


Applications

ISM Band, 900 MHz to 2.4 GHz

Broadband Gain Blocks

High Linearity Amplifiers

Cellular, PCS Base Stations



# HIGH LINEARITY BROADBAND AMPLIFIER

DC - 6 GHz

Excellence in Communications

### Features

- DC to 6 GHz
- 19.5 dB Gain at 1000 MHz
- 21 dBm Output P1dB at 1000 MHz
- 37 dBm Output IP3 at 1000 MHz
- 4.4 dB Noise Figure at 2000 MHz

### Packages Available

(-B) SOT-89

(-C) Micro-X

### Description

The EC-1078 is a high reliability, high linearity, low cost broadband amplifier, optimized for commercial communications. The device is manufactured using in-house developed advanced Indium Gallium Phosphide Heterojunction Bipolar Transistor (InGaP HBT) technology and is designed for use as a 50 Ohm gain block. The amplifier features excellent VSWR, low noise figure and highly linear performance. Typical OIP3 is +37dBm at 1000MHz. The EC-1078 operates from a single voltage supply and requires only two DC-blocking capacitors, a bias resistor and an inductor for operation. The device is ideal for

wireless applications and is available in low cost, surface-mountable plastic SOT-89 and Micro-X packages.

# **Electrical Specifications**

Test Conditions: Ic = 96mA, Ta = 25°C

| SYMBOL              | PARAMETER                          |                                              |              | LIMITS               |      |       | TEST CONDITION |
|---------------------|------------------------------------|----------------------------------------------|--------------|----------------------|------|-------|----------------|
| STMIDOL             | FARAMETER                          |                                              | MIN.         | TYP.                 | MAX. | UNIT  | 1201 CONDITION |
| F                   | Frequency                          |                                              | DC           |                      | 6000 | MHz   |                |
| G                   | Gain                               | f = 1000 MHz<br>f = 2000 MHz<br>f = 3000 MHz |              | 19.5<br>17.0<br>14.5 |      | dB    |                |
| P <sub>1dB</sub>    | Output Power @ 1 dB<br>Compression | f = 1000 MHz<br>f = 2000 MHz<br>f = 3000 MHz | 14.7<br>13.0 | 18.5<br>16.0<br>14.0 |      | dBm   |                |
| P <sub>sat</sub>    | Saturated Output Power             | f = 1000 MHz<br>f = 2000 MHz<br>f = 3000 MHz |              | 22.5<br>22.5<br>20.5 |      | dBm   |                |
| OIP3                | Output Third Order Intercept       | f = 1000 MHz<br>f = 2000 MHz<br>f = 3000 MHz |              | 37<br>33<br>31       |      | dBm   | NOTE 1         |
| VSWR <sub>IN</sub>  | Input Return Loss, 50 Ohm          | f = 2000 MHz                                 |              | 12.0                 |      | dB    |                |
| VSWR <sub>OUT</sub> | Output Return Loss, 50 Ohm         | f = 2000 MHz                                 |              | 8.0                  |      | dB    |                |
| NF                  | Noise Figure                       | f = 2000 MHz                                 |              | 4.4                  |      | dB    |                |
| lcc                 | Bias Current                       |                                              |              | 96.0                 |      | mА    |                |
| Vde                 | Device Voltage                     |                                              | 5.3          | 5.6                  | 5.9  | Volts |                |
| NOTE 1:             | OIP3 = Pout (by power meter, t     | otal 2-tone pov                              | ver) + (IM3  | (dB)) / 2 -          | 3 dB | •     | •              |

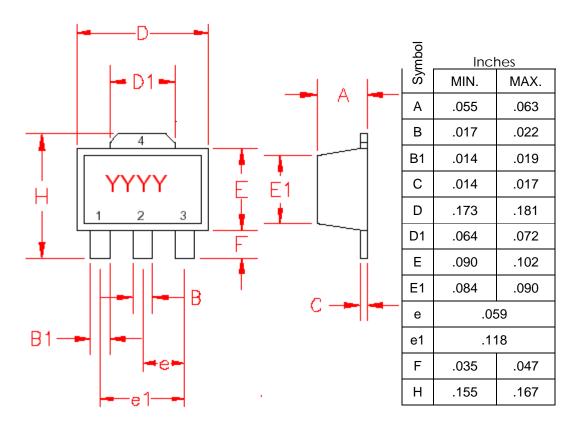






HIGH LINEARITY BROADBAND AMPLIFIER

### DC - 6 GHz


**EC-1078** 

### **Absolute Maximum Ratings**

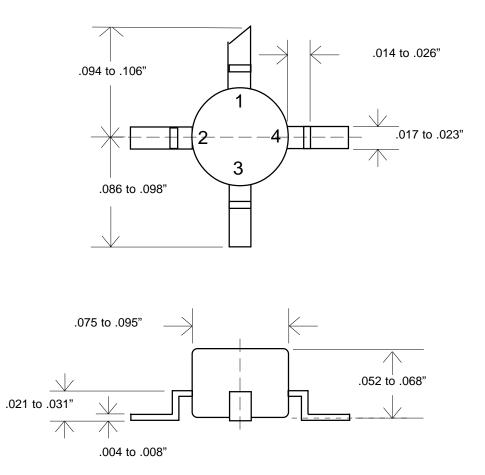
| Device Current        | 150         | mA  |
|-----------------------|-------------|-----|
| RF Power Input        | 12          | dBm |
| Operating Temperature | -40 to +85  | C°  |
| Storage Temperature   | -65 to +150 | C°  |
| Junction Temperature  | 200         | °C  |

Note: Exceeding any of the absolute maximum ratings may cause permanent damage to the device.

# SOT-89 Package Outline



| Pin # | Pin    | Definition                                                                                                                                                                                                                                                                                                                                                          |
|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | RF in  | This pin has a nominal 50 ohm input impedance. It requires a DC blocking<br>capacitor, large enough to handle the lowest frequency used.                                                                                                                                                                                                                            |
| 2, 4  | Gnd    | The two ground connections should be directly connected together to the ground plane on the PCB. The ground connection also serves as a heatsink.                                                                                                                                                                                                                   |
| 3     | RF out | This pin has a nominal 50 ohm output impedance. It requires a DC bias of 96mA through a series inductor and a resistor. A bypass capacitor (1.0 micro Farad) on the DC side of the inductor is recommended for providing instantaneous current during a modulated RF signal. Use a DC blocking capacitor on the output with similar requirements as the input side. |




# EC-1078

HIGH LINEARITY BROADBAND AMPLIFIER

DC - 6 GHz

# Micro-X Package Outline



# **Pin Definitions**

| Pin # | Pin    | Definition                                                                            |
|-------|--------|---------------------------------------------------------------------------------------|
| 1     | RF in  | This pin has a nominal 50 ohm input impedance. It requires a DC blocking              |
| •     |        | capacitor, large enough to handle the lowest frequency used.                          |
| 2.4   | Gnd    | The two ground connections should be directly connected together to the ground        |
| 2, 4  |        | plane on the PCB. The ground connection also serves as a heatsink.                    |
|       | RF out | This pin has a nominal 50 ohm output impedance. It requires a DC bias of 96mA         |
|       |        | through a series inductor and a resistor. A bypass capacitor (1.0 micro Farad) on the |
| 3     |        | DC side of the inductor is recommended for providing instantaneous current during a   |
|       |        | modulated RF signal. Use a DC blocking capacitor on the output with similar           |
|       |        | requirements as the input side.                                                       |

**EiC** Corp. Excellence in Communications

### HIGH LINEARITY BROADBAND AMPLIFIER

DC - 6 GHz

EC-1078

# Typical S-Parameters: Vde = 5.8V, lcc = 96mA, Temperature = 25°C

| Frequency<br>(MHz) | S11 (Mag) | S11 (Ang) | S21 (Mag) | S21 (Ang) | S12 (Mag) | S12 (Ang) | S22 (Mag) | S22 (Ang) |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 100                | 0.3017    | -6.493    | 11.3476   | 173.827   | 0.0613    | 0.903     | 0.3514    | -9.12     |
| 250                | 0.3018    | -16.131   | 11.1882   | 164.706   | 0.0620    | 3.996     | 0.3510    | -22.388   |
| 500                | 0.2954    | -32.112   | 10.7848   | 149.716   | 0.0657    | 7.055     | 0.3512    | -44.341   |
| 1000               | 0.2779    | -62.817   | 9.7589    | 122.603   | 0.0757    | 9.239     | 0.3562    | -83.509   |
| 1500               | 0.2591    | -92.099   | 8.5624    | 97.999    | 0.0879    | 6.603     | 0.3655    | -117.157  |
| 2000               | 0.2516    | -120.954  | 7.5458    | 75.506    | 0.1009    | 1.289     | 0.3835    | -147.067  |
| 2500               | 0.2487    | -147.911  | 6.6131    | 54.74     | 0.1116    | -5.864    | 0.4010    | -172.478  |
| 3000               | 0.2508    | -173.882  | 5.8311    | 35.757    | 0.1219    | -13.967   | 0.4243    | 164.255   |
| 3500               | 0.2647    | 158.404   | 5.1811    | 16.632    | 0.1313    | -23.67    | 0.4529    | 141.964   |
| 4000               | 0.2896    | 131.904   | 4.6415    | -1.454    | 0.1384    | -33.847   | 0.4891    | 121.386   |
| 4500               | 0.3329    | 105.992   | 4.1183    | -19.694   | 0.1435    | -44.845   | 0.5299    | 101.879   |
| 5000               | 0.3928    | 82.314    | 3.6389    | -37.586   | 0.1452    | -56.707   | 0.5776    | 82.996    |
| 5500               | 0.4626    | 62.485    | 3.1701    | -55.211   | 0.1433    | -68.752   | 0.6206    | 65.913    |
| 6000               | 0.5302    | 45.585    | 2.7487    | -71.258   | 0.1387    | -80.22    | 0.6581    | 50.361    |

Please follow the link on website page "http://eiccorp.com/products/gain.htm" for detailed s-parameter to 6.1 GHz.

### **Reliability and Burn-In Test**

EiC performs burn-in for selected lots on a regular basis to monitor and guarantee consistent product quality and reliability. The burn-in process consists pre-condition (JESD22-A113-B), pre and post rf tests, and bias life (JESD22-A108-A).

> The table is based on the following parameters and conditions. Activation Energy: 1.85eV Junction to Ambient Temperature Difference: 65°C

Confidence levels of 60% and 90% are used to calculate FIT (Failure In Time), for the nominal operating ambient temperature at +40°C.

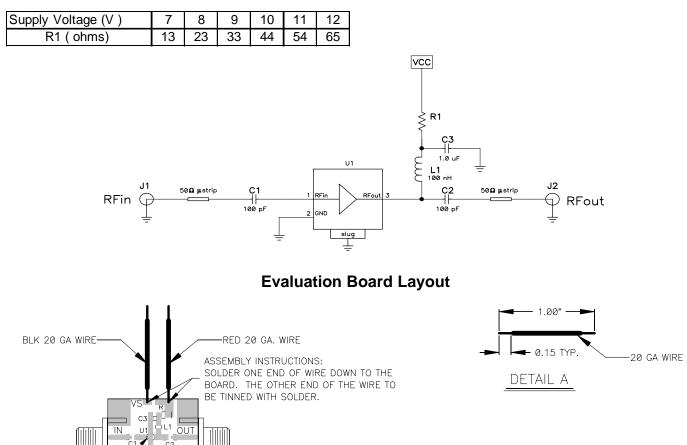
| Test Temp    | Hours Completed | Quantity Tested | Quantity Failed |  |
|--------------|-----------------|-----------------|-----------------|--|
| +145°C       | 1000            | 80              | 1               |  |
| +145°C       | 1000            | 80              | 0               |  |
| +125°C       | 1000            | 20              | 0               |  |
| +125°C       | 1000            | 20              | 0               |  |
| Cumula       | 22              |                 |                 |  |
| Cumulative M | 4.50E+07 Hours  |                 |                 |  |
| Cumula       | 43              |                 |                 |  |
| Cumulative M | 2.34E+07 Hours  |                 |                 |  |

EiC will update the burn-in and cumulative FIT results periodically. Please check the website at www.eiccorp.com



**EC-1078** 

HIGH LINEARITY BROADBAND AMPLIFIER


DC - 6 GHz

# **Evaluation Board Schematic**

**Recommended Bias Resistor Values** 

R = (Vcc-Vde)/Icc = (Vcc-5.8)/0.096

E.i.C



PIN 1 OF DEVICE

#### **Evaluation Board Materials**

| MANUFACTURER | PART NUMBER   | QTY. | DESCRIPTION           | VALUE                                     | DESIGNATORS |
|--------------|---------------|------|-----------------------|-------------------------------------------|-------------|
| MARU         | CE101J1NO     | 2    | Capacitor (0603)      | 100 pF                                    | C1, C2      |
| MARU         | CE105K1NR     | 1    | Capacitor (0603)      | 1.0 uF                                    | C3          |
| ROHM         | Various       | 1    | Resistor (0805)       | Depends on V <sub>cc</sub><br>(See Table) | R1          |
| DIGI-KEY     | TKS2386CT-ND  | 1    | Inductor (0603)       | 100 nH                                    | L1          |
| EF Johnson   | 142-0701-881  | 2    | SMA Connector         | -                                         | J1,J2       |
| EiC Corp     | EC-1078       | 1    | Amplifier             | -                                         | U1          |
|              | 60-00009-003B | 1    | Printed Circuit Board | -                                         |             |

1. EIC RECOMMENDED COMPONENTS ARE SHOW. EQUIVALENT COMPONENTS MAY BE USED.

2. LARGER VALUES GIVE BETTER LOW FREQUENCY RESPONSE(<500MHz) NOTES: UNLESS OTHERWISE SPECIFIED



EC-1078

HIGH LINEARITY BROADBAND AMPLIFIER

DC - 6 GHz

Figure 1



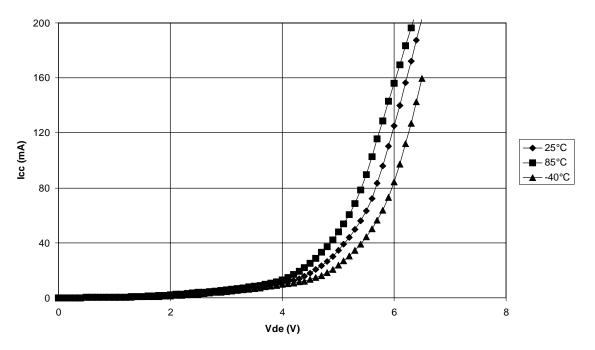
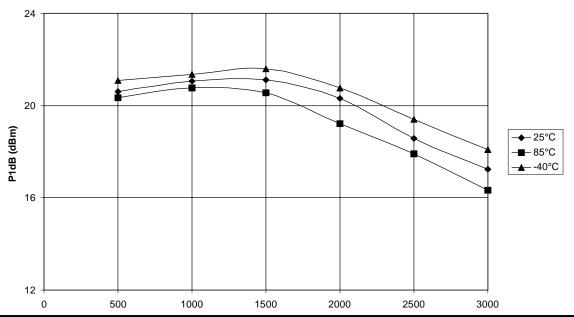



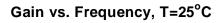

Figure 2

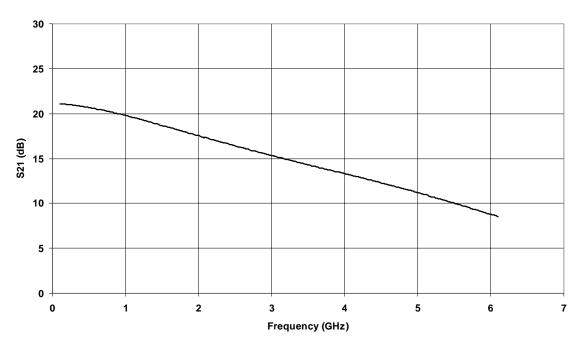




*EiC* Corp. A Subsidiary of *EiC* Enterprises, Ltd. Frequency (MHz) www.eiccorp.com 45738 Northport Loop West, Fremont, CA 94538 Phone: (510) 979-8999 Fax: (510) 979-8902

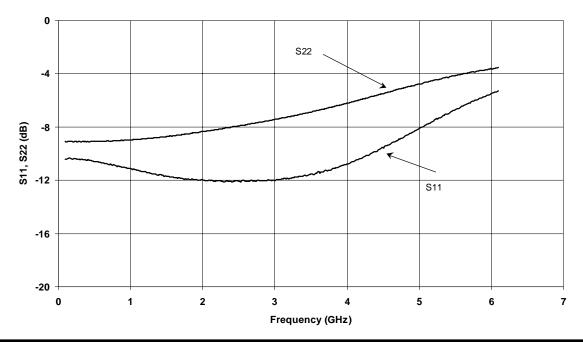
SS-000009-000 Rev R





ATA SHEET EC-1078

HIGH LINEARITY BROADBAND AMPLIFIER

DC - 6 GHz


Figure 3



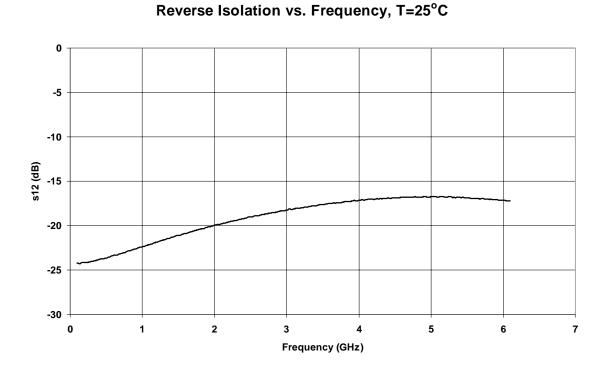


| F | ig | ur | е | 4 |
|---|----|----|---|---|
|   |    | -  | - |   |

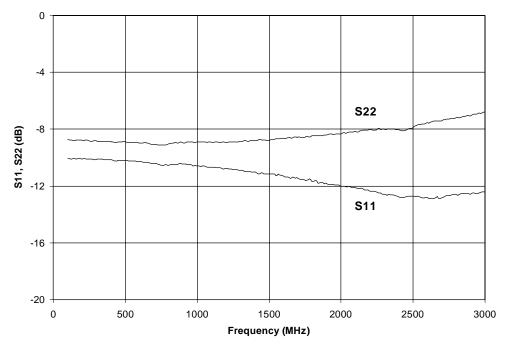
S11, S22 vs. Frequency, T=25°C



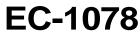
SS-000009-000 Rev R




EC-1078


HIGH LINEARITY BROADBAND AMPLIFIER

DC - 6 GHz

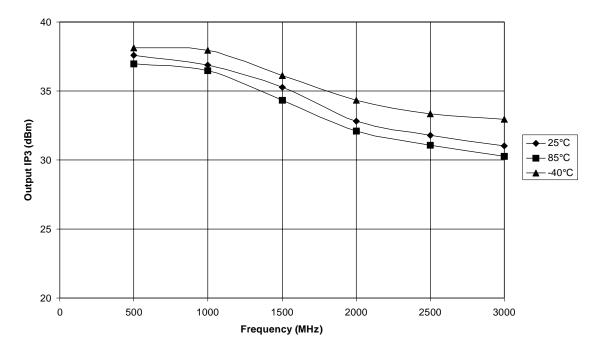

Figure 5



S11, S22 vs. Frequency, T=25°C








HIGH LINEARITY BROADBAND AMPLIFIER

DC - 6 GHz

Figure 7

**OIP3 vs. Frequency** 





**EC-1078** 

HIGH LINEARITY BROADBAND AMPLIFIER

DC - 6 GHz

# **APPLICATION NOTES**

Please visit our website at www.eiccorp.com to view or download the following documents. You may also call our Customer Service to request a hardcopy.

| Document #    | Description                                           |
|---------------|-------------------------------------------------------|
| AP-000192-000 | Discussion of Technology and Reliability Enhancements |
| AP-000194-000 | Biasing and Performance Enhancements                  |
| AP-000487-000 | Tape and Reel Specifications and Package Drawings     |
| AP-000515-000 | Voltage Spike Suppression                             |
| AP-000516-000 | Application Note Index                                |