SIGNAL LEVEL SENSOR SYSTEM

■ GENERAL DESCRIPTION

The NJM2072 is a monolithic integrated circuit designed for signal level sensor system. The NJM2070 features low power, low voltage operation, and high input sensitivity and is suited for the signal level sensor system for micro cassette, vox for telecommunications.

■ FEATURES

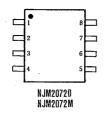
Operating Voltage

(0.9V~7V)

Low Operating Current

0.55mA typ.

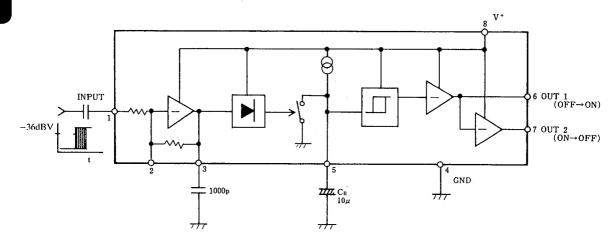
High Input Sensitivity


-36dB typ.

Package Outline

DIP8, DMP8

Bipolar Technology


■ PIN CONFIGURATION

PIN FUNCTION

- 1. INPUT
- 2. Gain Control
- 3. Amp. Output
- 4. GND
- 5. Capacitor for Recovery time
- 6. OUTI
- 7. OUT2
- 8. V1

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2072D

NJM2072M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

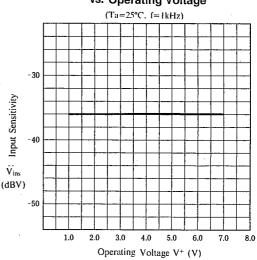
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	8		
Power Dissipation	Po	(DIP8) 500	137	
		(DMP8) 300	mW	
Operating Temperature Range	Торг	-40~+85	°C.	
Storage Temperature Range	T _{stg} -40~+125		C	
Maximum Input Voltage	Vimax	V+-1	V	

■ ELECTRICAL CHARACTERISTICS

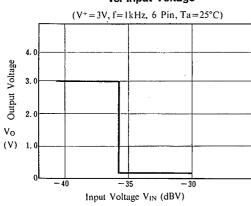
(Ta=25°C, V+=3V)

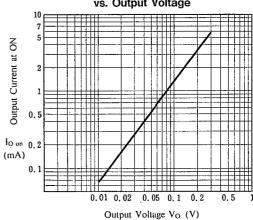
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	ν'		0.9	_	7	v
Operating Current	l _{ee} .	$V_{1N} = 0 \text{mVrms}, R_L = \infty$	0.2	0.55	1.5	mΑ
Input Sensitivity	V _{ins}	f=1kHz	-39	-36	-33	dBV
Attack Time (note 1)	Tate	$C_R = 10 \mu F$, $f = 1 kHz$		1	25	mSec
Recovery Time (note 2)	Tree	$C_R = 10 \mu F$, $f = 1 \text{kHz}$	_	2	-	Sec
Output Current at ON(OUT 1)	IOI on	$V_{in}=30$ mVrms. $V_{o}=0.3$ V	1	3	—	mA
Output Current at ON(OUT 2)	1 _{O2 on}	$V_{in}=0$ m V rms, $V_{o}=0.3V$	1	3		mA
Output Current at OFF(OUT1)	loren	$V_{io}=0$ mVrms, $V_{o}=8$ V	-	l —	1	μΑ
Output Current at OFF(OUT2)	I _{O2 off}	V _{in} =30mVrms, V _o =8V	-	_	1	μΑ
Input Resistance	Rin		16	20	24	kΩ
Charge Current	lchg		1.0	2.0	3.0	μΑ

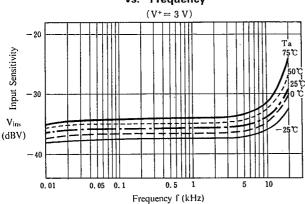
(note 1) Attack Time: Period from putting input signal of more than minimum input sensitive signal to output level change.

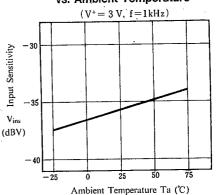

(note 2) Recovery Time: Period from input signal becoming lower than minimum input sensitine signal to output level change.

■ TYPICAL CHARACTERISTICS

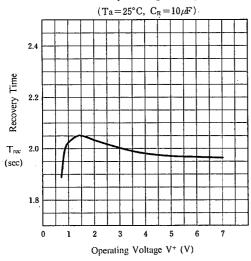

Operating Current vs. Operating Voltage


Input Sensitivity vs. Operating Voltage

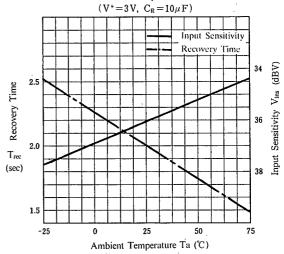

Output Voltage vs. Input Voltage


Output Current at ON vs. Output Voltage

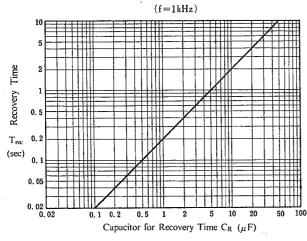
Input Sensitivity vs. Frequency

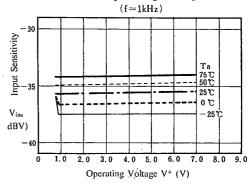


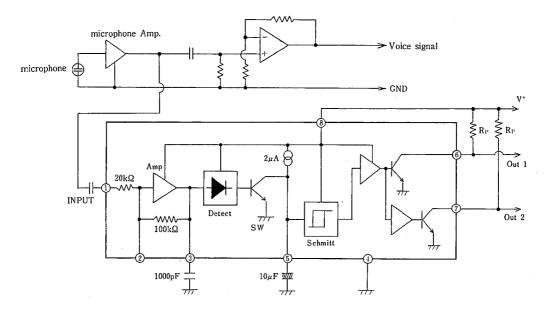
Input Sensitivity vs. Ambient Temperature



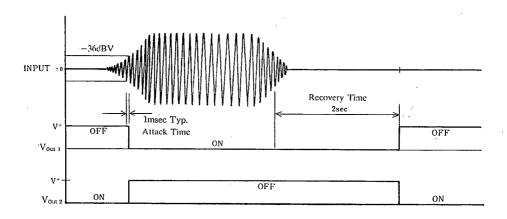
TYPICAL CHARACTERISTICS


Recovery Time vs. Operating Voltage


Input Sensitivity Recovery Time vs. Amvient Temperature


Recovery Time Characteristics

Input Sensitivity vs. Operating Voltage


■ TYPICAL APPLICATIONS

Pins 6 and 7 show an open collector. Mount resistor $R_{\rm p}$ shown by the following equation.

 $R_p = (V^+_{MIN} - 0.2)/0.3 (k\Omega)$

Resistor R_P to pin 7 is omissible, if pin 6 only is used. But resistor R_P to pin 6 should be put when Out 2 only is used. V^+_{MIN} is minimum supply voltage.

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.