Mask (–244)

 vref_sms
Task

Overview

Acquires a signal mask.

C format

#include <stdrx.h>

ER ercd = vref_sms(UINT *p_sigms);

Parameter

I/O Parameter Description

I UINT *p_sigms; Address of the area where the signal mask is stored.

Explanation

Stores the signal mask of its own task in the address specified by p_sigms.

Return value

*E_OK 0 Normal termination

E_PAR –33 The address of the area used to store a signal mask is invalid (p_sigms = 0).

E_CTX –69 The vref_sms system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

124 User's Manual U13422EJ1V1UM

12.8.3 Task-associated synchronization system calls

This section explains a group of system calls (task-associated synchronization system calls) that perform the

synchronous operations associated with tasks.

Table 12-7 lists the task-associated synchronization system calls.

Table 12-7. Task-Associated Synchronization System Calls

System call Function

sus_tsk Places another task in the suspend state.

rsm_tsk Resumes a task in the suspend state.

frsm_tsk Forcibly resumes a task in the suspend state.

slp_tsk Places the task which issued this system macro into the wake-up wait state.

tslp_tsk Places the task which issued this system macro (with timeout) into the wake-up wait state.

wup_tsk Wakes up another task.

can_wup Cancels a request to wake up a task.

CHAPTER 12 SYSTEM CALLS

125User's Manual U13422EJ1V1UM

Suspend Task (–33)

 sus_tsk
Task/nontask

Overview

Places another task in the suspend state.

C format

#include <stdrx.h>

ER ercd = sus_tsk(ID tskid);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call issues a suspend request to the task specified in tskid (the suspend request counter is

incremented by 0x1).

If a specified task is in the ready or wait state when this system call is issued, this system call changes the

specified task from the ready state to the suspend state or from the wait state to the wait_suspend state, and also

issues a suspend request (increments the suspend request counter).

Caution The suspend request counter managed by RX4000 consists of seven bits. Therefore, once the

number of suspend requests exceeds 127, the sus_tsk system call returns E_QOVR as a return

value without incrementing the suspend request counter.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is in the dormant state, or the task is its own task.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

*E_QOVR –73 The number of suspend requests exceeded 127.

CHAPTER 12 SYSTEM CALLS

126 User's Manual U13422EJ1V1UM

Resume Task (–35)

 rsm_tsk
Task/nontask

Overview

Resumes a task in the suspend state.

C format

#include <stdrx.h>

ER ercd = rsm_tsk(ID tskid);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call cancels only one of the suspend requests that are issued to the task specified in tskid (the

suspend request counter is decremented by 0x1).

If the issue of this system call causes the suspend request counter for the specified task to be 0x0, this system call

changes the task from the suspend state to the ready state or from the wait_suspend state to the wait state.

Caution This system call does not queue cancel requests. Accordingly, if a specified task is not in the

suspend or wait_suspend state, this system call returns E_OBJ as a return value without

decrementing a suspend request counter.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is in the suspend or wait_suspend state.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

127User's Manual U13422EJ1V1UM

Force Resume Task (–36)

 frsm_tsk
Task/nontask

Overview

Forcibly resumes a task in the suspend state.

C format

#include <stdrx.h>

ER ercd = frsm_tsk(ID tskid);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call cancels all the suspend requests issued to the task specified in tskid (the suspend request

counter is set to 0x0).

The specified task changes from the suspend state to the read state or from the wait_suspend state to the wait

state.

Caution This system call does not queue cancel requests. Accordingly, if a specified task is in neither

the suspend or wait_suspend state, this system call returns E_OBJ as the return value without

setting the suspend request counter.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is in the suspend or wait_suspend state.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

128 User's Manual U13422EJ1V1UM

Sleep Task (–38)

 slp_tsk
Task

Overview

Places the task which issued this system macro into the wake-up wait state.

C format

#include <stdrx.h>

ER ercd = slp_tsk(void);

Parameter

None.

Explanation

This system call cancels only one of the wake-up requests issued to the task (the wake-up request counter is

decremented by 0x1).

If the wake-up request counter for the task is 0x0 when this system call is issued, this system call changes the

state of the task from the run state to the wait state (wake-up wait state) without canceling a wake-up request (the

wake-up request counter is decremented).

The wake-up wait state is released when a wup_tsk, ret_wup, or rel_wai system call is issued. The task changes

from the wake-up wait state to the ready state.

Return value

*E_OK 0 Normal termination

E_CTX –69 Context error

− The slp_tsk system call was issued from a non-task.

− The slp_tsk system call was issued in the dispatch disabled state.

*E_RLWAI –86 The wake-up wait state was forcibly released by the rel_wai system call.

EV_SIGNAL –225 The wake-up wait state was forcibly released by the vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

129User's Manual U13422EJ1V1UM

Sleep Task with Timeout (–37)

 tslp_tsk
Task

Overview

Places the task which issued this system macro (with timeout) into the wake-up wait state.

C format

#include <stdrx.h>

ER ercd = tslp_tsk(TMO tmout);

Parameter

I/O Parameter Description

I TMO tmount; Wait time

TMO_POL(0) Quick return

TMO_FEVR(–1): Permanent wait

Value: Wait time

Explanation

This system call cancels only one of the wake-up requests issued to the task (the wake-up request counter is

decremented by 0x1).

If the wake-up request counter for the task is 0x0 when this system call is issued, this system call changes the

task from the run state to the wait state (wake-up wait state) without canceling a wake-up request (the wake-up

request counter is decremented).

Furthermore, the wake_up wait state is canceled if the wait time specified by tmout passes or if the wup_tsk,

ret_wup, or rel_wai system call is issued, and its own task changes to the ready state.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid wait time specification (tmout < TMO_FEVR)

E_CTX –69 Context error

− This system call was issued from a non-task.

− This system call was issued in the dispatch disabled state.

*E_TMOUT –85 The wait time has elapsed.

*E_RLWAI –86 The wake-up wait state was forcibly released by a rel_wai system call.

EV_SIGNAL –225 The wake-up wait state was forcibly released by a vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

130 User's Manual U13422EJ1V1UM

Wakeup Task (–39)

 wup_tsk
Task/nontask

Overview

Wakes up another task.

C format

#include <stdrx.h>

ER ercd = wup_tsk(ID tskid);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call issues a wake-up request to the task specified in tskid (the wake-up request counter is

incremented by 0x1).

If the specified task is in the wait state (wake-up wait state) when this system call is issued, this system call

changes the task from the wake-up wait state to the ready state without issuing a wake-up request (the wake-up

request counter is incremented).

Caution A wake-up request counter managed by RX4000 consists of 7-bit width. Therefore, when the

number of wake-up requests exceeds 127, the wup_tsk system call returns E_QOVR as the

return value without incrementing the wake-up request counter.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of tasks created < tskid)

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is in the dormant state, or the task is its own task.

E_OACV –66 An unauthorized ID number (tskid ≤ 0) was specified.

*E_QOVR –73 The number of wake-up requests exceeded 127.

EV_SIGNAL –225 The wake-up wait state was forcibly released by a vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

131User's Manual U13422EJ1V1UM

Cancel Wakeup Task (–40)

 can_wup
Task/nontask

Overview

Cancels a request to wake up a task.

C format

#include <stdrx.h>

ER ercd = can_wup(INT *p_wupcnt, ID tskid);

Parameter

I/O Parameter Description

O INT *p_wupcnt; Address of area used to store the number of wake-up requests

I ID tskid; Task ID number

TSK_SELF(0): Local task

Value: Task ID number

Explanation

This system call cancels all the wake-up requests issued to the task specified in tskid (the wake-up request

counter is set to 0x0).

The number of wake-up requests canceled by this system call is stored in the area specified in p_wupcnt.

Return value

*E_OK 0 Normal termination

E_PAR –33 The address of the area used to store the number of wake-up requests is invalid

(p_wupcnt = 0)

E_ID –35 Invalid ID number specification

− Maximum number of tasks created < tskid

− When the can_wup system call was issued from a non-task, TSK_SELF was
specified in tskid.

*E_NOEXS –52 The specified task does not exist.

*E_OBJ –63 The specified task is in the dormant state.

E_OACV –66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

132 User's Manual U13422EJ1V1UM

12.8.4 Synchronous communication system calls

This section explains those system calls that are used for synchronization (exclusive control and queuing) and

communication between tasks.

Table 12-8 lists the synchronous communication system calls.

Table 12-8. Synchronous Communication System Calls

System call Function

cre_sem Generates a semaphore.

del_sem Deletes a semaphore.

sig_sem Returns resources.

wai_sem Acquires resources.

preq_sem Acquires resources (polling).

twai_sem Acquires resources (with timeout).

ref_sem Acquires semaphore information.

cre_flg Creates an event flag.

del_flg Deletes an event flag.

set_flg Sets a bit pattern.

clr_flg Clears a bit pattern.

wai_flg Checks a bit pattern.

pol_flg Checks a bit pattern (polling).

twai_flg Checks a bit pattern (with timeout).

ref_flg Acquires event flag information.

cre_mbx Creates a mailbox.

del_mbx Deletes a mailbox.

snd_msg Sends a message.

rcv_msg Receives a message.

prcv_msg Receives a message (polling).

trcv_msg Receives a message (with timeout).

ref_mbx Acquires mailbox information.

CHAPTER 12 SYSTEM CALLS

133User's Manual U13422EJ1V1UM

Create Semaphore (–49)

 cre_sem
Task

Overview

Generates a semaphore.

C format

• When an ID number is specified

#include <stdrx.h>

ER ercd = cre_sem(ID semid, T_CSEM *pk_csem);

• When an ID number is not specified

#include <stdrx.h>

ER ercd = cre_sem(ID_AUTO, T_CSEM *pk_csem, ID *p_semid);

Parameter

I/O Parameter Description

I ID semid; Semaphore ID number

I T_CSEM *pk_csem; Start address of packet containing semaphore creation information.

O ID *p_semid; Address of area used to store an ID number

• Structure of semaphore creation information T_CSEM

typedef struct t_csem {

VP exinf; /* Extended information */

ATR sematr; /* Semaphore attribute */

INT isemcnt; /* Initial semaphore resource count */

INT maxsem; /* Maximum semaphore resource count */

} T_CSEM;

Explanation

RX4000 provides two types of interfaces for semaphore creation: one where an ID number must be specified, and

another where the ID number is not required.

• When an ID number is specified

A semaphore having an ID number specified in semid is created based on the information specified in

pk_csem.

• When an ID number is not specified

A semaphore is created based on the information specified in pk_csem.

An ID number is allocated by RX4000 and the allocated ID number is stored into the area specified with

p_semid.

CHAPTER 12 SYSTEM CALLS

134 User's Manual U13422EJ1V1UM

The following describes semaphore creation information in detail.

exinf ... Extended information

An area for storing user-specific information on a specified semaphore. The user can

use this area as required.

Information set in exinf can be dynamically acquired by issuing the ref_sem system

call from a processing program (tasks and non-tasks).

sematr ... Semaphore attribute

Bit 0 .. Method of queuing into a queue

TA_TPRI(0): Priority order

TA_TFIFO(1): FIFO order

Method of queuing into a queue

015

sematr

8 7

isemcnt ... Initial semaphore resource count

maxsem ... Maximum semaphore resource count

Return value

*E_OK 0 Normal termination

E_RSATR –24 Invalid specification of attribute sematr.

E_PAR –33 Invalid parameter specification

− The start address of a packet storing semaphore creation information is invalid
(pk_csem = 0).

− The initial resource count is invalid (isemcnt < 0).

− The maximum resource count is invalid (maxsem ≤ 0, maxsem < isemcnt).

− The address of the area used to store an ID number is invalid (p_semid = 0).

(When a semaphore is created without an ID number specified)

E_ID –35 Invalid ID number specification (maximum number of semaphores created< semid)

*E_OBJ –63 A task having the specified ID number has already been created.

E_OACV –66 An unauthorized ID number (semid ≤ 0) was specified.

E_CTX –69 The cre_sem system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

135User's Manual U13422EJ1V1UM

Delete Semaphore (–50)

 del_sem
Task

Overview

Deletes a semaphore.

C format

#include <stdrx.h>

ER ercd = del_sem(ID semid);

Parameter

I/O Parameter Description

I ID semid; Semaphore ID number

Explanation

This system call deletes the semaphore specified in semid.

The specified semaphore is released from RX4000 control.

The task released from the wait state (resource wait state) by the del_sem system call has E_DLT returned as the

return value of the system call (wai_sem or twai_sem) that initiated transition to the wait state.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of semaphores created < semid)

*E_NOEXS –52 The specified semaphore does not exist.

E_OACV –66 An unauthorized ID number (semid ≤ 0) was specified.

E_CTX –69 The del_sem system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

136 User's Manual U13422EJ1V1UM

Signal Semaphore (–55)

 sig_sem
Task/nontask

Overview

Returns resources.

C format

#include <stdrx.h>

ER ercd = sig_sem(ID semid);

Parameter

I/O Parameter Description

I ID semid; Semaphore ID number

Explanation

This system call returns resources to the semaphore specified in semid (the semaphore counter is incremented by

0x1).

If tasks are queued in the queue of the specified semaphore when this system call is issued, this system call

passes the resources to the relevant task (the first task in the queue) without returning the resources

(incrementing the semaphore counter).

Consequently, the relevant task is removed from the queue, and its state changes from the wait state (resource

wait state) to the ready state, or from the wait_suspend state to the suspend state.

Caution The semaphore counter managed by RX4000 counts up to the maximum number of resources

that can be acquired as specified at the time it is generated. Therefore, when the number of

resources exceeds the maximum number of resources, by issuing sig_sem system call, the

sig_sem system call returns E_QOVR as its return value without incrementing the semaphore

counter.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of semaphores created < semid)

*E_NOEXS –52 The specified semaphore does not exist.

E_OACV –66 An unauthorized ID number (semid ≤ 0) was specified.

*E_QOVR –73 The resource count exceeded the maximum resource count specified at generation.

CHAPTER 12 SYSTEM CALLS

137User's Manual U13422EJ1V1UM

Wait on Semaphore (–53)

 wai_sem
Task

Overview

Acquires resources.

C format

#include <stdrx.h>

ER ercd = wai_sem(ID semid);

Parameter

I/O Parameter Description

I ID semid; Semaphore ID number

Explanation

This system call acquires resources from the semaphore specified in semid (the semaphore counter is

decremented by 0x1).

When this system call is issued, if no resource can be acquired from a specified semaphore (when there are no

free resources), this system call places the task in the queue of the specified semaphore, then changes it from the

run state to the wait state (resource wait state).

The resource wait state is released upon the issue of a sig_sem, del_sem, or rel_wai system call, and the task

returns to the ready state.

Remark When a task queues in the wait queue of the specified semaphore, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that semaphore was generated (during

configuration or when a cre_sem system call was issued).

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of semaphores created < semid)

*E_NOEXS –52 The specified semaphore does not exist.

E_OACV –66 An unauthorized ID number (semid ≤ 0) was specified.

E_CTX –69 Context error

− The wai_sem system call was issued from a non-task.

− The wai_sem system call was issued in the dispatch disabled state.

*E_DLT –81 A specified semaphore was deleted by the del_sem system call.

*E_RLWAI –86 The resource wait state was forcibly released by the rel_wai system call.

EV_SIGNAL –225 The resource wait state was forcibly released by the vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

138 User's Manual U13422EJ1V1UM

Pool and Request Semaphore (–107)

 preq_sem
Task/nontask

Overview

Acquires resources (polling).

C format

#include <stdrx.h>

ER ercd = preq_sem(ID semid);

Parameter

I/O Parameter Description

I ID semid; Semaphore ID number

Explanation

This system call acquires resources from the semaphore specified in semid (the semaphore counter is

decremented by 0x1).

When this system call is issued, if no resource can be acquired from a specified semaphore (when there are no

free resources), this system returns E_TMOUT as the return value.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of semaphores created < semid)

*E_NOEXS –52 The specified semaphore does not exist.

E_OACV –66 An unauthorized ID number (semid ≤ 0) was specified.

*E_TMOUT –85 The resource count for the specified semaphore is 0x0.

CHAPTER 12 SYSTEM CALLS

139User's Manual U13422EJ1V1UM

Wait on Semaphore with Timeout (–171)

 twai_sem
Task

Overview

Acquires resources (with timeout).

C format

#include <stdrx.h>

ER ercd = twai_sem(ID semid, TMO, tmout);

Parameters

I/O Parameter Description

I ID semid; Semaphore ID number

I TMO tmout; Wait time

TMO_POL(0): Quick return

TMO_FEVR(1): Permanent wait

Value: Wait time

Explanation

This system call acquires resources from the semaphore specified in semid (the semaphore counter is

decremented by 0x1).

When this system call is issued, if no resource can be acquired from a specified semaphore (when there are no

free resources), this system call places the task in the queue of the specified semaphore, then changes it from the

run state to the wait state (resource wait state).

The resource wait state is released when the wait time specified in tmout elapses or when the sig_sem, del_sem,

or rel_wai system call is issued, at which time it changes to the ready state.

Remark The task is queued into the queue of a specified semaphore in the order (FIFO order or priority order)

specified when the semaphore was created (at configuration or upon the issue of cre_sem system call).

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid wait time specification (tmout < TMO_FEVR)

E_ID –35 Invalid ID number specification (maximum number of semaphores created < semid)

*E_NOEXS –52 The specified semaphore does not exist.

E_OACV –66 An invalid ID number (semid ≤ 0) was specified.

E_CTX –69 Context error

− The twai_sem system call was issued from a non-task.

− The twai_sem system call was issued in the dispatch disabled state.

*E_DLT –81 A specified semaphore was deleted by the del_sem system call.

*E_TMOUT –85 Wait time elapsed.

*E_RLWAI –86 The resource wait state was forcibly released by the issue of an rel_wai system call.

EV_SIGNAL –225 The resource wait state was forcibly released by the vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

140 User's Manual U13422EJ1V1UM

Refer Semaphore Status (–52)

 ref_sem
Task/nontask

Overview

Acquires semaphore information.

C format

#include <stdrx.h>

ER ercd = ref_sem(T_RSEM *pk_rsem, ID semid);

Parameters

I/O Parameter Description

O T_RSEM *pk_rsem; Start address of packet used to store semaphore information

I ID semid; Semaphore ID number

• Structure of semaphore information T_RSEM

typedef struct t_rsem {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

INT semcnt; /* Current resource count */

INT maxsem; /* Maximum resource count */

} T_RSEM;

Explanation

This system call stores, into the packet specified in pk_rsem, the semaphore information (extended information,

existence of waiting task, etc.) for the semaphore specified in semid.

Semaphore information is described in detail below.

exinf ... Extended information
wtsk ... Existence of waiting task

FALSE(0): There is no waiting task

Value: ID number of first task in queue
semcnt ... Current resource count
maxsem ... Maximum resource count specified at generation

Return value

*E_OK 0 Normal termination
E_PAR –33 The start address of the packet used to store semaphore information is invalid (pk_rsem

= 0).
E_ID –35 Invalid ID number specification (maximum number of semaphores created < semid)

*E_NOEXS –52 A specified semaphore does not exist.

E_OACV –66 An unauthorized ID number (semid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

141User's Manual U13422EJ1V1UM

Create Event Flag (–41)

 cre_flg
Task

Overview

Generates an event flag.

C format

• When an ID number is specified

#include <stdrx.h>

ER ercd = cve_flg(ID flgid, T_CFLG *pk_cflg);

• When an ID number is not specified

#include <stdrx.h>

ER ercd = cre_flg(ID_AUTO, T_CFLG *pk_cflg, ID *p_flgid);

Parameters

I/O Parameter Description

I ID flgid Event flag ID number

I T_CFLG *pk_cflg Start address of packet storing event flag creation information

O ID *p_flgid Address of area used to store an ID number

• Structure of event flag creation information T_CFLG

typedef struct t_cflg {

VP exinf; /* Extended information */

ATR flgatr; /* Event flag attribute */

UINT iflgptn; /* Initial bit pattern of event flag */

} T_CFLG;

Explanation

RX4000 provides two types of interfaces for event flag creation: one in which an ID number must be specified and

another in which an ID number is not specified.

• When an ID number is specified

An event flag having the ID number specified in flgid is created based on the information specified in pk_cflg.

• When an ID number is not specified

An event flag is created based on the information specified in pk_cflg.

An ID number is allocated by RX4000 and the allocated ID number is stored into the area specified in p_flgid.

CHAPTER 12 SYSTEM CALLS

142 User's Manual U13422EJ1V1UM

The following describes the event flag creation information in detail.

exinf ... Extended information

exinf is an area used for storing user-specific information on a specified event flag.

The user can use this area as required.

Information set in exinf can be dynamically acquired by issuing the ref_flg system call

from a processing program (task or non-task).

flgatr ... Event flag attribute

Bit 3 .. Number of tasks that can be queued into a queue

TA_WSGL(0): One task only

TA_WNUL(1): Two or more tasks

Number of tasks that can
be queued into a queue

015

flgatr

8 7

iflgptn ... Initial bit pattern of event flag

Return value

*E_OK 0 Normal termination

E_RSATR –24 Invalid specification of attribute flgatr.

E_PAR –33 Invalid parameter specification

− The start address of the packet storing event flag creation information is invalid
(pk_cflg = 0).

− The address of the area used to store an ID number is invalid (p_flgid = 0).
(When an event flag is created with no ID number specified)

E_ID –35 Invalid ID number specification (maximum number of event flags created < flgid)

*E_OBJ –63 An event flag having a specified ID number has already been created.

E_OACV –66 An unauthorized ID number (flgid ≤ 0) was specified.

E_CTX –69 The cre_flg system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

143User's Manual U13422EJ1V1UM

Delete Event Flag (–42)

 del_flg
Task

Overview

Deletes an event flag.

C format

#include <stdrx.h>

ER ercd = del_flg(ID flgid);

Parameter

I/O Parameter Description

I ID flgid; Event flag ID number

Explanation

This system call deletes the event flag specified in flgid.

The specified event flag is released from the control of RX4000.

The task released from the wait state (event flag wait state) by this system call has E_DLT returned as a return

value of the system call (wai_flg or twai_flg) that initiated transition to the wait state.

Return value

*E_OK 0 Normal termination

 E_ID –35 Invalid ID number specification (maximum number of event flags created < flgid)

*E_NOEXS –52 The specified event flag does not exist.

 E_OACV –66 An unauthorized ID number (flgid ≤ 0) was specified.

 E_CTX –69 The del_flg system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

144 User's Manual U13422EJ1V1UM

Set Event Flag (–48)

 set_flg
Task/nontask

Overview

Sets a bit pattern.

C format

#include <stdrx.h>

ER ercd = set_flg(ID flgid, UINT setptn);

Parameters

I/O Parameter Description

I ID flgid; Event flag ID number

I UINT setptn; Bit pattern to be set (32-bit width)

Explanation

This system call executes logical OR between the bit pattern specified in flgid and that specified in setptn, and sets

the result in a specified event flag.

For example, when this system call is issued, if the specified event flag’s bit pattern is B’1100 and the bit pattern

specified by setptn is B’1010, the bit pattern of the specified event flag becomes B’1110.

When this system call is issued, if the wait condition for a task queued in the queue of the specified event flag is

satisfied, the task is removed from the queue.

Consequently, the relevant task changes from the wait state (event flag wait state) to the ready state, or from the

wait_suspend state to the suspend state.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of event flags created < flgid)

*E_NOEXS –52 A specified event flag does not exist

E_OACV –66 An unauthorized ID number (flgid ≤ 0) was specified

CHAPTER 12 SYSTEM CALLS

145User's Manual U13422EJ1V1UM

Clear Event Flag (–47)

 clr_flg
Task/nontask

Overview

Clears a bit pattern.

C format

#include <stdrx.h>

ER ercd = clr_flg(ID flgid, UINT clrptn);

Parameter

I/O Parameter Description

I ID flgid; Event flag ID number

I UINT clrptn; Bit pattern to clear (32-bit width)

Explanation

This system call executes logical AND between the bit pattern specified in flgid and that specified in clrptn, and

sets the result in a specified event flag.

For example, when this system call is issued, if the specified event flag’s bit pattern is B’1100 and the bit pattern

specified in cirptn is B’1010, the specified event flag’s bit pattern becomes B’1000.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of event flags created < flgid)

*E_NOEXS –52 A specified event flag does not exist

E_OACV –66 An unauthorized ID number (flgid ≤ 0) was specified

CHAPTER 12 SYSTEM CALLS

146 User's Manual U13422EJ1V1UM

Wait Event Flag (–46)

 wai_flg
Task

Overview

Checks a bit pattern.

C format

#include <stdrx.h>

ER ercd = wai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

Parameters

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store a bit pattern when a condition is satisfied

I ID flgid; Event flag ID number

I UINT waiptn; Request bit pattern (32-bit width)

I UINT wfmode; Wait condition or condition satisfaction

TWF_ANDW(0): AND wait

TWF_ORW(2): OR wait

TWF_CLR(1): Bit pattern is cleared

Explanation

This system call checks whether a bit pattern that satisfies the request bit pattern specified in waiptn, as well as

the wait condition specified in wfmode, is set in the event flag specified in flgid.

If a bit pattern satisfying the wait condition is set in a specified event flag, this system call stores the bit pattern of

the event flag in the area specified in p_flgptn.

When this system call is issued, if the bit pattern of the specified event flag does not satisfy the wait condition, this

system call queues the task at the end of the queue for the specified event flag, then changes it from the run state

to the wait state (event flag wait state).

The event flag wait state is released when a bit pattern satisfying the wait condition is set by the set_flg system

call, or when the del_flg or rel_wai system call is issued, at which time it changes to the ready state.

The specification format for wfmode is shown below.

• wfmode = TWF_ANDW

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

• wfmode = (TWF_ANDW|TWF_CLR)

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

If the wait condition is satisfied, the bit pattern for the specified event flag is cleared (B’0000 is set).

CHAPTER 12 SYSTEM CALLS

147User's Manual U13422EJ1V1UM

• wfmode = TWF_ORW

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

• wfmode = (TWF_ORW|TWF_CLR)

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

If a wait condition is satisfied, the bit pattern of the specified event flag is cleared (B’0000 is set).

Cautions 1. RX4000 specifies the number of tasks that can be queued into the queue of an event

flag, at generation (at configuration or upon the issue of a cre_flg system call).

TA_WSGL attribute: Only one task can be queued.

TA_WMUL attribute: Two or more tasks can be queued.

For this reason, if this system call is issued for the event flag having the TA_WSGL

attribute for which waiting tasks are already queued, the wai_flg system call returns

E_OBJ as the return value without performing bit pattern checking.

2. If the event flag wait state is forcibly released by issuing a del_flg or rel_wai system call,

the contents of the area specified in p_flgptn will be undefined.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− The address of the area used to store a bit pattern when a condition is satisfied
is invalid (p_flgptn = 0).

− A request bit pattern is incorrectly specified (waiptn = 0).

− The wait condition or condition satisfaction parameter wfmode is incorrectly
specified.

E_ID –35 Invalid ID number specification (maximum number of event flags created < flgid)

*E_NOEXS –52 A specified event flag does not exist.

*E_OBJ –63 The wai_flg system call was issued for the event flag having the TA_WSGL attribute

in which waiting tasks were already queued.

E_OACV –66 An unauthorized ID number (flgid ≤ 0) was specified.

E_CTX –69 Context error

− The wai_flg system call was issued from a non-task.

− The wai_flg system call was issued from the dispatch disabled state.

*E_DLT –81 A specified event flag was deleted by a del_flg system call.

*E_RLWAI –86 The event flag wait state was forcibly released by an rel_wai system call.

EV_SIGNAL –225 The event flag wait state was forcibly released by the vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

148 User's Manual U13422EJ1V1UM

Poll Event Flag (–106)

 pol_flg
Task/nontask

Overview

Checks a bit pattern (polling).

C format

#include <stdrx.h>

ER ercd = pol_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

Parameters

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store a bit pattern when a condition is satisfied

I ID flgid; Event flag ID number

I UINT waiptn; Request bit pattern (32-bit width)

I UINT wfmode; Wait condition or condition satisfaction

TWF_ANDW(0): AND wait

TWF_ORW(2): OR wait

TWF_CLR(1): Bit pattern is cleared.

Explanation

This system call checks whether a bit pattern satisfying both the request bit pattern specified in waiptn and the

wait condition specified in wfmode is set in the event flag specified in flgid.

If a bit pattern satisfying the wait condition is set in a specified event flag, this system call stores the bit pattern of

the event flag into the area specified in p_flgptn.

When this system call is issued, if the bit pattern of a specified event flag does not satisfy the wait condition, this

system call returns E_TMOUT as the return value.

The wfmode specification format is shown below.

• wfmode = TWF_ANDW

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

• wfmode = (TWF_ANDW|TWF_CLR)

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

If the wait condition is satisfied, the bit pattern for the specified event flag is cleared (B’0000 is set).

CHAPTER 12 SYSTEM CALLS

149User's Manual U13422EJ1V1UM

• wfmode = TWF_ORW

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

• wfmode = (TWF_ORW|TWF_CLR)

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

If the wait condition is satisfied, the bit pattern for the specified event flag is cleared (B’0000 is set).

Caution RX4000 specifies the number of tasks that can be queued into the queue of an event flag, at

generation (at configuration or upon the issue of a cre_flg system call).

TA_WSGL attribute: Only one task can be queued.

TA_WMUL attribute: Two or more tasks can be queued.

For this reason, if this system call is issued for an event flag having the TA_WSGL attribute in

which waiting tasks are already queued, the wai_flg system call returns E_OBJ as the return value

without performing bit pattern checking.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− The address of the area used to store a bit pattern when a condition is satisfied is
invalid (p_flgptn = 0).

− A request bit pattern is incorrectly specified (waiptn = 0).

− The wait condition or condition satisfaction parameter wfmode is incorrectly
specified.

E_ID –35 Invalid ID number specification (maximum number of event flags created < flgid)

*E_NOEXS –52 A specified event flag does not exist.

*E_OBJ –63 This pol_flg system call was issued for the event flag of TA_WSGL attribute in which

waiting tasks are already queued.

E_OACV –66 An unauthorized ID number (flgid ≤ 0) was specified.

*E_TMOUT –85 The bit pattern of the specified event flag does not satisfy the wait condition.

CHAPTER 12 SYSTEM CALLS

150 User's Manual U13422EJ1V1UM

Wait Event Flag with Timeout (–170)

 twai_flg
Task

Overview

Checks a bit pattern (with timeout).

C format

#include <stdrx.h>

ER ercd = twai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode,
TMO tmout);

Parameters

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store a bit pattern when a condition is satisfied

I ID flgid; Event flag ID number

I UINT waiptn; Request bit pattern (32-bit width)

I UINT wfmode; Wait condition or condition satisfaction

TWF_ANDW(0): AND wait

TWF_ORW(2): OR wait

TWF_CLR(1): Bit pattern is cleared.

I TMO tmount; Wait time (basic clock cycles)

TMO_POL(0): Quick return

TMO_FEVR(−1): Permanent wait

Value: Wait time

Explanation

This system call checks whether a bit pattern satisfying both the request bit pattern specified in waiptn and the

wait condition specified in wfmode is set in the event flag specified in flgid.

If a bit pattern satisfying wait condition is set in a specified event flag, this system call stores the bit pattern of the

event flag into the area specified in p_flgptn.

Upon the issue of this system call, if the bit pattern of the specified event flag does not satisfy the wait condition,

this system call queues the task at the end of the queue for a specified event flag, then changes it from the run

state to the wait state (event flag wait state).

The event flag wait state is released upon the elapse of the wait time specified in tmout, when a bit pattern

satisfying wait condition is set by the set_flg system call, or when the del_flg or rel_wai system call is issued, at

which time the task returns to the ready state.

The wfmode specification format is shown below.

CHAPTER 12 SYSTEM CALLS

151User's Manual U13422EJ1V1UM

• wfmode = TWF_ANDW

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

• wfmode = (TWF_ANDW|TWF_CLR)

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

If the wait condition is satisfied, the bit pattern for the specified event flag is cleared (B’0000 is set).

• wfmode = TWF_ORW

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

• wfmode = (TWF_ORW|TWF_CLR)

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

If the wait condition is satisfied, the bit pattern of the specified event flag is cleared (B’0000 is set).

Cautions 1. RX4000 specifies the number of tasks that can be queued into the queue of the event flag, at

generation (at configuration or upon the issue of a cre_flg system call).

TA_WSGL attribute: Only one task can be queued.

TA_WMUL attribute: Two or more tasks can be queued.

For this reason, if this system call is issued for an event flag having the TA_WSGL attribute

in which waiting tasks are already queued, this system call returns E_OBJ as the return

value without performing bit pattern checking.

2. If the event flag wait state is forcibly released by a del_flg or rel_wai system call, the

contents of the area specified in p_flgptn will be undefined.

CHAPTER 12 SYSTEM CALLS

152 User's Manual U13422EJ1V1UM

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− The address of the area used to store a bit pattern when a condition is satisfied
is invalid (p_flgptn = 0).

− The specification of a request bit pattern is invalid (waiptn = 0).

− The specification of a wait condition or condition satisfaction parameter wfmode
is invalid.

− Invalid wait time specification (tmout < TMO_FEVR)

E_ID –35 Invalid ID number specification (maximum number of event flags created < flgid)

*E_NOEXS –52 A specified event flag does not exist.

*E_OBJ –63 This twai_flg system call was issued for the event flag having the TA_WSGL attribute

in which waiting tasks were already queued.

E_OACV –66 An unauthorized ID number (flgid ≤ 0) was specified.

E_CTX –69 Context error

− The twai_flg system call was issued from a non-task.

− The twai_flg system call was issued from the dispatch disabled state.

*E_DLT –81 A specified event flag was deleted by the issue of a del_flg system call.

*E_TMOUT –85 Wait time elapsed.

*E_RLWAI –86 The event flag wait state was forcibly released by the issue of an rel_wai system call.

EV_SIGNAL –225 The event flag wait state was forcibly released by the issue of an vsnd_sig system

call.

CHAPTER 12 SYSTEM CALLS

153User's Manual U13422EJ1V1UM

Refer Event Flag Status (–44)

 ref_flg
Task/nontask

Overview

Acquires event flag information.

C format

#include <stdrx.h>

ER ercd = ref_flg(T_RFLG *pk_rflg, ID flgid);

Parameters

I/O Parameter Description

O T_RFLG *pk_rflg; Start address of packet used to store event flag information

I ID flgid; Event flag ID number

• Structure of event flag information T_RFLG

typedef struct t_rflg {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

UINT flgptn; /* Current bit pattern */

} T_RFLG;

Explanation

This system call stores, in the packet specified in pk_rflg, the event flag information (extended information,

existence of waiting task, etc.) for the event flag specified in flgid.

Event flag information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0): There is no waiting task.

Value: ID number of first task in queue

flgptn ... Current bit pattern

Return value

*E_OK 0 Normal termination

E_PAR –33 The start address of the packet used to store event flag information is invalid (pk_flg = 0).

E_ID –35 Invalid ID number specification (maximum number of event flags created < flgid)

*E_NOEXS –52 A specified event flag does not exist.

E_OACV –66 An unauthorized ID number (flgid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

154 User's Manual U13422EJ1V1UM

Create Mailbox (–57)

 cre_mbx
Task

Overview

Generates a mailbox.

C format

• When an ID number is specified

#include <stdrx.h>

ER ercd = cre_mbx(ID mbxid, T_CMBX *pk_cmbx);

• When an ID number is not specified

#include <stdrx.h>

ER ercd = cre_mbx(ID_AUTO, T_CMBX *pk_cmbx, ID *p_mbxid);

Parameters

I/O Parameter Description

I ID mbxid; Mailbox ID number

I T_CMBX *pk_cmbx; Start address of packet used to store mailbox creation information

O ID *p_mbxid; Address of area used to store an ID number

• Structure of mailbox creation information T_CMBX

typedef struct t_cmbx {

VP exinf; /* Extended information */

ATR mbxatr; /* Mailbox attribute */

} T_CMBX;

Explanation

RX4000 provides two types of interfaces for mailbox creation: one in which an ID number must be specified for

mailbox creation, and another in which an ID number is not specified.

• When an ID number is specified

An mailbox having an ID number specified in mbxid is created based on the information specified in pk_cmbx.

• When an ID number is not specified

An mailbox is created based on the information specified in pk_cmbx.

An ID number is allocated by RX4000. The allocated ID number is stored into the area specified in p_mbxid.

CHAPTER 12 SYSTEM CALLS

155User's Manual U13422EJ1V1UM

The following describes the mailbox creation information in detail.

exinf ... Extended information

exinf is an area used for storing user-specific information on a specified mailbox. The

user can use this area as required.

Information set in exinf can be dynamically acquired by issuing the ref_mbx system

call from a processing program (task/non-task).

mbxatr ... Mailbox attribute

Bit 0 .. Method of queuing into a task queue

TA_TPRI(0): Priority order

TA_TFIFO(1): FIFO order

Bit 1 .. Method of queuing into a message queue

TA_MPRI(0): Priority order

TA_MFIFO(1): FIFO order

Method of queuing
into a task queue

015

mbxatr

8 7

Method of queuing into
a message queue

Return value

*E_OK 0 Normal termination

E_RSATR –24 Invalid specification of attribute mbxatr

E_PAR –33 Invalid parameter specification

− The start address of the packet storing the mailbox creation information is invalid
(pk_cmbx = 0).

− The address of the area used to store an ID number is invalid (p_mbxid = 0).
(When a mailbox is created without an ID number specified)

E_ID –35 Invalid ID number specification (maximum number of mailboxes created < mbxid)

*E_OBJ –63 A mailbox having the specified ID number has already been created.

E_OACV –66 An unauthorized ID number (mbxid ≤ 0) was specified.

E_CTX –69 The cre_mbx system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

156 User's Manual U13422EJ1V1UM

Delete Mailbox (–58)

 del_mbx
Task

Overview

Deletes a mailbox.

C format

#include <stdrx.h>

ER ercd = del_mbx(ID mbxid);

Parameters

I/O Parameter Description

I ID mbxid; Mailbox ID number

Explanation

This system call deletes the mailbox specified in mbxid.

The specified mailbox is released from the control of RX4000.

The task released from the wait state (message wait state) by this system call has E_DLT returned as the return

value of the system call (rcv_msg or trcv_msg) that instigated transition to the wait state.

Remark When this system call is issued, any message using a memory block acquired from a memory pool is

queued into the message queue of a specified mailbox, then the message is returned to the memory

pool.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of mailboxes created < mbxid)

*E_NOEXS –52 The specified mailbox does not exist.

E_OACV –66 An unauthorized ID number (mbxid ≤ 0) was specified.

E_CTX –69 The del_mbx system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

157User's Manual U13422EJ1V1UM

Send Message (–63)

 snd_msg
Task/nontask

Overview

Sends a message.

C format

#include <stdrx.h>

ER ercd = snd_msg(ID mbxid, T_MSG *pk_msg);

Parameters

I/O Parameter Description

I ID mbxid; Mailbox ID number

I T_MSG *pk_msg; Start address of packet used to store a message

• Structure of message T_MSG

typedef struct t_msg {

VW msgrfu; /* Message management area */

PRI msgpri; /* Message priority */

VB msgcont[]; /* Message body */

} T_MSG;

Explanation

This system call sends the message specified in pk_msg to the mailbox specified in mbxid (queues the message

into a message queue).

When this system call is issued, if a task is queued into the task queue of a specified mailbox, this system call

passes the message to the task (first task in the task queue) without performing message queuing.

Consequently, the relevant task is removed from the task queue, and its state changes from the wait state

(message wait state) to the ready state, or from the wait_suspend state to the suspend state.

Remark When a message queues in the message wait queue of the specified mailbox, it is executed in the

sequence (FIFO sequence or priority order sequence) specified when that mailbox was generated

(during configuration or when a cre_mbx system call was issued).

Caution RX4000 uses the first 4 bytes (message management area msgrfu) of a message as a link area

for enabling queuing into a message queue. Accordingly, sending a message to a specified

mailbox requires that 0x0 be set in msgrfu before issuing the snd_msg system call.

If a value other than 0x0 is set in msgrfu when the snd_msg system call is issued, RX4000

recognizes that the relevant message is already queued into a message queue, and this system

call returns E_OBJ as a return value without sending the message.

CHAPTER 12 SYSTEM CALLS

158 User's Manual U13422EJ1V1UM

Return value

*E_OK 0 Normal termination

E_PAR –33 The start address of a packet used to store a message is invalid (pk_msg = 0).

E_ID –35 Invalid ID number specification (maximum number of mailboxes created < mbxid)

*E_NOEXS –52 A specified mailbox does not exist.

E_OBJ –63 The area specified for a message is already being used for messages.

E_OACV –66 An unauthorized ID number (mbxid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

159User's Manual U13422EJ1V1UM

Receive Message from Mailbox (–61)

 rcv_msg
Task

Overview

Receives a message.

C format

#include <stdrx.h>

ER ercd = rcv_msg(T_MSG **ppk_msg, ID mbxid);

Parameters

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store the start address of a message

I ID mbxid; Mailbox ID number

Explanation

This system call receives a message from the mailbox specified in mbxid and stores its start address into the area

specified in ppk_msg.

When this system call is issued, if a message cannot be received from a specified mailbox (when no message

exists in a message queue), this system call queues the task into the task queue of the specified mailbox, then

changes its state from the run state to the wait state (message wait state).

The message wait state is released when the snd_msg, del_mbx, or rel_wai system call is issued, and the task

returns to the ready state.

Remark When a task queues in the task wait queue of the specified mailbox, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that mailbox was generated (during

configuration or when a cre_sem system call was issued).

Return value

*E_OK 0 Normal termination

E_PAR –33 The address of the area used to store the start address of a message is invalid

(ppk_msg = 0).

E_ID –35 Invalid ID number specification (maximum number of mailboxes created < mbxid)

*E_NOEXS –52 A specified mailbox does not exist.

E_OACV –66 An unauthorized ID number (mbxid ≤ 0) was specified.

E_CTX –69 Context error

− The rcv_msg system call was issued from a non-task.

− The rcv_msg system call was issued from the dispatch disabled state.

*E_DLT –81 A specified mailbox was deleted by a del_mbx system call.

*E_RLWAI –86 The message wait state was forcibly released by an rel_wai system call.

EV_SIGNAL –225 The message wait state was forcibly released by the vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

160 User's Manual U13422EJ1V1UM

Poll and Receive Message from Mailbox (–108)

 prcv_msg
Task/nontask

Overview

Receives a message (polling).

C format

#include <stdrx.h>

ER ercd = prcv_msg(T_MSG **ppk_msg, ID mbxid);

Parameters

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store the start address of a message

I ID mbxid; Mailbox ID number

Explanation

This system call receives a message from the mailbox specified in mbxid and stores its start address into the area

specified in ppk_msg.

When this system call is issued, if a message cannot be received from a specified mailbox (when no message

exists in the message queue), E_TMOUT is returned as the return value.

Return value

*E_OK 0 Normal termination

E_PAR –33 The address of the area to store the start address of a message is invalid (ppk_msg =

0).

E_ID –35 Invalid ID number specification (maximum number of mailboxes created < mbxid)

*E_NOEXS –52 A specified mailbox does not exist.

E_OACV –66 An unauthorized ID number (mbxid ≤ 0) was specified.

*E_TMOUT –85 No message exists in a specified mailbox.

CHAPTER 12 SYSTEM CALLS

161User's Manual U13422EJ1V1UM

Receive Message from Mailbox with Timeout (–172)

 trcv_msg
Task

Overview

Receives a message (with timeout).

C format

#include <stdrx.h>

ER ercd = trcv_msg(T_MSG **ppk_msg, ID mbxid, TMO tmout);

Parameters

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store the start address of a message

I ID mbxid; Mailbox ID number

I TMO tmout; Wait time (basic clock cycles)

TMO_POL(0): Quick return

TMO_FEVR(−1): Permanent wait

Value: Wait time

Explanation

This system call receives a message from the mailbox specified in mbxid and stores its start address into the area

specified in ppk_msg.

When this system call is issued, if a message cannot be received from a specified mailbox (when no message

exists in the message queue), this system call queues the task into the task queue of the specified mailbox, then

changes its state from the run state to the wait state (message wait state).

The message wait state is released when the wait time specified in tmout elapses or when the snd_msg, del_mbx,

or rel_wai system call is issued, and the task returns to the ready state.

Remark When a task queues in the task wait queue of the specified mailbox, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that mailbox was generated (during

configuration or when a cre_mbx system call was issued).

CHAPTER 12 SYSTEM CALLS

162 User's Manual U13422EJ1V1UM

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− The address of the area used to store the start address of a message is invalid
(ppk_msg = 0).

− Invalid wait time specification (tmout < TMO_FEVR)

E_ID –35 Invalid ID number specification (maximum number of mailboxes created < mbxid)

*E_NOEXS –52 A specified mailbox does not exist.

E_OACV –66 An unauthorized ID number (mbxid ≤ 0) was specified.

E_CTX –69 Context error

− The trcv_msg system call was issued from a non-task.

− The trcv_msg system call was issued from the dispatch disabled state.

*E_DLT –81 A specified mailbox was deleted by a del_mbx system call.

*E_TMOUT –85 Wait time elapsed.

*E_RLWAI –86 The message wait state was forcibly released by an rel_wai system call.

EV_SIGNAL –225 The message wait state was forcibly released by an vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

163User's Manual U13422EJ1V1UM

Refer Mailbox Status (–60)

 ref_mbx
Task/nontask

Overview

Acquires mailbox information.

C format

#include <stdrx.h>

ER ercd = ref_mbx(T_RMBX *pk_rmbx, ID mbxid);

Parameters

I/O Parameter Description

O T_RMBX *pk_rmbx; Start address of packet used to store mailbox information

I ID mbxid; Mailbox ID number

• Structure of mailbox information T_RMBX

typedef struct t_rmbx {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

T_MSG *pk_msg; /* Existence of waiting message */

} T_RMBX;

Explanation

This system call stores mailbox information (extended information, existence of waiting task, etc.) for the mailbox

specified in mbxid into the packet specified in pk_rmbx.

Mailbox information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0): No waiting task

Value: ID number of the first message of queue

pk_msg ... Existence of waiting message

NADR(−1): No waiting message

Value: Address of the first message of queue

CHAPTER 12 SYSTEM CALLS

164 User's Manual U13422EJ1V1UM

Return value

*E_OK 0 Normal termination

E_PAR –33 The start address of the packet to store mailbox information is invalid (pk_rmbx = 0).

E_ID –35 Invalid ID number specification (maximum number of mailboxes created < mbxid)

*E_NOEXS –52 A specified mailbox does not exist.

E_OACV –66 An unauthorized ID number (mbxid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

165User's Manual U13422EJ1V1UM

12.8.5 Interrupt management system calls

This section explains a group of system calls (interrupt management system calls) that perform processing that

depends on maskable interrupts.

Table 12-9 lists the interrupt management system calls.

Table 12-9. Interrupt Management System Calls

System call Function

def_int Registers an interrupt handler and cancels its registration.

ret_int Returns from an interrupt handler.

ret_wup Wakes up another task and returns from an interrupt handler.

loc_cpu Disables the acceptance of maskable interrupts and dispatch processing.

unl_cpu Enables the acceptance of maskable interrupts and dispatch processing.

dis_int Disables acceptance of maskable interrupts.

ena_int Enables acceptance of maskable interrupts.

chg_ims Changes the interrupt mask.

ref_ims Acquires the interrupt mask.

CHAPTER 12 SYSTEM CALLS

166 User's Manual U13422EJ1V1UM

Define Interrupt Handler (–65)

 def_int
Task/nontask

Overview

Registers an interrupt handler and cancels its registration.

C format

#include <stdrx.h>

ER ercd = def_int(UINT dintno, T_DINT *pk_dint);

Parameters

I/O Parameter Description

I UINT dintno; Interrupt level of interrupt handler

I T_DINT *pk_dint; Start address of packet storing interrupt handler registration information

• Structure of interrupt handler registration information T_DINT

typedef struct t_dint {

ATR intatr; /* Attribute of interrupt handler */

FP inthdr; /* Activation address of interrupt handler */

VP gp; /* Specific GP register value for interrupt handler */

} T_DINT;

Explanation

This system call uses the information specified in pk_dint to register the indirectly activated interrupt handler

activated upon the occurrence of a maskable interrupt of the interrupt level specified in dintno.

Indirectly activated interrupt handler registration information is described in detail below.

intatr ... Attribute of interrupt handler

Bit 0 .. Language in which an interrupt handler is coded

TA_ASM(0): Assembly language

TA_HLNG(1): C

Bit 10 .. Existence of a specific GP register value specification

TA_DPID(1): Specifies a specific GP register value.

Language in which an interrupt
handler is coded

015

intatr

8 7

Existence of a specific GP register value specification

inthdr ... Activation address of interrupt handler

gp ... Specific GP register value for interrupt handler

CHAPTER 12 SYSTEM CALLS

167User's Manual U13422EJ1V1UM

When this system call is issued, if an interrupt handler corresponding to a specified interrupt level has already been

registered, this system call does not handle this as an error and newly registers the specified interrupt handler.

When this system call is issued, if NADR(−1) is set in the area specified in pk_dint, the registration of the interrupt

handler specified in dintno is canceled.

Remark When the value 1 of bit 10 of intatr is other than TA_DPID, the contents of gp are meaningless.

Return value

*E_OK 0 Normal termination

E_RSATR –24 Invalid specification of attribute intatr

E_PAR –33 Invalid parameter specification

− Invalid interrupt level specification (8 ≤ dintno)

− The start address of the packet storing interrupt handler registration information is
invalid (pk_dint = 0).

− Invalid specification of the activation address (inthdr = 0)

CHAPTER 12 SYSTEM CALLS

168 User's Manual U13422EJ1V1UM

Return from Interrupt Handler (–69)

 ret_int
Interrupt handler

Overview

Returns from a interrupt handler.

C format

#include <stdrx.h>

ret_int();

Parameter

None.

Explanation

This system call returns from a interrupt handler.

If a system call (chg_pri, sig_sem, etc.) requiring task scheduling is issued from a interrupt handler, RX4000

merely queues the tasks into the queue and delays actual scheduling until a system call (issuing ret_int or ret_wup

system call) is issued to return from the directly activated interrupt handler. Then, the queued tasks are all

performed at one time.

Furthermore, this system call function is offered as a macro (return 0) in RX4000.

Cautions This system call does not notify the external interrupt controller of the termination of

processing (issue of EOI command). Accordingly, for return from the interrupt handler

activated by an external interrupt request, the external interrupt controller must be notified of

termination before the issue of this system call.

Return value

None.

CHAPTER 12 SYSTEM CALLS

169User's Manual U13422EJ1V1UM

Return and Wakeup Task (–70)

 ret_wup
Interrupt handler

Overview

Wakes up another task and returns from a interrupt handler.

C format

#include <stdrx.h>

ret_wup(ID tskid);

Parameter

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call returns from a interrupt handler after the issue of a wake-up request to the task specified in tskid

(the wake-up request counter is incremented by 0x1).

When this system call is issued, if the specified task is in the wait state (wake-up wait state), without issuing a

wake-up request (incrementing the wake-up request counter), this system call changes the specified task from the

wake-up wait state to the ready state.

If a system call (chg_pri, sig_sem, etc.) requiring task scheduling is issued from a interrupt handler, RX4000

merely queues the tasks into a queue and delays the actual scheduling until a system call (issuing ret_int or

ret_wup system call) is issued to return from the directly activated interrupt handler. Then, the queued tasks are

all performed at one time.

This system call function is offered as a macro (return (tskid)) in RX4000.

Cautions 1. This system call does not notify the external interrupt controller of processing termination

(issue of the EOI command). Accordingly, for return from the directly activated interrupt

handler activated by an external interrupt request, the external interrupt controller must be

notified of processing termination before the issue of this system macro.

2. In this system call, if the following types of error occur, only processing for returning from

the interrupt handler is performed.

•••• Invalid ID number specification (maximum number of tasks created < tskid).

•••• A specified task does not exist.

•••• A specified task is in the run or dormant state.

•••• An unauthorized ID number (tskid ≤ 0) was specified.

•••• The number of wake-up requests exceeded 127.

Return value

None.

CHAPTER 12 SYSTEM CALLS

170 User's Manual U13422EJ1V1UM

Lock CPU (–8)

 loc_cpu
Task

Overview

Disables the acceptance of maskable interrupts and dispatch processing.

C format

#include <stdrx.h>

ER ercd = loc_cpu(void);

Parameter

None.

Explanation

This system call disables the acceptance of maskable interrupts and dispatch processing (task scheduling).

Actually, this system call clears the interrupt enable (IE) bit from the processor’s status register and disables

acceptance of all maskable interrupts.

Therefore, for the period of time from issue of this system call to issue of the unl_cpu, there is no transfer of

control to another handler or task.

If a maskable interrupt occurs after this system call is issued but before the unl_cpu system call is issued, RX4000

delays processing for the interrupt (interrupt handler) until the unl_cpu system call is issued. If a system call

(chg_pri, sig_sem, etc) requiring task scheduling is issued, RX4000 merely queues the tasks into a queue and

delays the actual scheduling until the unl_cpu system call is issued. Then, all the tasks are performed at one time.

Caution This system call does not queue disable requests. Accordingly, if this system call has already

been and the acceptance of maskable interrupts and dispatch processing has been disabled,

the system does not handle this as an error and performs no processing.

Return value

*E_OK 0 Normal termination

E_CTX –69 The loc_cpu system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

171User's Manual U13422EJ1V1UM

Unlock CPU (–7)

 unl_cpu
Task

Overview

Enables the acceptance of maskable interrupts and dispatch processing.

C format

#include <stdrx.h>

ER ercd = unl_cpu(void);

Parameter

None.

Explanation

This system call resumes the acceptance of maskable interrupts and dispatch processing

(task scheduling) disabled by the loc_cpu system call.

Actually, this system call sets the interrupt enable (IE) bit from the processor’s status register and enables

acceptance of all maskable interrupts.

If a maskable interrupt occurs after the loc_cpu system call is issued but before this system call is issued, RX4000

delays processing for the interrupt (interrupt handler) until this system call is issued. If a system call (chg_pri,

sig_sem, etc) requiring task scheduling is issued, RX4000 merely queues the tasks into a queue and delays actual

scheduling until the unl_cpu system call is issued. Then all the tasks are performed at one time.

Remark Dispatch processing that was disabled by the issue of the dis_dsp system call is resumed by this

system call.

Caution This system call does not queue resume requests. Accordingly, if this system call has already

been issued, maskable interrupts have been accepted, and dispatch processing has been

resumed, this system call does not handle this as an error and performs no processing.

Return value

*E_OK 0 Normal termination

E_CTX –69 The unl_cpu system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

172 User's Manual U13422EJ1V1UM

Disable Interrupt (–72)

 dis_int
Task/nontask

Overview

Disables acceptance of maskable interrupts.

C format

#include <stdrx.h>

ER ercd = dis_int(void);

Parameter

None.

Explanation

This disables acceptance of maskable interrupts. Actually, this system call clears the interrupt enable (IE) bit from

the processor’s status register and disables acceptance of all maskable interrupts.

Cautions 1. With this system call, no disable request queuing is performed. Therefore, if this system

call is issued already and reception of maskable interrupts is disabled, non processing is

executed, it is not treated as an error.

2. In RX4000, a software timer is configured using a timer interrupt. Therefore, if interrupts are

disabled, operations such as delayed wake-up, time out cyclic activation no longer function.

Return value

*E_OK 0 Normal termination

E_CTX –69 The dis_int system call was issued from the interrupt disable state and the dispatch

disable state.

CHAPTER 12 SYSTEM CALLS

173User's Manual U13422EJ1V1UM

Enable Interrupt (–71)

 ena_int
Task/nontask

Overview

Enables acceptance of a maskable interrupt.

C format

#include <stdrx.h>

ER ercd = ena_int(void);

Parameter

None.

Explanation

Sets the interrupt enable (IE) bit in the processor’s status register and enables acceptance of all maskable

interrupts.

Cautions 1. With this system call, reopen request queuing is not performed. Therefore, if this system

call has been issued already, if acceptance of maskable interrupts has been enabled, no

processing is executed and it is not treated as an error.

2. With this system call, the interrupt mask (IM) bit in the status register is not changed.

Therefore, if there are any cleared interrupt mask (IM) bits in the status register when this

system call is issued, the affected interrupt is not received. When setting the interrupt mask

(IM) bit in the status register, use the chg_ims system call.

Return value

*E_OK 0 Normal termination

E_CTX –69 The ena_int system call was issued from the interrupt disabled state and the dispatch

disabled state.

CHAPTER 12 SYSTEM CALLS

174 User's Manual U13422EJ1V1UM

Change Interrupt Mask (–67)

 chg_ims
Task/nontask

Overview

Changes the interrupt mask.

C format

#include <stdrx.h>

ER ercd = chg_ims(UINT intms);

Parameter

I/O Parameter Description

I UNIT intms; Interrupt mask

Explanation

This system call changes the interrupt mask of the processor to the value specified in intms.

Actually, this system call rewrites the value in the status register’s interrupt mask (IM) area to the value in intms.

Cautions 1. Bit 7 of the IM area corresponds to the timer interrupt. In RX4000, since the software timer

is configured using timer interrupts, if this is disabled, delayed wake-up, time out, cyclic

activation, etc. stop functioning.

2. This system call does not change the interrupt enable (IE) bit in the status register.

Therefore, when the interrupt enable (IE) bit in the status register is cleared, even if this

system call is issued, interrupts are not received. Issue the unl_cpu system call to set the

status register’s interrupt enable (IE) bit.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid specification of interrupt mask (0xFF< intms)

CHAPTER 12 SYSTEM CALLS

175User's Manual U13422EJ1V1UM

Refer Interrupt Mask (–68)

 ref_ims
Task/nontask

Overview

Acquires the interrupt mask.

C format

#include <stdrx.h>

ER ercd = ref_ims(UINT *p_intms);

Parameter

I/O Parameter Description

O UINT *p_intms; Address of area used to store interrupt mask

Explanation

This system call stores the interrupt mask of the processor in the area specified in p_intms.

Return value

*E_OK 0 Normal termination

E_PAR –33 The address of the area used to store interrupt mask is invalid (p_intms = 0).

CHAPTER 12 SYSTEM CALLS

176 User's Manual U13422EJ1V1UM

12.8.6 Memory pool management system calls

This section explains a group of system calls that allocate memory blocks (memory pool management system

calls).

Table 12-10 lists the memory pool management system calls.

Table 12-10. Memory Pool Management System Calls

System call Function

cre_mpl Generates a memory pool.

del_mpl Deletes a memory pool.

get_blk Acquires a memory block.

pget_blk Acquires a memory block (polling).

tget_blk Acquires a memory block (with timeout).

rel_blk Returns a memory block.

ref_mpl Acquires memory pool information.

CHAPTER 12 SYSTEM CALLS

177User's Manual U13422EJ1V1UM

Create Variable-size Memory Pool (–137)

 cre_mpl
Task

Overview

Generates a memory pool.

C format

• When an ID number is specified

#include <stdrx.h>

ER ercd = cre_mpl(ID mplid, T_CMPL *pk_cmpl);

• When an ID number is not specified

#include <stdrx.h>

ER ercd = cre_mpl(ID_AUTO, T_CMPL *pk_cmpl, ID *p_mplid);

Parameters

I/O Parameter Description

I ID mplid; Memory pool ID number

I T_CMPL *pk_cmpl; Start address of packet containing memory pool creation information

O ID *p_mplid; Address of area used to store an ID number

• Structure of memory pool creation information T_CMPL

typedef struct t_cmpl {

VP exinf; /* Extended information */

ATR mplatr; /* Memory pool attribute */

INT mplsz; /* Memory pool size */

} T_CMPL;

Explanation

RX4000 provides two types of interfaces for memory pool creation: one in which an ID number must be specified

for memory pool creation, and another in which an ID number is not specified.

• When an ID number is specified

A memory pool having an ID number specified in mplid is created based on the information specified in

pk_cmpl.

• When an ID number is not specified

A memory pool is created based on the information specified in pk_cmpl.

An ID number is allocated by RX4000 and the allocated ID number is stored into the area specified in p_mplid.

CHAPTER 12 SYSTEM CALLS

178 User's Manual U13422EJ1V1UM

The following describes memory pool creation information in detail.

exinf ... Extended information

exinf is an area used for storing user-specific information for a specified memory pool. The

user can use this area as necessary.

Information set in exinf can be dynamically acquired by issuing the ref_mpl system call from

a processing program (task/non-task).

mplatr ... Memory pool attribute

Bit 0 .. Method of queuing to a queue

TA_TPRI(0): Priority order

TA_TFIFO(1): FIFO order

Method of queuing to a queue

015

mplatr

8 7

mplsz ... Memory pool size (bytes)

Return value

*E_OK 0 Normal termination

*E_NOMEM –10 A memory pool management block or memory pool area cannot be allocated.

E_RSATR –24 Invalid specification of attribute mplatr

E_PAR –33 Invalid parameter specification

− The start address of a packet storing memory pool creation information is invalid
(p_mplid = 0).

− Invalid size specification (mplsz ≤ 0).

E_ID –35 Invalid ID number specification (maximum number of semaphores created < mplid)

*E_OBJ –63 A memory pool having the specified ID number has already been created.

E_OACV –66 An unauthorized ID number (mplid < 0) was specified.

E_CTX –69 The cre_mpl system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

179User's Manual U13422EJ1V1UM

Delete Variable-size Memory Pool (–138)

 del_mpl
Task

Overview

Deletes a memory pool.

C format

#include <stdrx.h>

ER ercd = del_mpl(ID mplid);

Parameters

I/O Parameter Description

I ID mplid; Memory pool ID number

Explanation

This system call deletes the memory pool specified in mplid.

The specified memory pool is released from the control of RX4000.

The task released from the wait state (memory block wait state) by this system call has E_DLT returned as the

return value of the system call (get_blk or tget_blk) that instigated transition to the wait state.

Return value

*E_OK 0 Normal termination

E_ID –35 Invalid ID number specification (maximum number of memory pools that can be created

< mplid)

*E_NOEXS –52 The specified memory pool does not exist.

E_OACV –66 An unauthorized ID number (mplid ≤ 0) was specified.

E_CTX –69 The del_mpl system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

180 User's Manual U13422EJ1V1UM

Get Variable-size Memory Block (–141)

 get_blk
Task

Overview

Acquires a memory block.

C format

#include <stdrx.h>

ER ercd = get_blk(VP *p_blk, ID mplid, INT blksz);

Parameters

I/O Parameter Description

O VP *p_blk; Address of area used to store the start address of the memory block

I ID mplid; Memory pool ID number

I INT blksz; Memory block size (bytes)

Explanation

This system call acquires a memory block, of the size specified in blksz, from the memory pool specified in mplid

and stores its start address into the area specified in p_blk.

If no memory block can be acquired from a specified memory pool (when there is no free area of the requested

size) upon the issue of this system call, this system call places the task in the queue of a specified memory pool

before changing its state from the run state to the wait state (memory block wait state).

The memory block wait state is released when a memory block that satisfies the requested size is released by a

rel_blk system call or upon the issue of a del_mpl or rel_wai system call, and the task returns to the ready state.

Caution RX4000 does not clear the memory upon acquiring a memory block. Accordingly, the contents

of an acquired memory block are undefined.

Remark When a task queues in the wait queue of the specified memory pool, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that memory pool was generated (during

configuration or when a cre_mpl system call was issued).

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− The address of the area for storing the start address of the memory block is
invalid (p_blk = 0).

− Invalid specification of memory block size (p_blk ≤ 0)

E_ID –35 Invalid ID number specification (maximum number of memory pools that can be

created < mplid)

CHAPTER 12 SYSTEM CALLS

181User's Manual U13422EJ1V1UM

*E_NOEXS –52 The specified memory pool does not exist.

E_OACV –66 An unauthorized ID number (mplid ≤ 0) was specified.

E_CTX –69 Context error

− The get_blk system call was issued from a non-task.

− The get_blk system call was issued in the dispatch disabled state.

*E_DLT –81 A specified memory pool was deleted using a del_mpl system call.

*E_RLWAI –86 The memory block wait state was forcibly released by the rel_wai system call.

EV_SIGNAL –225 The memory block wait state was forcibly released by the vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

182 User's Manual U13422EJ1V1UM

Poll and Get variable-size Memory Block (–104)

 pget_blk
Task/nontask

Overview

Acquires a memory block (polling).

C format

#include <stdrx.h>

ER ercd = pget_blk(VP *p_blk, ID mplid, INT blksz);

Parameters

I/O Parameter Description

O VP *p_blk; Address of area used to store the start address of a memory block

I ID mplid; Memory pool ID number

I INT blksz; Memory block size (bytes)

Explanation

This system call acquires a memory block of the size specified in blksz from the memory pool specified in mplid

and stores its start address into the area specified in p_blk.

When this system call is issued, if no memory block can be acquired from the specified memory pool (when there

is no free area of the requested size), this system call returns E_TMOUT as the return value.

Caution RX4000 does not clear the contents of memory when acquiring a memory block. Accordingly,

the contents of an acquired memory block will be undefined.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− The address of the area used to store the start address of a memory block is
invalid (p_blk = 0).

− Invalid specification of memory block size (blksz ≤ 0)

E_ID –35 Invalid ID number specification (maximum number of memory pools that can be created

< mplid)

*E_NOEXS –52 The specified memory pool does not exist.

E_OACV –66 An unauthorized ID number (mplid ≤ 0) was specified.

*E_TMOUT –85 There is no free space in the specified memory pool.

CHAPTER 12 SYSTEM CALLS

183User's Manual U13422EJ1V1UM

Get Variable-size Memory Block with Timeout (–168)

 tget_blk
Task

Overview

Acquires a memory block (with timeout).

C format

#include <stdrx.h>

ER ercd = tget_blk(VP *p_blk, ID mplid, INT blksz, TMO tmout);

Parameters

I/O Parameter Description

O VP *p_blk; Address of area used to store the start address of a memory block

I ID mplid; Memory pool ID number

I INT blksz; Memory block size (bytes)

I TMO tmout; Wait time (basic clock cycles)

TMO_POL(0): Quick return

TMO_FEVR(–1): Permanent wait

Value: Wait time

Explanation

This system call acquires a memory block of the size specified in blksz from the memory pool specified in mplid

and stores its start address into the area specified in p_blk.

If a memory block cannot be acquired from a specified memory pool (when there is no free area of the requested

size) when this system call is issued, this system call places the task in the queue of a specified memory pool

before changing it from the run state to the wait state (memory block wait state).

The memory block wait state is released when the wait time specified in tmout elapses, when a memory block that

satisfies the requested size is released by the rel_blk system call, or when the del_mpl or rel_wai system call is

issued. Then, the task returns to the ready state.

Caution RX4000 does not clear the contents of memory upon acquiring a memory block. Accordingly,

the contents of an acquired memory block will be undefined.

Remark When a task queues in the wait queue of the specified memory pool, it is executed in the sequence

(FIFO sequence or priority order sequence) specified when that memory pool was generated (during

configuration or when a cre_mpl system call was issued).

CHAPTER 12 SYSTEM CALLS

184 User's Manual U13422EJ1V1UM

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− The address of the area used to store the start address of memory block is
invalid (p_blk = 0).

− Invalid specification of memory block size (blksz ≤ 0)

− Invalid wait time specification (tmout < TMO_FEVR)

E_ID –35 Invalid ID number specification (maximum number of memory pools that can be

created < mplid)

*E_NOEXS –52 The specified memory pool does not exist.

E_OACV –66 An unauthorized ID number (mplid ≤ 0) was specified.

E_CTX –69 Context error

− The tget_blk system call was issued from a non-task.

− The tget_blk system call was issued in the dispatch disabled state.

*E_DLT –81 A specified memory pool was deleted by the del_mpl system call.

*E_TMOUT –85 Timeout elapsed.

*E_RLWAI –86 The memory block wait state was forcibly released by a rel_wai system call.

EV_SIGNAL –225 The memory block wait state was forcibly released by a vsnd_sig system call.

CHAPTER 12 SYSTEM CALLS

185User's Manual U13422EJ1V1UM

Release Variable-size Memory Block (–143)

 rel_blk
Task/nontask

Overview

Returns a memory block.

C format

#include <stdrx.h>

ER ercd = rel_blk(ID mplid, VP blk);

Parameters

I/O Parameter Description

I ID mplid; Memory pool ID number

I VP blk; Start address of memory block

Explanation

This system call returns the memory block specified in blk to the memory pool specified in mplid.

If the size of the returned memory block satisfies the size requested by the task (first task in the wait queue)

queuing in the specified memory pool’s wait queue when this system call is issued, the memory block is

transferred to the affected task (first task in the wait queue).

Consequently, the relevant task is removed from the queue, and changes from the wait state (memory block wait

state) to the ready state, or from the wait_suspend state, to the suspend state.

Cautions 1. In RX4000, when a memory block is acquired, memory clear is not performed. Therefore,

the contents of the acquired memory block are not definite.

2. The memory block to be returned must be the same as that specified upon the issue a

get_blk, pget_blk, or tget_blk system call.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− Invalid specification of the start address of a memory block (blk = 0).

− The memory pool specified when acquired differs from that specified upon the
issue of the rel_blk system call.

E_ID –35 Invalid ID number specification (maximum number of memory pools that can be created

< mplid)

*E_NOEXS –52 The specified memory pool does not exist.

*E_OBJ –63 The returning memory block is used as a message.

E_OACV –66 An unauthorized ID number (mplid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

186 User's Manual U13422EJ1V1UM

Refer Variable-size Memory Pool Status (–140)

 ref_mpl
Task/nontask

Overview

Acquires a memory pool information.

C format

#include <stdrx.h>

ER ercd = ref_mpl(T_RMPL *pk_rmpl, ID mplid);

Parameters

I/O Parameter Description

O T_RMPL *pk_rmpl; Start address of packet used to store memory pool information

I ID mplid; Memory pool ID number

• Structure of memory pool information T_RMPL structure

typedef struct t_rmpl {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

INT frsz; /* Total size of free area */

INT maxsz; /* Maximum memory block size that can be acquired */

} T_RMPL;

Explanation

This system call stores the memory pool information (extended information, existence of waiting tasks, etc.) for the

memory pool specified in mplid into the packet specified in pk_rmpl.

Memory pool information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0): No waiting task

Value: ID number of first task in the queue

frsz ... Total size of free area (bytes)

maxsz ... Maximum memory block size that can be acquired (bytes)

Return value

*E_OK 0 Normal termination
E_PAR –33 The start address of the packet used to store memory pool information is invalid (pk_rmpl = 0).

E_ID –35 Invalid ID number specification (maximum number of memory pools that can be created
< mplid)

*E_NOEXS –52 The specified memory pool does not exist.

E_OACV –66 An unauthorized ID number (mplid ≤ 0) was specified.

CHAPTER 12 SYSTEM CALLS

187User's Manual U13422EJ1V1UM

12.8.7 Time management system calls

This section explains those system calls (time management system calls) that perform processing that is

dependent on time.

Table 12-11 lists the time management system calls.

Table 12-11. Time Management System Calls

System call Function

set_tim Sets the system clock.

get_tim Acquires the time from the system clock.

dly_tsk Changes the task to the timeout wait state.

def_cyc Registers a cyclically activated handler or cancels its registration.

act_cyc Controls the activity state of a cyclically activated handler.

ref_cyc Acquires cyclically activated handler information.

CHAPTER 12 SYSTEM CALLS

188 User's Manual U13422EJ1V1UM

Set Time (–83)

 set_tim
Task/nontask

Overview

Sets the system clock.

C format

#include <stdrx.h>

ER ercd = set_tim(SYSTIME *pk_tim);

Parameters

I/O Parameter Description

I SYSTIME *pk_tim; Start address of packet storing time

• Structure of system clock SYSTIME

typedef struct systime {

UW ltime; /* Time (low-order 32 bits) */

H utime; /* Time (high-order 16 bits) */

} SYSTIME;

Explanation

This system call sets the system clock to the time specified in pk_tim.

Return value

*E_OK 0 Normal termination

E_PAR –33 The start address of the packet storing time is invalid (pk_tim = 0).

CHAPTER 12 SYSTEM CALLS

189User's Manual U13422EJ1V1UM

Get Time (–84)

 get_tim
Task/nontask

Overview

Acquires the time from the system clock.

C format

#include <stdrx.h>

ER ercd = get_tim(SYSTIME *pk_tim);

Parameters

I/O Parameter Description

O SYSTIME *pk_tim; Start address of packet storing time

• Structure of system clock SYSTIME

typedef struct systime {

UW ltime; /* Time (low-order 32 bits) */

H utime; /* Time (high-order 16 bits) */

} SYSTIME;

Explanation

This system call sets the current system clock time in the packet specified in pk_tim.

Return value

*E_OK 0 Normal termination

E_PAR –33 The start address of the packet used to store the time is invalid (pk_tim = 0).

CHAPTER 12 SYSTEM CALLS

190 User's Manual U13422EJ1V1UM

Delay Task (–85)

 dly_tsk
Task

Overview

Changes the task to the timeout wait state.

C format

#include <stdrx.h>

ER ercd = dly_tsk(DLYTIME dlytime);

Parameters

I/O Parameter Description

I DLYTIME dlytim; Delay time (basic clock cycles)

Explanation

This system call changes the state of the task from the run state to the wait state (timeout wait state) by the delay

time specified in dlytim.

The timeout wait state is released upon the elapse of the delay specified in dlytim or when the rel_wai system call

is issued. Then, the task returns to the ready state.

Caution The timeout wait state is released by neither the wup_tsk or ret_wup system call.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid specification of delay (dlytim < 0)

E_CTX –69 Context error

− The dly_tsk system call was issued from a non-task.

− The dly_tsk system call was issued in the dispatch disabled state.

*E_RLWAI –86 The timeout wait state was forcibly released by the issue of a rel_wai system call.

CHAPTER 12 SYSTEM CALLS

191User's Manual U13422EJ1V1UM

Define Cyclic Handler (–90)

 def_cyc
Task/nontask

Overview

Registers a cyclically activated handler or cancels its registration.

C format

#include <stdrx.h>

ER ercd = def_cyc(HNO cycno, T_DCYC *pk_dcyc);

Parameters

I/O Parameter Description

I HNO cycno; Specification number of cyclically activated handler

I T_DCYC *pk_dcyc; Start address of packet storing the cyclically activated handler registration

information

• Structure of cyclically activated handler registration information T_DCYC

typedef struct t_dcyc {

VP exinf; /* Extended information */

ATR cycatr; /* Attribute of cyclically activated handler */

FP cychdr; /* Activation address of cyclically activated handler */

UINT cycact; /* Initial activity state of cyclically activated handler */

CYCTIME cyctim; /* Activation time interval of cyclically activated handler */

VP gp; /* Specific GP register value of cyclically activated handler */

} T_DCYC;

Explanation

This system call uses the information specified in pk_dcyc to register the cyclically activated handler having the

specification number specified in cycno.

The cyclically activated handler registration information is described in detail below.

exinf ... Extended information

exinf is an area used for storing user-specific information on a specified task. The user can

use this area as necessary.

Information set in exinf can be dynamically acquired by issuing an ref_cyc system call from

a processing program (task/non-task).

cycatr ... Attribute of cyclically activated handler

Bit 0 .. Language in which the cyclically activated handler is encoded

TA_ASM(0): Assembly language

TA_HLNG(1): C

Bit 10 .. Existence of specific GP register value specification

TA_DPID(1): Specifies a specific GP register value.

CHAPTER 12 SYSTEM CALLS

192 User's Manual U13422EJ1V1UM

cychdr ... Activation address of cyclically activated handler

cycact ... Initial activity state of cyclically activated handler

TCY_OFF(0): The initial activity state is OFF

TCY_ON(1): The initial activity state is ON

cyctim ... Activation time interval of cyclically activated handler (basic clock cycles)

gp ... Specific GP register value for cyclically activated handler

When this system call is issued, if a cyclically activated handler corresponding to a specified specification number

is already registered, this system call does not handle this as an error and newly registers the specified cyclically

activated handler.

If this system call is issued with NADR(−1) set in the area specified in pk_dcyc, the registration of the cyclically

activated handler specified in cycno is canceled.

Remark If the value 1 of bit 10 of cycatr is other than TA_DPID, the contents of gp will be meaningless.

Return value

*E_OK 0 Normal termination

E_RSATR –24 Invalid specification of attribute cycatr

E_PAR –33 Invalid parameter specification

− Invalid specification of specification number (cycno ≤ 0, maximum number of
cyclically activated handlers that can be registered < cycno)

− The start address of the packet storing cyclically activated handler registration
information is invalid (pk_dcyc = 0).

− Invalid specification of activation address (cychdr = 0)

− Invalid specification of initial activity state cycact

− Invalid specification of activation time interval (cyctim ≤ 0)

Language in which a cyclically
activated handler is coded

015

cycatr

8 7

Existence of specific GP register value specification

CHAPTER 12 SYSTEM CALLS

193User's Manual U13422EJ1V1UM

Activate Cyclic Handler (–94)

 act_cyc
Task/nontask

Overview

Controls the activity state of a cyclically activated handler.

C format

#include <stdrx.h>

ER ercd = act_cyc(HNO cycno, UINT cycact);

Parameters

I/O Parameter Description

I HNO cycno; Specification number of cyclically activated handler

I UINT cycact; Specification of activity state and cycle counter

TCY_OFF(0): Changes the activity state to the OFF state.

TCY_ON(1): Changes the activity state to the ON state.

TCY_INI(2): Initializes the cycle counter.

Explanation

This system call changes the activity state of the cyclically activated handler specified in cycno

to the state specified in cycact. The specification format of cycact is described below.

• cycact = TCY_OFF

Changes the activity state of the cyclically activated handler to the OFF state. Even when the activation time is

reached, the cyclically activated handler is not activated.

Caution Even when the activity state of the cyclically activated handler is off, RX4000 increments the

cycle counter.

• cycact=TCY_ON

Changes the activity state of a cyclically activated handler to the ON state. When the activation time is

reached, the specified cyclically activated handler is activated.

• cycact=TCY_INI

Initializes the cycle counter of the specified cyclically activated handler.

• cycact = (TCY_ON|TCY_INI)

Changes the activity state of the specified cyclically activated handler to the ON state before initializing the

cycle counter.

When the activation time is reached, the specified cyclically activated handler is activated.

CHAPTER 12 SYSTEM CALLS

194 User's Manual U13422EJ1V1UM

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification

− The specification number of the cyclically activated handler is invalid (cycno ≤ 0,
maximum number of cyclically activated handlers that can be registered < cycno)).

− Invalid specification of activity state or cycle counter cycact

*E_NOEXS –52 The specified cyclically activated handler is not registered.

CHAPTER 12 SYSTEM CALLS

195User's Manual U13422EJ1V1UM

Refer Cyclic Handler Status (–92)

 ref_cyc
Task/nontask

Overview

Acquires cyclically activated handler information.

C format

#include <stdrx.h>

ER ercd = ref_cyc(T_RCYC *pk_rcyc, HNO cycno);

Parameters

I/O Parameter Description

O T_RCYC *pk_rcyc; Start address of packet used to store cyclically activated handler information

I HNO cycno; Specification number of cyclically activated handler

• Structure of cyclically activated handler information T_RCYC

typedef struct t_rcyc {

VP exinf; /* Extended information */

CYCTIME lfttim; /* Remaining time */

UINT cycact; /* Current activity state */

} T_RCYC;

Explanation

This system call stores the cyclically activated handler information (extended information, remaining time, etc.) of

the cyclically activated handler specified in cycno into the packet specified in pk_rcyc.

Cyclically activated handler information is described in detail below.

exinf ... Extended information

lfttim ... Time remaining until the cyclically activated handler is next activated (basic clock cycles)

cycact ... Current activity state

TCY_OFF(0): Activity state is OFF.

TCY_ON(1): Activity state is ON.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid parameter specification
− The start address of the packet used to store cyclically activated handler

information is invalid (pk_rcyc = 0).
− The specification number of the cyclically activated handler is invalid (cycno ≤ 0,

maximum number of cyclically activated handlers that can be registered < cycno)).

*E_NOEXS –52 The specified cyclically activated handler is not registered.

CHAPTER 12 SYSTEM CALLS

196 User's Manual U13422EJ1V1UM

12.8.8 System management system calls

This section explains those system calls (system management system calls) that perform processing that is

dependent on the system.

Table 12-12 lists the system management system calls.

Table 12-12. System Management System Calls

System call Function

get_ver Acquires RX4000 version information.

ref_sys Acquires system information.

def_svc Registers an extended SVC handler or cancels its registration.

viss_svc Calls an extended SVC handler.

def_exc Registers and cancels registration of exception handlers.

CHAPTER 12 SYSTEM CALLS

197User's Manual U13422EJ1V1UM

Get Version Information (–16)

 get_ver
Task/nontask

Overview

Acquires RX4000 version information.

C format

#include <stdrx.h>

ER ercd = get_ver(T_VER *pk_ver);

Parameters

I/O Parameter Description

O T_VER *pk_ver; Start address of packet used to store version information

• Structure of version information T_VER

typedef struct t_ver {

UH maker; /* OS maker */

UH id; /* OS format */

UH spver; /* Specification version */

UH prver; /* OS version */

UH prno[4]; /* Product number, production management information */

UH cpu; /* CPU information */

UH var; /* Variation descriptor */

} T_VER;

Explanation

This system call stores the RX4000 version information (OS maker, OS format, etc.) into the packet specified in

pk_ver.

Version information is described in detail below.

maker ... OS maker

H’000d: NEC

id ... OS format

H’0000: Not used

spver ... Specification version

H’5302: µITRON3.0 Ver. 3.02

prver ... OS product version

H’0300: RX4000 Ver. 3.00

CHAPTER 12 SYSTEM CALLS

198 User's Manual U13422EJ1V1UM

prno[4] ... Product number/product management information

Undefined: Serial number of delivery product (each unit has a unique number)

cpu ... CPU information

H’0d21: VR4100

var ... Variation descriptor

H’c000: µITRON level E, for single processor use, virtual storage not supported,

MMU not supported, file not supported

Return value

*E_OK 0 Normal termination

E_PAR –33 Start address of the packet used to store version information is invalid (pk_ver = 0).

CHAPTER 12 SYSTEM CALLS

199User's Manual U13422EJ1V1UM

Refer System Status (–12)

 ref_sys
Task/nontask

Overview

Acquires system information.

C format

#include <stdrx.h>

ER ercd = ref_sys(T_RSYS *pk_rsys);

Parameter

I/O Parameter Description

O T_RSYS *pk_rsys; Start address of packet used to store system information

• Structure of system information T_RSYS

typedef struct t_rsys {

INT sysstat; /* System state */

} T_RSYS;

Explanation

This system call stores the current value of dynamically-changing system information (system state) into the

packet specified in pk_rsys.

System information is described in detail below.

sysstat ... System state

TTS_TSK(0): Task processing is being performed. Dispatch processing is

enabled.

TTS_DDSP(1): Task processing is being performed. Dispatch processing is

disabled.

TTS_LOC(3): Task processing is being performed. The acceptance of maskable

interrupts and dispatch processing is disabled.

TTS_INDP(4): Processing of a non-task (interrupt handler, cyclically activated

handler, etc.) is being performed.

Return value

*E_OK 0 Normal termination

E_PAR –33 The start address of a packet used to store system information is invalid (pk_rsys = 0).

CHAPTER 12 SYSTEM CALLS

200 User's Manual U13422EJ1V1UM

Define Supervisor Call Handler (–9)

 def_svc
Task/nontask

Overview

Registers an extended SVC handler or cancels its registration.

C format

#include <stdrx.h>

ER ercd = def_svc(FN s_fncd, T_DSVC *pk_dsvc);

Parameters

I/O Parameter Description

I FN s_fncd; Extended function code of extended SVC handler

I T_DSVC *pk_dsvc; Start address of packet storing the extended SVC handler registration

information

• Structure of extended SVC handler registration information T_DSVC

typedef struct t_dsvc {

ATR svcatr; /* Attribute of extended SVC handler */

FP svchdr; /* Activation address of extended SVC handler */

VP gp; /* Specific GP register value for extended SVC handler */

} T_DSVC;

Explanation

This system call uses information specified in pk_dsvc to register the extended SVC handler having the extended

function code specified in s_fncd.

Extended SVC handler registration information is described in detail below.

svcatr ... Attribute of extended SVC handler
Bit 0 ... Language in which the extended SVC handler is coded

TA_ASM(0): Assembly language

TA_HLNG(1): C

Bit 10 ... Existence of specific GP register value specification

TA_DPID(1): Specifies a specific GP register value.

Language in which an extended
SVC handler is coded

015

svcatr

8 7

Existence of specific GP register value specification

CHAPTER 12 SYSTEM CALLS

201User's Manual U13422EJ1V1UM

svchdr ... Activation address of extended SVC handler

gp ... Specific GP register value of extended SVC handler

When this system call is issued, if an extended SVC handler corresponding to a specified interrupt level has

already been registered, this system call does not handle this as an error and newly registers the specified extended

SVC handler.

When this system call is issued, if NADR(–1) is set in the area specified in pk_dsvc, the registration of the

extended SVC handler specified in s_fncd is canceled.

Remark When the value 1 of bit 10 of svcatr is other than TA_DPID, the contents of gp are meaningless.

Return value

*E_OK 0 Normal termination

E_RSATR –24 Invalid specification of attribute svcatr

E_PAR –33 Invalid parameter specification

− Invalid specification of extended function code (s_fncd ≤ 0, maximum number of
extended SVC handlers that can be registered < s_fncd)

− The start address of the packet storing the extended SVC handler registration
information is invalid (pk_dsvc = 0).

− Invalid specification of activation address (svchdr = 0)

CHAPTER 12 SYSTEM CALLS

202 User's Manual U13422EJ1V1UM

Issued Supervisor Call Handler (–250)

 viss_svc
Task/nontask

Overview

Calls an extended SVC handler.

C format

#include <stdrx.h>

ER ercd = viss_svc(FN s_fncd, VW prm1, VW prm2, VW prm3);

Parameters

I/O Parameter Description

I FN s_fncd; Extended function code of extended SVC handler

I VW prm1; Parameter 1 passed to extended SVC handler

I VW prm2; Parameter 2 passed to extended SVC handler

I VW prm3; Parameter 3 passed to extended SVC handler

Explanation

This system call calls the extended SVC handler having the extended function code specified in s_fncd.

Remark When this system call is used to call an extended SVC handler, the interface library for the extended

SVC handlers need not be coded.

Return value

*E_OK 0 Normal termination

E_PAR –33 Invalid specification of extended function code (s_fncd ≤ 0, maximum number of

extended SVC handlers that can be registered < s_fncd)

Others Return value from extended SVC handler

CHAPTER 12 SYSTEM CALLS

203User's Manual U13422EJ1V1UM

Define Exception Handler (–11)

 def_exc
Task/nontask

Overview

Registers and cancels registration of exception handlers.

C format

#include <stdrx.h>

ER ercd = def_exc(INT exckind, T_DEXC *pk_dexc);

Parameters

I/O Parameter Description

I INT exckind; Type of Exception

TEK_CPU (0) : CPU exception

TEK_SYS (1) : System call exception

I T_DEXC *pk_dexc; Start address of the packet where exception handler registration information is

stored.

• Structure of exception handler registration information T_DEXC

typedef struct t_desc {

ATR excatr; /* Exception handler attribute */

FP exchdr; /* Exception handler starting address */

VP gp; /* Specific GP register value for exception handler */

} T_DEXC;

Explanation

Based on the information specified in pk_dexc, an exception handler which corresponds to the type of exception

specified in exckind is registered. Details of exception handler registration information are shown below.

excatr ... Exception handler attribute
Bit 0 ... Exception handler description language

TA_ASM(0): Assembly language

TA_HLNG(1): C

Bit 10 ... Existence of specific GP register value specification

TA_DPID(1): Specifies a specific GP register value

Language in which an
exception handler is coded

015

excatr

8 7

Existence of a specific GP register value specification

CHAPTER 12 SYSTEM CALLS

204 User's Manual U13422EJ1V1UM

exchdr ... Exception handler’s start address

gp ... Specific GP register value for exception handler

If an exception handler corresponding to the type of exception which is the object of this system call is already

registered when this system call is issued, the exception handler specified by this system call is newly registered.

Also, if NADR (-1) is specified in the area specified by pk_dsvc when this system call is issued, registration of the

exception handler corresponding to the type of exception specified in exckind is canceled.

Remark When the value 1 of bit 10 of excatr is other than TA_DPID, the contents of gp are meaningless.

Return value

*E_OK 0 Ended normally

E_RSATR –24 Invalid specification of attribute excatr

E_PAR –33 The parameter specification is invalid

− The specification for the type of exception is invalid (exckind <0, 1 < exckind).

− The start address of the packet where the exception handler registration
information is stored is invalid (pk_dexc = 0).

− The starting address specification is invalid (exchdr = 0).

205User's Manual U13422EJ1V1UM

APPENDIX A PROGRAMMING METHODS

This appendix explains how to write processing programs when CodeWarrior (Metroworks Corporation) or C Cross

MIPE Compiler, produced by Green Hills Software Inc., is being used.

A.1 Overview

In RX4000, processing programs are classified according to purpose, as shown below.

• Task

The minimum unit of a processing program which can be executed by RX4000.

• Interrupt handler

A routine dedicated to interrupt handling. When an interrupt occurs, this handler is activated upon the

completion of the preprocessing by RX4000 (such as saving the contents of the registers or switching the

stack).

• Cyclically activated handler

A routine dedicated to cyclic processing. Every time the specified time elapses, this handler is activated

immediately. This routine is handled independently of tasks. At the activation time, therefore, the processing

of a task currently being executed is canceled even if that task has the highest priority relative to all other tasks

in the system. Then, control is passed to the cyclically activated handler.

A cyclically activated handler incurs a smaller overhead before the start of execution, relative to any other

cyclic processing programs written by the user.

• Extended SVC handler

A function registered by the user as an extended system call.

• Task-associated handler

This is an exclusive routine for performing processing with respect to external occurrence (signals) generated

by each respective task. Since it is positioned as an extension of the task which generated the occurrence, it

is executed in the context of the specified task. Also, this handler has the same priority level as the specified

task and is scheduled at the same level as the task.

These processing programs have their own basic formats according to the general conventions or conventions to

be applied when RX4000 is used.

APPENDIX A PROGRAMMING METHODS

206 User's Manual U13422EJ1V1UM

A.2 Keywords

The character strings listed below are reserved as keywords for the configurator. These strings shall not,

therefore, be used for other purposes.

IO MIO RAM ROM VOID

action addr auto cache clktim

cychdr default defstk eventflag exchdr

exinf flgsvc gp id idlehdr

initcnt inithdr initptn inthdr intr

intstk intsvc intvl kernel kind

lang level mailbox map mask

maxcnt maxcyc maxflg maxmbx maxmpl

maxpri maxsem maxsvc maxtsk mbxsvc

memory memorypool memtype mplsvc name

nouse number pagesize pool pri

prot segment semaphore semsvc sighdr

sigsvc size sncsvc staaddr stack

task timsvc tsksvc type user

waiopt All system call names

A.3 Reserved Words

The character strings listed below are reserved as external symbols for RX4000. These strings shall not, therefore,

be used for other purposes.

sit _ _rx_start

APPENDIX A PROGRAMMING METHODS

207User's Manual U13422EJ1V1UM

A.4 Tasks

A.4.1 When CodeWarrior is used

When describing a task in C, describe it as an void-type function having one INT-type argument.

As an argument (stacd), the activation code specified when the sta_tsk system call is issued is set.

Figure A-1 shows the task description format (in C) when CodeWarrior is used.

Figure A-1. Task Description Format (C)

#include <stdrx.h>

void

func_task(INT stacd)

{

/* Processing of task func_task */
.............................

.............................

.............................

/* Termination of task func_task */
ext_tsk();

}

APPENDIX A PROGRAMMING METHODS

208 User's Manual U13422EJ1V1UM

When describing a task in assembly language, describe it as a function conforming to the function call conventions

of CodeWarrior.

As an argument (r4 register), the activation code specified when the sta_tsk system call is issued is set.

Figure A-2 shows the task description format (in assembly language) when CodeWarrior is used.

Figure A-2. Task Description Format (Assembly Language)

.include “stdrx.inc”

.text

.align 4

.globl _func_task
_func_task:

Processing of task func_task
..........................
..........................
..........................

Termination of task func_task
jr _ext_tsk

APPENDIX A PROGRAMMING METHODS

209User's Manual U13422EJ1V1UM

A.4.2 When C Cross MIPE Compiler is used

When describing a task in C, describe it as an void-type function having one INT-type argument.

As an argument (stacd), the activation code specified upon the issue of the sta_tsk system call is set.

Figure A-3 shows the task description format (in C) when C Cross MIPE Compiler is used.

Figure A-3. Task Description Format (C)

#include <stdrx.h>

void

func_task(INT stacd)

{

/* Processing of task func_task */
.............................

.............................

.............................

/* Termination of task func_task */
ext_tsk();

}

APPENDIX A PROGRAMMING METHODS

210 User's Manual U13422EJ1V1UM

When describing a task in assembly language, describe it as a function conforming to the function call conventions

of C Cross MIPE Compiler.

As an argument (r4 register), the activation code specified upon the issue of the sta_tsk system call is set.

Figure A-4 shows the task description format (in assembly language) when C Cross MIPE Compiler is used.

Figure A-4. Task Description Format (Assembly Language)

#include <stdrx.h>

.text

.align 4

.globl _func_task
_func_task:

Processing of task func_task
.........................
.........................
.........................

Termination of task func_task
jr _ext_tsk

Caution When describing a task in assembly language, specify “.s” as the file extension.

APPENDIX A PROGRAMMING METHODS

211User's Manual U13422EJ1V1UM

A.5 Interrupt Handler

A.5.1 When CodeWarrior is used

When describing an interrupt handler in C, describe it as an INT-type function having no argument.

Figure A-5 shows the description format of an interrupt handler (in C) when CodeWarrior is used.

Figure A-5. Description Format of Interrupt Handler (C)

#include <stdrx.h>

INT

func_inthdr()

{

/* Processing of interrupt handler func_inthdr */
..

..

..

/* Return processing from interrupt handler func_inthdr */
return(TSK_NULL);

}

Remark An interrupt handler is a subroutine called by interrupt processing in the nucleus. Therefore, when an

interrupt handler is described, an instruction for branching to the interrupt handler need not be set for

the handler address to which the processor passes control upon the occurrence of an interrupt.

APPENDIX A PROGRAMMING METHODS

212 User's Manual U13422EJ1V1UM

When describing an interrupt handler in assembly language, describe it as a function conforming to the function

call conventions of CodeWarrior.

Figure A-6 shows the description format of an interrupt handler (in assembly language) when CodeWarrior is used.

Figure A-6. Description Format of Interrupt Handler (Assembly Language)

.include “stdrx.inc”

.text

.align 4

.globl _func_inthdr

_func_inthdr:

Processing of interrupt handler func_inthdr
..

..

..

Return processing from interrupt handler func_inthdr
li TSK_NULL, r2

jr $ra

Remark An interrupt handler is a subroutine called by interrupt processing in the nucleus. Therefore, when an

interrupt handler is described, an instruction for branching to the interrupt handler need not be set for

the handler address to which the processor passes control upon the occurrence of an interrupt.

APPENDIX A PROGRAMMING METHODS

213User's Manual U13422EJ1V1UM

A.5.2 When C Cross MIPE Compiler is used

When describing an interrupt handler in C, describe it as an INT-type function having no argument.

Figure A-7 shows the description format of an interrupt handler (in C) when C Cross MIPE Compiler is used.

Figure A-7. Description Format of Interrupt Handler (C)

#include <stdrx.h>

INT

func_inthdr()

{

/* Processing of interrupt handler func_inthdr */
..

..

..

/* Return processing from interrupt handler func_inthdr */
return(TSK_NULL);

}

Remark An interrupt handler is a subroutine called by interrupt processing in the nucleus. Therefore, when an

interrupt handler is described, an instruction for branching to the interrupt handler need not be set for

the handler address to which the processor passes control upon the occurrence of an interrupt.

APPENDIX A PROGRAMMING METHODS

214 User's Manual U13422EJ1V1UM

When describing an interrupt handler in assembly language, describe it as a function conforming to the function

call conventions of C Cross MIPE Compiler.

Figure A-8 shows the description format of an interrupt handler (in assembly language) when C Cross MIPE

Compiler is used.

Figure A-8. Description Format of Interrupt Handler (Assembly Language)

#include <stdrx.h>

.text

.align 4

.globl _func_inthdr

_func_inthdr:

Processing of interrupt handler func_inthdr
...

...

...

Return processing from interrupt handler func_inthdr
li TSK_NULL, r2

jr $ra

Remark An interrupt handler is a subroutine called by interrupt processing in the nucleus. Therefore, when an

interrupt handler is described, an instruction for branching to the interrupt handler need not be set for

the handler address to which the processor passes control upon the occurrence of an interrupt.

Caution When describing an interrupt handler in assembly language, specify “.s” as the file extension.

APPENDIX A PROGRAMMING METHODS

215User's Manual U13422EJ1V1UM

A.6 Cyclically Activated Handler

A.6.1 When CodeWarrior is used

When describing a cyclically activated handler in C, describe it as an INT-type function having no argument.

Figure A-9 shows the description format of a cyclically activated handler (in C) when Code Warrior is used.

Figure A-9. Description Format of Cyclically Activated Handler (C)

#include <stdrx.h>

INT

func_cychdr()

{

/* Processing of cyclically activated handler func_cychdr */
..

..

..

/* Return processing from cyclically activated handler func_cychdr */
ret_tmr();

}

Remark A cyclically activated handler is a subroutine called by system clock processing in the nucleus.

APPENDIX A PROGRAMMING METHODS

216 User's Manual U13422EJ1V1UM

When describing a cyclically activated handler in assembly language, describe it as a function conforming to the

function call conventions of CodeWarrior.

Figure A-10 shows the description format of a cyclically activated handler (in assembly language) when

CodeWarrior is used.

Figure A-10. Description Format of Cyclically Activated Handler (Assembly Language)

.include “stdrx.inc”

.text

.align 4

.globl _func_cychdr

_func_cychdr:

Processing of cyclically activated handler func_cychdr
..

..

..

Return processing from cyclically activated handler func_cychdr
jr $ra

Remark A cyclically activated handler is a subroutine called by system clock processing in the nucleus.

APPENDIX A PROGRAMMING METHODS

217User's Manual U13422EJ1V1UM

A.6.2 When C Cross MIPE Compiler is used

When describing a cyclically activated handler in C, describe it as an INT-type function having no argument.

Figure A-11 shows the description format of a cyclically activated handler (in C) when C Cross MIPE Compiler is

used.

Figure A-11. Description Format of Cyclically Activated Handler (C)

#include <stdrx.h>

INT

func_cychdr()

{

/* Processing of cyclically activated handler func_cychdr */
..

..

..

/* Return processing from cyclically activated handler func_cychdr */
ret_tmr();

}

Remark A cyclically activated handler is a subroutine called by system clock processing in the nucleus.

APPENDIX A PROGRAMMING METHODS

218 User's Manual U13422EJ1V1UM

When describing a cyclically activated handler in assembly language, describe it as a function conforming to the

function call conventions of C Cross MIPE Compiler.

Figure A-12 shows the description format of a cyclically activated handler (in assembly language) when C Cross

MIPE Compiler is used.

Figure A-12. Description Format of Cyclically Activated Handler (Assembly Language)

#include <stdrx.h>

.text

.align 4

.globl _func_cychdr

_func_cychdr:

Processing of cyclically activated handler func_cychdr
...

...

...

Return processing from cyclically activated handler func_cychdr
jr $ra

Remark A cyclically activated handler is a subroutine called by system clock processing in the nucleus.

Caution When describing a cyclically activated handler in assembly language, specify “.s” as the file

extension.

APPENDIX A PROGRAMMING METHODS

219User's Manual U13422EJ1V1UM

A.7 Extended SVC Handler

A.7.1 When CodeWarrior is used

When describing an extended SVC handler in C, describe it as an INT-type function.

Figure A-13 shows the description format of an extended SVC handler (in C) when CodeWarrior is used.

Figure A-13. Description Format of Extended SVC Handler (C)

#include <stdrx.h>

INT
func_svchdr(VW prml, VW prm2, VW prm3)
{

int ret;

/* Processing of extended SVC handler func_svchdr */
..
..
..

/* Return processing from extended SVC handler func_svchdr */
return(INT ret);

}

APPENDIX A PROGRAMMING METHODS

220 User's Manual U13422EJ1V1UM

When describing an extended SVC handler in assembly language, describe it as a function conforming to the

function call conventions of CodeWarrior.

Figure A-14 shows the description format of an extended SVC handler (in assembly language) when CodeWarrior

is used.

Figure A-14. Description Format of Extended SVC Handler (Assembly Language)

.include “stdrx.inc”

.text

.align 4

.globl _func_svchdr

_func_svchdr:

Processing of extended SVC handler func_svchdr
...

...

...

Return processing from extended SVC handler func_svchdr
li ret, r2

jr $ra

APPENDIX A PROGRAMMING METHODS

221User's Manual U13422EJ1V1UM

A.7.2 When C Cross MIPE Compiler is used

When describing an extended SVC handler in C, describe it as an INT-type function.

Figure A-15 shows the description format of an extended SVC handler (in C) when C Cross MIPE Compiler is

used.

Figure A-15. Description Format of Extended SVC Handler (C)

#include <stdrx.h>

INT
func_svchdr(VW prml, VW prm2, VW prm3)
{

int ret;

/* Processing of extended SVC handler func_svchdr */
..
..
..

/* Return processing from extended SVC handler func_svchdr */
return(INT ret);

}

APPENDIX A PROGRAMMING METHODS

222 User's Manual U13422EJ1V1UM

When describing an extended SVC handler in assembly language, describe it as a function conforming to the

function call conventions of C Cross MIPE Compiler.

Figure A-16 shows the description format of an extended SVC handler (in assembly language) when C Cross

MIPE Compiler is used.

Figure A-16. Description Format of Extended SVC Handler (Assembly Language)

#include <stdrx.h>

.text

.align 4

.globl _func_svchdr

_func_svchdr:

Processing of extended SVC handler func_svchdr
...

...

...

Return processing from extended SVC handler func_svchdr
li ret, r2

jr $ra

Caution When describing an extended SVC handler in assembly language, specify “.s” as the file

extension.

APPENDIX A PROGRAMMING METHODS

223User's Manual U13422EJ1V1UM

A.8 Task-Associated Handler

A.8.1 When CodeWarrior is used

When describing the task-associated handler is described in C, describe it as a void-type function.

Figure A-17 shows the description format of a task-associated handler (in C) when CodeWarrior is used.

Figure A-17. Description Format of Task-Associated Handler (C)

#include <stdrx.h>

void

func_sighdr(VW prml, VW prm2, VW prm3)

{

/* Processing of task-associated handler func_sighdr */
...

...

...

/* Return processing from task-associated handler func_sighdr.*/
return;

}

APPENDIX A PROGRAMMING METHODS

224 User's Manual U13422EJ1V1UM

When describing a task-associated handler in assembly language, describe it as a function conforming to the

function call conventions of CodeWarrior.

Figure A-18 shows the description format of a task-associated handler (in assembly language) when Codewarrior

is used.

Figure A-18. Task-Associated Handler Description Format (Assembly Language)

#include “stdrx.inc”

.text

.align 4

.globl _func_sighdr

_func_sighdr:

Processing of task-associated handler func_sighdr
...

...

...

Return processing from task-associated handler func_sighdr
jr $ra

APPENDIX A PROGRAMMING METHODS

225User's Manual U13422EJ1V1UM

A.8.2 When C Cross MIPE Compiler is used

When describing a task-associated handler in C, describe it as a void-type function.

Figure A-19 shows the description format of a task-associated handler (in C) when C Cross MIPE Compiler is

used.

Figure A-19. Task-Associated Handler Description Format (C)

#include <stdrx.h>

void

func_sighdr(VW prml, VW prm2, VW prm3)

{

/* Processing of task-associated handler func_sighdr */
...

...

...

/* Return processing from task-associated handler func_sighdr.*/
return;

}

APPENDIX A PROGRAMMING METHODS

226 User's Manual U13422EJ1V1UM

When describing a task-associated handler in assembly language, describe it as a function conforming to the

function call convention of C Cross MIPE Compiler.

Figure A-20 shows the description format of task-associated handler (in assembly language) when C Cross MIPE

Compiler is used.

Figure A-20. Description Format of Task-Associated Handler (Assembly Language)

#include <stdrx.h>

.text

.align 4

.globl _func_sighdr

_func_sighdr:

Processing of task-associated handler func_sighdr
...

...

...

Return processing from task-associated handler func_sighdr
jr $ra

Caution When describing a task-associated handler in assembly language, specify “.s” as the file

extension.

227User's Manual U13422EJ1V1UM

APPENDIX B INDEX

[A]
act_cyc ...71, 193

activating/generating ..76

another task

wakes up and return from an interrupt

handler ..169

activates ..105

forcibly terminates ...108

deletes...104

[B]
basic clock cycle...67

boot processing ..22, 87

[C]
can_wup...131

chg_ims..59, 174

chg_pri ...111

clr_flg..45, 145

communication function......................................28, 39

mailbox ..28, 39, 49

compact design ..19

configurator ..19, 20

CPU exception handler ..85

cre_flg ..141

cre_mbx ...154

cre_mpl ..177

cre_sem..133

cre_tsk..101

cross tools ..21

cyclically activated handler70, 215

acquiring cyclically activated handler

information...74, 195

activity state...71

registering/canceling registration...................191

description format..................................215, 218

internal processing performed by the

handler ..73

limitation imposed on system calls73

registering..71

return processing...74

saving/restoring the registers73

stack switching ..73

[D]
data type ..94

*(FP)() ...94

*(VFP)() ...94

*VP ..94

ATR ...94

B..94

BOOL_ID...94

CYCTIME ..94

DLYTIME...94

ER ...94

FN ...94

H..94

HNO ..94

ID...94

INT ..94

PRI ..94

TMO ..94

UB ...94

UH ...94

UINT..94

UW ..94

VB ...94

VH ...94

VW ..94

W...94

debugger ..21

def_cyc...191

def_exc...203

def_int ..166

def_svc...200

del_flg...45, 143

del_mbx..50, 156

del_mpl...60, 179

del_sem..135

del_tsk..35, 104

delayed wake-up ..68

dly_tsk ...68, 190

development environment ..21

hardware environment.....................................21

software environment21

dis_dsp...80, 109

dis_int...172

dispatching ...58, 80

enabling...110

APPENDIX B INDEX

228 User's Manual U13422EJ1V1UM

disabling ... 109

dly_tsk ..68, 190

dormant state... 31

drive method.. 75

[E]
ena_dsp..81, 110

ena_int... 173

event-driven technique .. 75

event flag ..28, 39, 44

acquiring event flag information.................... 153

checking a bit pattern...............45, 146, 148, 150

clearing a bit pattern45, 145

deleting ..45, 143

event flag information 47

generating..44, 141

setting a bit pattern45, 144

event flag wait state ... 32

exception handler .. 85

CPU exception handler................................... 85

system call exception handler......................... 86

registration.. 86

registering/canceling registration 203

exclusive control function................................... 28, 39

semaphore.. 28, 39

exd_tsk ...34, 35, 107

execution environment... 20

ext_tsk ..34, 35, 106

extended SVC handler......................................85, 219

registering/cancels registration 200

calling ... 202

control the activity state 193

description format219, 220, 221, 222

[F]
FCFS method .. 29, 76

forced termination.. 34

frsm_tsk ... 127

[G]
get_blk ..64, 180

get_tid.. 115

get_tim..67, 189

get_ver... 197

[H]
hardware environment ... 21

host machine .. 21

hardware initialization section.............................21, 87

host machine ..21

[I]
idle handler...76

generating/activating76

processing by a handler76

interface library ...20, 89

positioning ...89

processing in the library...................................90

types..90

interrupt handler ...55, 211

description format211, 214

flow of processing..55

internal processing performed by the

handler ..56

limitation imposed on system calls57

registering..56

registering/canceling registration166

return processing.....................................57, 168

saving/restoring the registers...........................56

stack switching ..56

interrupt management function...........................28, 55

interrupt management system call....................92, 165

chg_ims ...59, 174

def_int..166

dis_int ..58, 172

ena_int...58, 173

loc_cpu ..58, 81, 170

ref_ims...59, 175

ret_int ..168

ret_wup..169

unl_cpu..58, 81, 171

interrupt mask...59

acquiring..59, 175

changing..59, 174

[K]
keyword ..206

[L]
level E...18

loc_cpu ...58, 81, 170

lock function ...80

[M]
µITRON 3.0 specification..18

level E..18

APPENDIX B INDEX

229User's Manual U13422EJ1V1UM

mailbox...28, 39, 49

acquiring mailbox information........................163

deleting..50, 156

generating ...49, 154

mailbox information ...52

receiving a message51, 159, 160, 161

sending a message50, 157

management object..61

typical arrangement...62

maskable interrupt..58

disabling ..58, 172

disabling acceptance and dispatch

processing ...170

enabling...58, 173

enabling acceptance and dispatch

processing ...171

memory block ...62

acquiring..................................64, 180, 182, 183

returning ..65, 185

memory block wait state ...32

memory pool...62

acquiring a memory block........64, 180, 182, 183

acquiring memory pool information65, 186

deleting..63, 179

generating ...63, 177

returning a memory block65, 185

memory pool management function28, 61

memory pool management system call92, 176

cre_mpl..177

del_mpl..63, 179

get_blk...64, 180

pget_blk...64, 182

ref_mpl ..65, 186

rel_blk..65, 185

tget_blk..64, 183

memory requirements ..21

message...52

allocating an area ..52

composition of messages52

message wait state...32

multiple interrupts ...60

flow..60

multitasking ..18, 39

multitask OS...18

[N]
non_existent state ..31

non-maskable interrupt...59

normal termination..34

nucleus...19, 27

configuration...27

nucleus initialization section88

[P]
parameter...94

value range ...95

peripheral hardware ...21

pget_blk..64, 182

pol_flg...46, 148

prcv_msg..51, 160

preq_sem ...41, 138

priority method ...29, 76

processing program..205

cyclically activated handler............................215

extended SVC handler219

interrupt handler ..211

task..207

task-associated handler223

processor ...20

programming ..205

cyclically activated handler............................215

interrupt handler ..211

extended SVC handler219

task..207

task-associated handler223

[R]
rcv_msg..51, 159

ready queue rotation ..113

ready state ...31

real-time OS ...17

real-time processing ...18

ref_cyc..74, 195

ref_flg ...47, 153

ref_ims ...59, 175

ref_mbx ..52, 163

ref_mpl ...65, 186

ref_sem ..42, 140

ref_sys..199

ref_tsk ..36, 116

rel_blk...65, 185

rel_wai..114

reserved words...206

resource

acquiring..41

returning ..40

APPENDIX B INDEX

230 User's Manual U13422EJ1V1UM

resource wait state... 32

ret_int... 168

ret_wup.. 169

return ... 57

return value.. 96

rot_rdq ... 113

round-robin method ... 77

rsm_tsk .. 126

run state... 32

[S]
sample source file.. 21

boot processing .. 21, 87

hardware initialization section................... 21, 88

system initialization................................... 21, 87

scheduler ... 29, 75

scheduling method .. 76

semaphore... 28, 39

acquiring semaphore information.................. 140

deleting ..40, 135

generating..40, 133

semaphore information 42

set_flg ...45, 144

set_tim ..67, 188

signal mask

acquiring ... 123

changing ... 122

signal sending.. 121

sig_sem ..40, 136

slp_tsk ... 128

snd_msg ...50, 157

software environment .. 21

software initialization section 88

software timer .. 67

sta_tsk ... 105

state transition ... 33

dormant state.. 31

non_existent state... 31

ready state.. 31

run state.. 32

suspend state ... 32

wait state .. 32

wait_suspend state ... 32

sus_tsk .. 125

suspend request

cancel ..126, 127

issues ... 125

suspend state .. 32

synchronization function ...39

event flag...28, 39, 44

semaphore...28, 39

synchronous communication function.................28, 39

synchronous communication system call92, 132

clr_flg...45, 145

cre_flg..141

cre_mbx...154

cre_sem...133

del_flg..45, 143

del_mbx...50, 156

del_sem...135

pol_flg..46, 148

prcv_msg...51, 160

preq_sem...41, 138

rcv_msg...51, 159

ref_flg ..47, 153

ref_mbx ...52, 163

ref_sem..42, 140

set_flg..45, 144

sig_sem ...40, 136

snd_msg..50, 157

trcv_msg..51, 70, 161

twai_flg ..46, 69, 150

twai_sem ...41, 69, 139

wai_flg ...45, 146

wai_sem ..41, 137

system call..91

act_cyc ..71, 193

calling ..93

can_wup ..131

chg_ims ...59, 174

chg_pri...111

clr_flg...45, 145

cre_flg..141

cre_mbx...154

cre_mpl..177

cre_sem...133

cre_tsk...101

def_cyc ..191

def_exc..203

def_int..166

def_svc ..200

del_flg..45, 143

del_mbx...50, 156

del_mpl..63, 179

del_sem...135

del_tsk ...35, 104

APPENDIX B INDEX

231User's Manual U13422EJ1V1UM

dis_dsp ..80, 109

dis_int ..58, 172

dly_tsk ...68, 190

ena_dsp...81, 110

ena_int...58, 173

exd_tsk ..34, 35, 107

ext_tsk ...34, 106

extension ...97

frsm_tsk...127

function code ...93

get_blk...64, 180

get_tid..115

get_tim...67, 189

get_ver ..197

loc_cpu ..58, 81, 170

pget_blk...64, 182

pol_flg..46, 148

prcv_msg...51, 160

preq_sem ..41, 138

rcv_msg...51, 159

ref_cyc...74, 195

ref_flg ..47, 153

ref_ims...59, 175

ref_mbx ...52, 163

ref_mpl ..65, 186

ref_sem ...42, 140

ref_sys...199

ref_tsk..36, 116

rel_blk..65, 185

rel_wai ...114

ret_int ..168

ret_wup..169

rot_rdq...113

rsm_tsk..126

set_flg..45, 144

set_tim...67, 188

sig_sem...40, 136

slp_tsk ...128

snd_msg..50, 157

sta_tsk ...105

sus_tsk ..125

ter_tsk..34, 108

tget_blk..64, 70, 183

trcv_msg..51, 70, 161

tslp_tsk ..69, 129

twai_flg ..46, 69, 150

twai_sem ...41, 69, 139

unl_cpu..58, 81, 171

vchg_sms ..122

vdef_sig...119

viss_svc...202

vref_sms..123

vsnd_sig ..121

wai_flg ...45, 146

wai_sem ..41, 137

wup_tsk ...130

system call exception handler86

system clock...67

setting and reading..67

system construction procedure22

system information ...85

acquiring..199

system initialization ..21, 87

boot processing ...21, 87

flow..87

hardware initialization section21, 88

nucleus initialization section88

sample source file ...21

software initialization section...........................88

system management ..85

system management system call92, 196

def_exc..203

def_svc..200

get_ver ..197

ref_sys...199

viss_svc...202

system performance analyzer21

[T]
task...18, 207

acquiring an ID number115

acquiring task information36, 116

activating ...34

canceling a suspend request.................126, 127

canceling a wake-up request.................128, 129

changing the priority111

delayed wake-up ...68

deleting..35

deleting after terminating...............................107

description format..................................207, 210

generating ...33, 101

internal processing of task...............................35

issuing a suspend request.............................125

issuing a wake-up request.............................130

limitation imposed on system calls35

releasing from the wait state114

APPENDIX B INDEX

232 User's Manual U13422EJ1V1UM

rotating a ready queue.................................. 113

saving/restoring the registers.......................... 35

stack switching.. 35

state.. 31

state transition .. 33

teminates ...34, 106

task-associated handler....................................37, 223

description format223, 224, 225, 226

saving/restoring the registers........................ 119

task-associated handler system call91, 118

vchg_sms ... 122

vdef_sig .. 119

viss_svc .. 202

vsnd_sig ... 121

task-associated synchronization system call91, 124

can_wup ... 131

frsm_tsk .. 127

rsm_tsk ... 126

slp_tsk .. 128

sus_tsk ... 125

tslp_tsk ..69, 129

wup_tsk .. 130

task context ... 31

task debugger.. 21

task management function................................. 28, 31

task management system call91, 100

chg_pri.. 111

cre_tsk .. 101

del_tsk ...35, 104

dis_dsp ..80, 109

ena_dsp...81, 110

exd_tsk ..34, 35, 107

ext_tsk ...34, 106

get_tid... 115

ref_tsk..36, 116

rel_wai .. 114

rot_rdq .. 113

sta_tsk .. 105

ter_tsk..34, 108

ter_tsk...34, 108

tget_blk ...64, 70, 183

time

acquires .. 189

sets ... 188

time management function 29, 67

time management system call92, 187

act_cyc ..71, 193

def_cyc ... 191

dly_tsk ...68, 190

get_tim...67, 189

ref_cyc...74, 195

set_tim...67, 68, 188

timeout..68

tget_blk..64, 70, 183

trcv_msg..51, 70, 161

tslp_tsk ..69, 129

twai_flg ..46, 69, 150

twai_sem ...41, 69, 139

timeout wait state..32

changes...201

trcv_msg..51, 70, 161

tslp_tsk ..69, 129

twai_flg ..46, 69, 150

twai_sem ...41, 69, 139

[U]
unl_cpu...58, 81, 171

utility ...19

configurator..19, 20

[V]
version information

acquiring..197

vchg_sms ...122

vdef_sig ..119

viss_svc..202

vref_sms...123

vsnd_sig ...121

[W]
wai_flg ..45, 146

wai_sem ...41, 137

wait function ...28, 39

event flag...28, 39, 44

wait state ..32

forcibly releases...114

wait_suspend state...32

wake-up request

canceling ...128, 129

cancels a request ..131

issuing ...130

wake-up wait state..32

wup_tsk ..130

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 01.2

Name

Company

From:

Tel. FAX

Facsimile Message

