
L64360 and
 ATMizer™ Architecture

Technical Manual

ii

This document is preliminary. As such, it contains data derived from functional
simulations and performance estimates. LSI Logic has not verified either the
functional descriptions, or the electrical and mechanical specifications using
production parts.

Document MN71-000101-99 A, First Edition (February 1995)
This document applies to Revision A of the L64360 and the ATMizer™ Archi-
tecture and to all subsequent versions unless otherwise indicated in a
subsequent edition or an update to this edition of the document.

Publications are stocked at the address given below. Requests should be
addressed to:

LSI Logic Corporation
Literature Distribution, M/S D-102
1551 McCarthy Boulevard
Milpitas, CA 95035
Fax: 408.433.8989

LSI Logic Corporation reserves the right to make changes to any products
herein at any time without notice. LSI Logic does not assume any responsibil-
ity or liability arising out of the application or use of any product described
herein, except as expressly agreed to in writing by LSI Logic; nor does the
purchase or use of a product from LSI Logic convey a license under any patent
rights, copyrights, trademark rights, or any other of the intellectual property
rights of LSI Logic or third parties.

Copyright 1995 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
LSI Logic logo design is a registered trademark and ATMizer and Self-Embed-
ding are trademarks of LSI Logic Corporation. All other brand and product
names may be trademarks of their respective companies.

Preface iii

Preface

This book is the primary reference and technical manual for the L64360 chip
and the ATMizer Architecture upon which it is based. It contains a complete
functional description of the L64360 and the ATMizer Architecture and
includes complete physical and electrical specifications for the L64360.

Audience This book assumes that the reader has some familiarity with microprocessors
and related support devices. This book is written for:

■ Engineers and managers who are evaluating the L64360 or the ATMizer
Architecture for possible use in a system

■ Engineers who are designing the L64360 or the ATMizer Architecture into
a system

Organization This book has the following chapters and appendices:

■ Chapter 1,Introduction , provides an overview of the ATMizer Architec-
ture, describes some ATMizer Architecture applications, and lists the
ATMizer Architecture’s features.

■ Chapter 2,Functional Overview, provides a functional overview of the
ATMizer Architecture and the L64360 implementation.

■ Chapter 3,Signal Descriptions, describes the signals that comprise the bit-
level interface to the L64360.

■ Chapter 4,ATMizer Processing Unit (APU) and Prefetch Buffer,
describes the function and operation of the ATMizer Processing Unit and
the Prefetch Buffer.

■ Chapter 5,Instruction RAM (IRAM) and Serial Interface , describes the
function and operation of the Serial Interface and how to load the Instruc-
tion RAM.

■ Chapter 6,Virtual Channel RAM (VCR) , describes the function and
operation of the Virtual Channel RAM.

iv Preface

■ Chapter 7,Pacing Rate Unit (PRU), describes the function and operation
of the Pacing Rate Unit.

■ Chapter 8,DMA Controller (DMAC) , describes the function and opera-
tion of the DMA Controller, which is contained within the Host/DMA Port.

■ Chapter 9,ATM Cell Interface (ACI) , describes the function and opera-
tion of the ATM Cell Interface.

■ Chapter 10,Secondary Port (SP), describes the function and operation of
the Secondary Port.

■ Chapter 11,System Mapping, describes the ATMizer Architecture system
hardware map.

■ Chapter 12,Operation, describes the ATMizer Architecture operation.

■ Chapter 13,Functional Waveforms, contains and describes the ATMizer
Architecture functional waveforms.

■ Chapter 14,Registers, describes and summarizes all the ATMizer Archi-
tecture registers.

■ Chapter 15,Specifications, describes the electrical and mechanical charac-
teristics of the L64360.

■ Appendix A, Glossary of Abbreviations, provides a glossary of abbrevia-
tions that are used in this manual.

■ Appendix B,Customer Feedback, provides a form that you may use to
fax LSI Logic your comments on the content and quality of this manual.

Related
Publications

CW33300 Enhanced Self-Embedding™ Processor Core User’s Manual, Order
No. C14014

LR33300 and LR33310 Self-Embedding™ Processors User’s Manual, Order
No. J14028

Conventions Used
in this Manual

The first time a word or phrase is defined in this manual, it isitalicized.

The following signal naming conventions are used throughout this manual:

■ A level-significant signal that is true or valid when the signal is LOW
always has an overbar () over its name.

■ An edge-significant signal that initiates actions on a HIGH-to-LOW transi-
tion always has an overbar () over its name.

The wordassertmeans to drive a signal true or active. The worddeassert
means to drive a signal false or inactive.

Preface v

Hexadecimal numbers are indicated by the prefix “0x” before the number—for
example, 0x32CF. Binary numbers are indicated by a subscripted “2” follow-
ing the number—for example, 0011.0010.1100.11112.

vi Preface

Contents vii

Contents

Chapter 1 Introduction
1.1 Overview 1-1

1.2 Features 1-4

General Features 1-4

ATM Adaptation Layer Features 1-6

ATM Layer Features 1-6

ATM Cell Interface (ACI) Features 1-7

Diagnostic Support Features 1-8

1.3 Applications 1-8

Scatter-Gather DMA 1-9

Application Acceleration 1-9

Cell Switching 1-9

Congestion Control 1-10

AAL 1 Realtime Data Streams 1-10

Diagnostic Operation 1-10

Chapter 2 Functional Overview
2.1 Overview 2-1

2.2 Functional Blocks 2-1

2.3 Buses 2-2

Chapter 3 Signal Descriptions
3.1 L64360 Logic Symbol 3-1

3.2 Host/DMA Port 3-2

3.3 ACI Transmitter 3-5

3.4 ACI Receiver 3-7

3.5 Secondary Port 3-8

3.6 Interrupt/Messaging 3-10

3.7 Serial Interface 3-11

3.8 Miscellaneous Operation 3-12

viii Contents

Chapter 4 ATMizer Processing Unit (APU) and Prefetch Buffer
4.1 APU Overview 4-1

4.2 Header and Trailer Generation and Retrieval 4-2

4.3 DMA 4-3

4.4 Pacing Rate Unit (PRU) Configuration 4-3

4.5 ACI Cell Queuing and Cell Processing 4-4

4.6 Memory Allocation 4-4

4.7 ATMizer Architecture-to-Host Messaging 4-5

4.8 Atomic Transactions 4-5

4.9 Host/DMA Port Priority 4-6

4.10 Congestion Control 4-6

4.11 APU External Access 4-7

4.12 Prefetch Buffer 4-9

Chapter 5 Instruction RAM (IRAM) and Serial Interface
5.1 Overview 5-1

5.2 Serial Downloading 5-2

5.3 Serial Interface Data Addressing 5-3

5.4 Multiple Downloading and ATMizer Booting 5-4

5.5 Loading Code into the IRAM Example Software 5-6

Chapter 6 Virtual Channel RAM (VCR)
6.1 Overview 6-1

6.2 Storing Cells 6-2

Incoming Cells 6-2

Outgoing Cells 6-3

6.3 Storing Channel Parameter Entries (CPEs) 6-3

Channel Parameter Entries 6-4

Channel Groups 6-5

6.4 Cell Multiplexing and Demultiplexing 6-8

6.5 VCR Partitioning Examples 6-9

Chapter 7 Pacing Rate Unit (PRU)
7.1 Overview 7-1

7.2 Peak Rate Pacing Counters (PRPCs) 7-2

7.3 Channel Group Credit Register (CGCR) 7-2

Contents ix

7.4 Count Initialization Register (CIR) 7-3

7.5 Configuration Register (CR) 7-4

7.6 Stall Register (SR) 7-6

7.7 Cell Rate Pacing 7-6

Peak Rate Pacing and Burst Length 7-6

Average Pacing 7-7

7.8 Channel Priority 7-8

Chapter 8 DMA Controller (DMAC)
8.1 Overview 8-1

8.2 Registers 8-2

DMAC Control Register’s Effective Address 8-2

DMAC Control Register 8-4

CRC32 Register 8-5

8.3 Programming the DMAC 8-5

8.4 Cell Switching, Segmentation, and Reassembly 8-6

Reassembly and Cell Switching 8-6

Segmentation and Cell Switching 8-8

8.5 CRC32 Generation 8-10

8.6 Misaligned Operations 8-11

8.7 Scatter and Gather Operations 8-14

8.8 DMA Operation Completion 8-14

Branch on Coprocessor Condition 3 True 8-15

Interrupt 8-15

Chapter 9 ATM Cell Interface (ACI)
9.1 Overview 9-1

9.2 ATM Cell Size 9-3

9.3 Frequency Decoupling 9-3

9.4 ACI Transmitter 9-4

Transmitter Cell Sources 9-4

Queuing a Cell for Transmission 9-5

Cell Rate Decoupling 9-6

Preparation for Transmission 9-7

9.5 ACI Receiver 9-8

Received Cell Handling Options 9-8

Received Cell Indication 9-9

Receiver Reset 9-12

x Contents

9.6 Traffic Shaping 9-12

9.7 HEC Generation and Checking 9-14

9.8 CRC10 Generation and Error Checking 9-14

9.9 Interfaces 9-16

UTOPIA 9-16

SAI 9-18

Chapter 10 Secondary Port (SP)
10.1 Overview 10-1

10.2 Operation 10-2

Instruction Fetch 10-2

Single Load/Store 10-2

Block Fetch 10-3

Byte Device Access (Boot PROM) 10-3

10.3 SP Address and Data Bus (SP_AD[31:0]) 10-3

10.4 SP Hardware Design Tip 10-6

Chapter 11 System Mapping
11.1 Memory Maps 11-1

Internal Memory Map 11-1

External Memory Map 11-5

System Memory Map Summary 11-7

11.2 Interrupts 11-8

11.3 Coprocessor Condition (CpCond) Connections 11-8

Chapter 12 Operation
12.1 Programming the ATMizer Architecture 12-1

12.2 Theory of Operation 12-2

Reassembly 12-3

Segmentation 12-6

12.3 Initializing the PRU 12-8

12.4 The ATMizer Architecture in Operation 12-13

Data Types Supported 12-14

Cell Generation 12-15

CS-PDU Reassembly Process 12-23

12.5 Congestion Notification and Handling 12-25

12.6 Initializing the Internal Registers 12-26

Contents xi

Chapter 13 Functional Waveforms
13.1 Secondary Port 13-1

13.2 Host/DMA Port 13-5

13.3 Serial Interface 13-12

13.4 ACI Transmitter 13-15

13.5 ACI Receiver 13-17

Chapter 14 Registers
14.1 System Control Register 14-1

14.2 APU Core Registers 14-6

BIU/Cache Configuration Register 14-7

Status Register 14-9

Status Register Mode Bits and Exception Processing 14-12

Cause Register 14-13

Bad Address Register 14-14

Target Address Register 14-15

Exception Program Counter Register 14-15

Processor Revision Identifier Register 14-16

Debug and Cache Invalidate Control Register 14-16

Breakpoint Program Counter Register 14-19

Breakpoint Program Counter Mask Register 14-19

Breakpoint Data Address Register 14-20

Breakpoint Data Address Mask Register 14-20

14.3 Other Registers Summary 14-20

Host Interrupt Register 14-20

MSB Substitution Register 14-21

PRU Channel Group Credit Register 14-21

PRU 12-Bit Count Initialization Registers 14-21

PRU 24-Bit Count Initialization Registers 14-21

PRU Configuration Register 14-22

PRU Stall Register 14-22

DMAC Control Register 14-23

CRC32 Register 14-23

ACI Current Received Cell Address Register 14-23

Received Cell Indicator Register 14-24

ACI Global Pacing Rate Register 14-24

xii Contents

Chapter 15 Specifications
15.1 AC Timing 15-1

15.2 Electrical Requirements 15-10

15.3 Pin Summary 15-12

15.4 Pinout, Pin List, and Package Information 15-13

Appendix A Glossary of Abbreviations

Appendix B Customer Feedback

Figures 1.1 ATMizer Architecture Supported B-ISDN Layers 1-2

1.2 ATMizer Architecture with Support Logic 1-3

1.3 Network Interface Card with No Local Memory 1-8

2.1 ATMizer Architecture Functional Block Diagram 2-2

3.1 L64360 Logic Symbol 3-2

4.1 MSB Substitution Register 4-7

4.2 Host/DMA Port Address and Byte Enables Formation 4-8

4.3 Effective Address for APU DMA/Host Port Access – Cacheable 4-8

4.4 Effective Address for APU DMA/Host Port Access – Non-cacheable 4-8

4.5 Effective Address for APU Secondary Port Access – Cacheable 4-9

4.6 Effective Address for APU Secondary Port Access – Non-cacheable 4-9

5.1 Serial Downloading 5-4

6.1 Example VCR Software Structures 6-7

6.2 VCR Partitioning for an NIC 6-9

6.3 VCR Partitioning for a Router 6-9

7.1 Channel Group Credit Register 7-3

7.2 12-Bit Count Initialization Register 7-3

7.3 24-Bit Count Initialization Register 7-4

7.4 Configuration Register 7-5

7.5 Stall Register 7-6

8.1 DMAC Control Register’s Effective Address 8-2

8.2 DMAC Control Register 8-4

8.3 CRC32 Register 8-5

8.4 CS-PDU Main Memory and VCR Cell Holder Addresses 8-9

9.1 ACI Transmitter and Receiver Block Diagram 9-2

9.2 Current Received Cell Address Register 9-10

Contents xiii

9.3 Global Pacing Rate Register 9-13

9.4 Maximum Line Utilization Rate (Count = 1, 50% Assigned Cells) 9-13

9.5 Maximum Line Utilization Rate (Count = 2, 67% Assigned Cells) 9-13

9.6 UTOPIA Connection to ATMizer Architecture 9-18

9.7 ATMizer Architecture-to- SAI Device Connections 9-19

10.1 SP_AD[31:0] 10-3

10.2 SP Effective Address 10-5

12.1 APU Idle Loop 12-2

12.2 Reassembly Routine 12-5

12.3 Segmentation Routine 12-7

12.4 ATMizer Architecture Example 12-14

12.5 AAL 1 Circuit Emulation and Data Buffering 12-16

12.6 AAL 3/4 CS-PDU Segmentation 12-17

12.7 AAL 5 CS-PDU Segmentation 12-18

12.8 Cell Generation Data Path 12-22

13.1 Secondary Port One-Word Read and Write 13-2

13.2 Secondary Port Fastest Access 13-3

13.3 Secondary Port Four-Word Read 13-4

13.4 Secondary Port Four-Word Read with SP_ASEL Toggle 13-4

13.5 Dynamic Bus Sizing on Secondary Port 13-5

13.6 Direct Load/Store Word Through DMA Port 13-6

13.7 16-Byte DMA Transactions 13-7

13.8 Non-Word-Aligned 16-Byte DMA Transactions 13-8

13.9 Block Fetch followed by a Single-Word Store 13-9

13.10 16-Byte DMA Transaction with CPU Steal Cycle 13-10

13.11 Host/DMA Port Operation with HBS_AOE, HBS_DOE Toggle

andHBS_AS Save Cycle 13-11

13.12 Serial Downloading Less Than 4 Kwords 13-13

13.13 Completion of 4-Kword Serial Downloading 13-13

13.14 Multiple Serial Downloading 13-14

13.15 ACI Transmitter Initialization 13-15

13.16 ACI Assigned Cell Transmission 13-16

13.17 ACITX_FULL Assertion 13-17

13.18 ACI Receiver Initialization 13-18

13.19 ACI Receiver HEC_ERR and RC_FULL Assertion 13-19

14.1 System Control Register 14-1

14.2 The Status Register and Exception Recognition 14-12

14.3 Restoring from Exceptions 14-13

xiv Contents

14.4 MSB Substitution Register 14-21

14.5 Channel Group Credit Register 14-21

14.6 12-Bit Count Initialization Register 14-21

14.7 24-Bit Count Initialization Register 14-22

14.8 Configuration Register 14-22

14.9 Stall Register 14-22

14.10 DMAC Control Register 14-23

14.11 DMAC Control Register’s Effective Address 14-23

14.12 CRC32 Register 14-23

14.13 Current Received Cell Address Register 14-24

14.14 Global Pacing Rate Register 14-24

15.1 AC Test Load and Waveform for Standard Outputs 15-2

15.2 AC Test Load and Waveform for 3-State Outputs 15-2

15.3 Secondary Port Timing 15-6

15.4 Host/DMA Port Timing 1 15-7

15.5 Host/DMA Port Timing 2 15-8

15.6 Transmitting Cell Timing 15-9

15.7 ACI Transmitter TX_IDLE Timing 15-9

15.8 Received Cell Timing 15-10

15.9 ACI Receiver RC_FULL Timing 15-10

15.10 208-Pin MQUAD Pinout – Cavity Down 15-14

15.11 208-Pin MQUAD Mechanical Drawing 15-16

Tables 4.1 Two-word Block Fetch Address Offset 4-10

4.2 Four-word Block Fetch Address Offset 4-10

5.1 Serial Interface Data Addressing through the Secondary Port 5-3

5.2 Serial Interface Data Addressing through the Host/DMA Port 5-4

6.1 CPE for CS-PDU AAL 5 Segmentation 6-5

6.2 CPE for CS-PDU AAL 5 Reassembly 6-5

7.1 Effective Address Bits [5:0] CIR Selection 7-4

7.2 PRPC Grouping 7-5

8.1 Field Settings for First Cell 8-11

8.2 Field Settings for the First Five Bytes of the Second Cell 8-12

8.3 Field Settings for the Remaining 43 Bytes of the Second Cell 8-12

8.4 Field Settings for Final Cell 8-12

8.5 Starting Address Offset and Byte Count 8-13

11.1 Internal Memory Map 11-2

Contents xv

11.2 PRPC Initialization and Content Register Selection 11-3

11.3 CRC10 Generation Control 11-3

11.4 HEC Error Control 11-3

11.5 DMA Control Register’s Effective Address Fields 11-4

11.6 Operation Direction (RD) and Ghost Bit (G) Settings 11-5

11.7 External Memory Map 11-6

11.8 System Memory Map Summary 11-7

11.9 APU Interrupts 11-8

11.10 CpCond Definitions 11-9

15.1 AC Timing Values for 70-pF Loading (in ns) 15-3

15.2 Absolute Maximum Ratings 15-11

15.3 Recommended Operating Conditions 15-11

15.4 Worst Case Thermal Operating Conditions 15-11

15.5 Capacitance 15-11

15.6 DC Characteristics 15-11

15.7 L64360 Pin Description Summary 15-12

15.8 L64360 Pin List 15-15

A.1 Abbreviation Glossary A-1

xvi Contents

1-1

Chapter 1
Introduction

This chapter provides an overview and lists the features of the ATMizer
Architecture and the L64360 chip.

This chapter has three sections:

■ Section 1.1, “Overview”

■ Section 1.2, “Features”

■ Section 1.3, “Applications”

1.1
Overview

The ATMizer Architecture from LSI Logic provides a powerful, flexible
solution to Asynchronous Transfer Mode (ATM) network control. The
ATMizer Architecture is a group of carefully chosen hardware functional
blocks that provide complete control over ATM Segmentation and Reas-
sembly (SAR) and all ATM Layer operations. The architecture also
includes the ATM Processing Unit (APU), a 32-bit RISC CPU (based on
LSI Logic’s MIPS R3000 architecture), which, through user firmware,
controls the functional blocks. This combination of hardware function and
software control allows the user to dynamically solve any ATM Network-
ing problem. The ATMizer Architecture enables market leaders to deploy
unique ATM products today, while working with the standard as it evolves.
The on-chip processing power allows users to simply download new code
to accommodate changes to ATM standards or congestion control
algorithms.

The ATMizer Architecture can either be embedded in Customer Specific
Integrated Circuits (CSICs) or Application Specific Standard Products
(ASSPs), or it can be used stand-alone as the L64360 chip.

The ATMizer Architecture can also perform management of Convergence
Sublayer-Protocol Data Unit (CS-PDU) link lists (lists of CS-PDUs in
need of segmentation), cell switching, scatter-gather DMA, memory buff-
ers (in scatter-gather implementations), ATM header manipulation, traffic

1-2 Introduction

shaping, congestion control, error monitoring, statistics gathering, host
messaging, diagnostics, Virtual Channel Identifier (VCI) translation, and
Virtual Path Identifier (VPI) translation. It also can transmit and receive
various cell sizes, which enables users to differentiate system cell struc-
tures. In addition, it can perform Operation and Management (OAM) func-
tions for all of the supported layers in firmware.

The ATMizer Architecture handles the Broadband-Integrated Service Dig-
ital Network (B-ISDN) layers highlighted inFigure 1.1.

Figure 1.1
ATMizer Architecture
Supported B-ISDN Layers

By supporting AALs 1, 2, 3/4, and 5, the ATMizer can process up to 64K
Virtual Channels (VCs) of voice, data and video simultaneously. This com-
bination of maximum VC support, programmability, and simultaneous

Host CPU

ATMizer

Operation
and

Management
(OAM)

Functionality

ATM Adaptation Layer (AAL)
Convergence Sublayer

AAL 5 CRC32 Generation and Checking
Segmentation and Reassembly (SAR) Sublayer

Type 1, Constant Bit Rate
Type 2, 3/4 Variable Bit Rate
Type 5, Variable Bit Rate

ATM Layer
Cell Multiplexing and Demultiplexing
Generic Flow Control
Cell Header Generation and Extraction
Cell Rate Pacing
Cell Transmission Exceeding the Pacing Rate
Delay Priority Processing
Cell Loss Priority Marking, Cell Loss Priority Reduction
Explicit Forward Congestion Indication to Higher Layers
Cell Payload Type Marking, Differentiations
Cell Relaying
Cell VPI/VCI Translation
Peak Rate Enforcement

Physical Layer
Transmission Convergence Sublayer

HEC Generation
Cell Delineation
Cell Rate Decoupling
Transmission Frame Adaptation
Transmission Frame Generation and Recovery

Physical Medium Sublayer
Bit Timing, Physical Medium

Transmission
Convergence

Sublayer

Architecture

Overview 1-3

support of all data types provides unmatched flexibility for the emerging
ATM standard.

Figure 1.2 shows a typical ATMizer Architecture with supporting logic.

Figure 1.2
ATMizer
Architecture with
Support Logic

The embedded APU enables customers to immediately realize ATM termi-
nation in a single device, and subsequently update signaling, congestion,
and traffic management algorithms in firmware as the ATM standard
evolves. By executing realtime instructions from an internal instruction
RAM, the intelligent APU also enables ATM systems to respond immedi-
ately to network congestion without Host CPU intervention. The ATMizer
Architecture couples the flexibility of a microprocessor with the econo-
mies of a single-chip solution, enabling users to differentiate their products
in both hardware and software.

The ATMizer Architecture dramatically improves price/performance over
alternative solutions by incorporating a wide range of system-level capa-
bilities on a single chip, including:

■ an eight-byte buffer on the transmitter and receiver to eliminate the
need for buffers when interfacing to the Physical Layer

ATMizer

Serial Interface

Secondary Port

DMAATMizer

Shared Memory

32

Architecture

Optional
Local Memory

Serial
PROM

(Contains CS-PDUs)

Port

32

Host Bus

Host
CPU

Physical
Layer Cell

InterfaceChip (ACI)

Host/

1-4 Introduction

■ a 4-Kbyte Virtual Channel RAM to provide additional cell buffering
and to minimize external memory requirements

■ a powerful 32-bit scatter-gather DMA engine that handles contiguous
and noncontiguous CS-PDU protocols for better utilization of system
memory

■ a Secondary Port to access external memory-mapped devices and
Channel Parameters when the DMA engine is busy via prefetch buffers

The ATMizer Architecture also provides a generic physical interface com-
patible with most physical interfaces, including the proposed UTOPIA
Interface through an eight-bit parallel cell interface. The Host/DMA Port
provides a 32-bit VLBus-like interface from the on-chip linked-list Direct
Memory Access Controller (DMAC).

1.2
Features

The ATMizer Architecture features have been divided into five sections:

■ General Features

■ ATM Adaptation Layer Features

■ ATM Layer Features

■ ATM Cell Interface (ACI) Features

■ Diagnostic Support Features

General Features The ATMizer Architecture general features are:

■ Supports ATM data rates of up to 155.52 Mbits/second

■ Simultaneously supports ATM Adaptation Layers 1, 2, 3/4, and 5

■ Handles contiguous and non-contiguous CS-PDUs

■ 32-bit DMA addressing capabilities and 32-bit DMA data interfacing
capabilities

■ Implements Peak Rate Pacing, Maximum Burst Length, and Global
Pacing for aggregate traffic shaping

■ Supports up to 65536 VCs

■ Supports simultaneous segmentation and reassembly of some VCs
while cell switching others

Features 1-5

■ Implements a user-programmable 32-bit MIPS RISC CPU (ATMizer
Processing Unit) controls all aspects of the ATM cell generation and
switching processes

The APU controls:

– Scatter-gather DMA Algorithms

– AAL SAR-PDU Header and Trailer Generation

– ATM Header Generation and Manipulation

– Host Interrupt/Messaging

– Error Handling

– Congestion Control

– Statistics Gathering

– Diagnostic Operation

– User-defined Functions

■ Internal caching of data structures, buffer link lists, and messages in
4-Kbyte Virtual Channel RAM (VCR), coupled with received cell
buffers, allows for the development of memory-less network interface
cards (all CS-PDUs undergoing segmentation and reassembly reside in
system memory)

■ General purpose 32-bit (address/data multiplexed) Secondary Port
Interface with 4-Mbyte address space

■ Four-word Prefetch Buffer

■ Four-word Write Buffer

■ Supports atomic (read-modify-write) transactions and Host/DMA Port
CPU steal cycle

■ Direct connection to the Universal Test & Operations Cell-based Phys-
ical layer (PHY) Interface for ATM (UTOPIA) and Standard ATM
Interface (SAI)

■ Supports cell size transformation for use in application that converts
standard ATM cell into switch specific format

1-6 Introduction

ATM Adaptation
Layer Features

The ATM Adaptation Layer features are:

■ AAL 1 cell generation from realtime data-streams including SAR
Header generation and Residual Time Stamp Insertion

■ Supports simultaneous segmentation and reassembly of AAL 2, 3/4,
and 5 CS-PDUs, and AAL 1 cell generation from realtime datastreams

■ Scatter-gather capabilities on reassembly and segmentation (imple-
mented by user firmware)

CS-PDUs need not be contiguous in system memory which allows for
efficient use of memory space, higher throughput (no moves necessary
to form contiguous CS-PDUs), and low latency attributable to devices
such as routers

■ Higher-layer header extraction and data alignment capabilities for
application acceleration

■ CRC10 generation and checking for AAL 3/4 SAR-PDUs

■ CRC32 generation and checking for AAL 5 CS-PDUs segmentation
and reassembly

ATM Layer
Features

The ATM Layer features are:

■ ATM Header generation and manipulation

■ Support for VCI/VPI translation and cell switching

■ Support for a user-defined cell size up to 65 bytes to allow for the pre-
pending of a switch-specific header

■ 10 Peak Rate Pacing Counters

■ Advanced congestion control capabilities

User firmware specified congestion control algorithms provide for
immediate reaction to congestion notification. Fast response (within
one cell time) results in fewer cells sent into a congested network, min-
imizing cell loss and CS-PDU retransmissions resulting in higher
overall throughput. Congestion control routines are part of user firm-
ware and can be modified as more is learned about congestion in actual
ATM networks.

■ Cell Loss Priority marking and manipulation (with AAL 5 High-
Medium-Low Priority CS-PDU support)

Features 1-7

ATM Cell
Interface (ACI)
Features

The ATM Cell Interface (ACI) features are:

■ Frequency decoupling logic

■ Eight-bit parallel transmit-data output bus

■ Eight-bit parallel receive-data input bus

■ Eight-byte buffers in transmitter and receiver that allows direct con-
nection of data output and input buses to transceivers (no external buff-
ering required)

■ Global Pacing Rate Register that allows the APU to set the percentage
of Idle Cells to be sent over the ACI, which enables aggregate traffic
shaping and is a quick way of reducing data speeds upon congestion
notification. The system can gradually return to full speed operation
under APU control.

■ All buffering and metastability issues are dealt with inside the
ATMizer Architecture

■ Automatic Cell Rate Decoupling through Idle Cell insertion

■ Separate transmitter and receiver data transfer acknowledgment input
signals provide for operation with free running transmitter and receiver
clocks (allows connection to Transmission Convergence Sublayer
framing logic that requires gaps in the assigned cell stream for the
insertion/extraction of framing overhead)

■ Internal received cell buffers (4, 8, 16 or 32 cells) add a second layer
of buffering between the ACI and main memory

This buffering allows the ATMizer Architecture to absorb periods of
high latency to main memory or long exception handling routines
without losing received cells. This is especially important in memory-
less network add-in cards for PCs and Workstations where the com-
puter’s main memory is the ATMizer Architecture’s working memory
space.

■ Conformance to the UTOPIA proposed standard (Version 1.22)

■ Programmable Header Error Control (HEC) generation and checking

1-8 Introduction

Diagnostic
Support Features

The diagnostic support features are:

■ User firmware controlled statistics gathering capabilities (keeps track
of any statistics the application or network management architecture
requires)

■ CRC10 and CRC32 error statistics gathering

■ CRC32 errors forced for diagnostic purposes

■ Diagnostic firmware downloaded to APU to aid system level diagnos-
tics when troubleshooting system or line failures

1.3
Applications

Figure 1.3shows one possible application for the L64360, a network inter-
face card with no local memory.

The sections following the figure discuss ATM network issues:

■ Scatter-Gather DMA

■ Application Acceleration

■ Cell Switching

■ Congestion Control

■ AAL 1 Realtime Data Streams

■ Diagnostic Operation

Figure 1.3
Network Interface
Card with No Local
Memory

L64360
Host/

ACI

Transmission
Lines

Host
Bus

Not
Connected

SP

Transceiver
Framing
LogicDMA

Port

Control
Logic

Optional

Applications 1-9

Scatter-Gather
DMA

The APU can execute segmentation and reassembly routines written by the
system designer that perform scatter (segmentation) and gather (reassem-
bly) of noncontiguous data structures (data structures that logically form a
single CS-PDU) as is done in a Scatter-Gather DMA controller. The user
can supply routines that handle ATM Adaptation Layer (AAL) and ATM
header generation and extraction as well as link-list pointer management
and buffer allocation.

Application
Acceleration

Some applications can be accelerated by header stripping and data align-
ment. The ATMizer Architecture can aid network software by stripping
higher-layer headers from incoming CS-PDUs and placing them in spe-
cific memory locations. In addition, the ATMizer Architecture can utilize
the powerful byte-alignment capabilities of its DMA Controller to ensure
that the user-data payload portion of the higher-layer PDU is written into
memory word-aligned. This procedure releases application-layer software
from the responsibility of ensuring proper data alignment.

Cell Switching The ATMizer Architecture allows you to terminate all Virtual Channels
(VCs) or terminate some VCs while switching others.

On a per-VC basis the APU can make a determination as to whether it
should reassemble the Segmentation and Reassembly (SAR) User-Payload
into a CS-PDU or simply pass the entire cell, headers and trailers intact, to
some other memory-mapped ATM port or ATM switch interface. The
ATMizer Architecture can even switch cells between its receiver and trans-
mitter without touching system memory. This implementation structure
can be put to use in ring, dual, and triple-port switching fabrics, and other
topologies.

The APU can make cell-switching decisions (whether to translate the VCI,
the VPI, or both, or neither, or whether to do multicast expansion) in real-
time and then perform the operations. Furthermore, in switching applica-
tions, the ATMizer Architecture can support a user cell size of up to 65
bytes, which allows the user to include up to 12 bytes of switch-specific
information to each cell.

1-10 Introduction

Congestion
Control

No one has seen enough ATM networks in operation to gain a real under-
standing of ATM network congestion. As the industry moves ahead with
ATM, it is reassuring to note that the ATMizer Architecture, with its user
programmable CPU positioned directly at the ATM line interface, is capa-
ble of executing or facilitating almost any congestion control algorithm
imaginable. And because user firmware is downloaded at system reset,
systems in the field can be updated with new congestion control algorithms
as more is learned about congestion in real ATM networks.

The ATMizer Architecture also offers fast congestion response time. Cells
arriving at the ACI with notification of network congestion can affect the
transmission of the very next cell, either inhibiting it altogether, slowing
down the rate of transmission of assigned cells, or forcing Cell Loss Prior-
ity (CLP) reductions. The user provides the algorithm. The ATMizer
Architecture provides the hardware pacing logic, aggregate traffic shaping
capability, and the processor to execute the algorithm.

AAL 1 Realtime
Data Streams

The APU performs the realtime data stream buffer (DS1, voice, video, etc.)
transfers (limits on ATM data rates may apply). The AAL 1 Segmentation
and Reassembly (SAR) Header requires a Residual Time Stamp (RTS).
The AAL 1 segmentation routine running on the APU can access RTS val-
ues from any memory-mapped device or location and carefully interleave
the RTS value into the headers of the AAL 1 cell stream. When a new RTS
value is needed, the APU retrieves it. When sequence numbers and
sequence number protection are called for, the APU generates and inserts
the appropriate information into the SAR Header. And on reassembly, the
APU will verify sequence number integrity and sequentially and pass the
RTS value to the appropriate device.

Diagnostic
Operation

The ATMizer Architecture can actively participate in diagnostic operations
by forcing CRC32 errors, gathering line statistics, and user defined opera-
tions. And under normal operating conditions, the APU can be chartered
with the additional task of statistics gathering to aid network management
process. All of these operations are made possible by the inclusion of a
user-programmable APU.

2-1

Chapter 2
Functional Overview

This chapter provides a functional overview of the ATMizer Architecture
and the L64360 chip.

This chapter has three sections:

■ Section 2.1, “Overview”

■ Section 2.2, “Functional Blocks”

■ Section 2.3, “Buses”

2.1
Overview

The ATMizer Architecture provides ATM system designers with a seg-
mentation and reassembly architecture that can, through user firmware
control, implement ATM end stations and switching stations in a number
of different ways. The ATMizer Architecture provides a number of critical
hardware functions that are controlled by the firmware that a user down-
loads to the ATMizer Architecture APU at system reset time.

2.2
Functional
Blocks

The ATMizer Architecture contains the following functional blocks:

■ ATMizer Processing Unit (APU) and Prefetch Buffer

■ Instruction RAM (IRAM) and Serial Interface

■ Virtual Channel RAM (VCR)

■ Pacing Rate Unit (PRU)

■ DMA Controller (DMAC)

■ ATM Cell Interface (ACI)

■ Secondary Port (SP)

Figure 2.1, the ATMizer Architecture functional block diagram, shows the
relationship of the buses and the hardware functions that firmware controls

2-2 Functional Overview

within the ATMizer Architecture. Chapters4 through10 provide further
description of these functional blocks.

Figure 2.1
ATMizer Architecture
Functional Block
Diagram

2.3
Buses

The ATMizer Architecture contains the following four buses that provide
powerful solutions for many ATM applications:

■ DMA-VCR Bus

Secondary Port (SP)

Instruction

DMA Controller (DMAC)

ATMizer Processing

Pacing Rate
Instruction

RAM

Channel
RAM

Serial
Interface

MUX

Data

Data/Instruction

ATM Cell Interface (ACI)
(HEC & CRC10)

TransmitTransmit

Internal Access

DMA-VCR Bus

External Access
Bus

Bus

Received Cell Indication

 Bus

Prefetch Buffer

32

8

(VCR)

and
CRC32 Generator

Unit (PRU)

Unit (APU)

(IRAM)

Virtual

Address/Data
Address and Data
Byte Enables

Host/DMA Port with

and
Receive
Virtual

Channel
Parameters

Builders
and

Receive
Cell

Holders

Cell

ATMizer Architecture

3232

32

3232 34

Buses 2-3

The DMA-VCR Bus is a dedicated 32-bit data and 12-bit address con-
nection from the DMA Controller to one of the read/write ports of the
VCR.

■ Internal Access Bus

The Internal Access Bus connects the internal devices such as regis-
ters, VCR, and Prefetch Buffer to the APU. The Internal Access Bus
shares the second VCR Port with the ACI. Since the Internal Access
Bus is separate from the DMA-VCR Bus, the APU can access the
internal registers and the VCR while the DMA is active.

■ External Access Bus

The External Access Bus enables the APU to perform direct load and
store operations from external devices. A load or store from the Sec-
ondary Port can be done while the DMA is active. For example, the
APU can program the DMA Controller during segmentation to bring
in a 48-byte SAR-PDU and immediately after programming the DMA
Register do a load or a store from the Secondary Port.

■ Instruction Bus

The Instruction Bus enables the APU to perform instruction fetches
from the IRAM. The APU can also execute instructions from external
devices if firmware exceeds 1 Kword.

2-4 Functional Overview

3-1

Chapter 3
Signal Descriptions

This chapter describes the signals that comprise the bit-level interface of
the L64360 chip.

This chapter has eight sections:

■ Section 3.1, “L64360 Logic Symbol”

■ Section 3.2, “Host/DMA Port”

■ Section 3.3, “ACI Transmitter”

■ Section 3.4, “ACI Receiver”

■ Section 3.5, “Secondary Port”

■ Section 3.6, “Interrupt/Messaging”

■ Section 3.7, “Serial Interface”

■ Section 3.8, “Miscellaneous Operation”

3.1
L64360 Logic
Symbol

Figure 3.1 shows the L64360 signals, their direction, and their polarity.

3-2 Signal Descriptions

Figure 3.1
L64360 Logic
Symbol

3.2
Host/DMA Port

These signals interface the L64360 DMA Controller and APU to the Host
Bus. For more information on the DMAC seeChapter 8.

HBS_A[31:2] Host/DMA Port Address Bus Output
During DMA or CPU operations, the Host /DMA Port drives this
address bus to provide L64360 addresses to system components.
Each timeHBS_ACK is asserted, the word address
HBS_A[23:2] is incremented. HBS_A[31:24] are never incre-
mented, so user firmware should never initiate burst operations
that cross 16-Mbyte boundaries. After a system reset, the
L64360 3-states HBS_A[31:2].

HBS_ACK Host/DMA Port Data Acknowledgment Input
AssertingHBS_ACK LOW indicates that there is valid data on
HBS_D[31:0]. During Host/DMA Port writes to an external
device, the device should assertHBS_ACK LOW to inform the

HBS_GNT
HBS_END

SP_WR

SRL_ACK

SRL_DIN
SRL_CLK16
SRL_BOOT

HBS_BOOT

RC_CLK

HEC_ERR

RC_RST

HBS_INT

PRU_CLK

CLK

RST

HBS_DOE

HBS_ACK
HBS_A[31:2]

HBS_S[2:0]

HBS_BE[3:0]

HBS_AOE
HBS_AS

HBS_D[31:0]

HBS_RQ

SP_ACK

SP_BWIDE
SP_ASEL

SP_AD[31:0]

SP_GNT
SP_RQ

TX_CLK

TX_IDLE
TX_RST

TX_D[7:0]
TX_DRDY

TX_ACK
TX_BOC

TX_FULL

RC_D[7:0]

RC_ACK
RC_BOC

RC_FULL

GPINT_AUTO
GPINT_TST

Host/DMA
Port

Interrupt/

Miscellaneous

ACI
Transmitter

ACI
Receiver

Secondary
Port

Operation

Serial
Interface

Messaging

L64360

HBS_WR

STALL

TEST

Host/DMA Port 3-3

L64360 that it is going to latch the data for the current write
operation at the next rising edge of CLK. If the acknowledged
transfer was the last transfer of the operation, the L64360 deas-
serts HBS_RQ following the rising edge of CLK.

HBS_AOE Host/DMA Port Address Output Enable Input
Asserting HBS_AOE HIGH, enables the Host/DMA Port
Address Bus (HBS_A[31:2]) and the control signals (HBS_AS,
HBS_BE[3:0],HBS_END, HBS_WR, and HBS_S[2:0]). Deas-
serting HBS_AOE LOW, 3-states the address bus and control
signals.

HBS_AS Host/DMA Port Address Strobe Output
At the beginning of each transaction, after the L64360 has
granted the bus (HBS_GNT is asserted), L64360 asserts
HBS_AS for one clock cycle to indicate that HBS_A[31:2] and
HBS_BE[3:0] are valid. After a system reset, the L64360
3-statesHBS_AS.

HBS_BE[3:0] Host/DMA Port Byte Enables Output
The L64360 enables each of the four bytes of HBS_D[31:0] by
asserting the corresponding bit ofHBS_BE[3:0] LOW. When
accessing a single byte, only one of theHBS_BE[3:0] signals is
asserted to indicate valid data on the corresponding byte port.
During a 32-bit word access from an external device, the L64360
Host/DMA Port asserts all of theHBS_BE[3:0] signals LOW
and drives the appropriate word address onto HBS_A[31:2]. The
table below maps theHBS_BE[3:0] signals to their correspond-
ing bytes on HBS_D[31:0].

After a system reset, the L64360 3-statesHBS_BE[3:0].

HBS_BOOT Host/DMA Port Boot Select Input
HBS_BOOT selects the port used for booting. Asserting
HBS_BOOT HIGH selects the Host/DMA Port. Deasserting
HBS_BOOT LOW selects the Secondary Port.

HBS_BE[3:0] Bit HBS_D[31:0] Byte

HBS_BE3 HBS_D[31:24]
HBS_BE2 HBS_D[23:16]
HBS_BE1 HBS_D[15:8]
HBS_BE0 HBS_D[7:0]

3-4 Signal Descriptions

HBS_D[31:0] Host/DMA Port Data Bus Bidirectional
During read operations, the Host/DMA Port samples
HBS_D[31:0] on the rising edge of CLK whenHBS_ACK is
asserted.

During write operations, the Host/DMA Port sources data onto
HBS_D[31:0]. The Host/DMA Port responds toHBS_ACK by
sourcing data for the next transfer onto HBS_D[31:0].

HBS_DOE Host/DMA Port Data Output Enable Input
Asserting HBS_DOE HIGH, enables output on the Host/DMA
Port Data Bus, HBS_D[31:0]. Deasserting HBS_DOE LOW
3-states the data bus.

HBS_END Host/DMA Port Operation Ending Output
During a burst operation, the Host/DMA Port assertsHBS_END
LOW, when it detects the second-to-the-lastHBS_ACK, to warn
the memory controller that the current transfer will end the next
timeHBS_ACK is asserted LOW.HBS_END is deasserted fol-
lowing the rising clock edge during which the L64360 samples
the final transfer acknowledgment (HBS_ACK asserted) for the
given burst operation.HBS_END is also asserted when the
DMA is suspended by an APU transaction. After a system reset,
the L64360 3-statesHBS_END.

HBS_GNT Host/DMA Port Grant Operation Input
In response to HBS_RQ asserted, the bus arbiter asserts
HBS_GNT HIGH to notify the L64360 that it has been granted
the bus so a DMA or APU operation may start. If no other Host
CPU requests the bus, the External Bus Arbiter can grant the bus
to the L64360 all the time, eliminating one access cycle.

HBS_RQ Host/DMA Port Operation Request Output
The L64360 asserts HBS_RQ HIGH to request access to the
device attached to the Host/DMA Port. The external bus arbiter
should respond to HBS_RQ by asserting HBS_GNT, which
allows the L64360 to proceed with the transfer.

If the APU has queued up back-to-back DMA Operations (it
may have even entered a write busy stall because it attempted to
write a new initialization word to a busy DMAC), the L64360
does not deassert HBS_RQ in response to the final Host/DMA
Port Acknowledge and the next operation begins immediately.
The external device should check the state ofHBS_END to

ACI Transmitter 3-5

distinguish between DMA operation boundaries. After a system
reset, the L64360 drives HBS_RQ LOW.

HBS_S[2:0] Host/DMA Port DMA Transfer Size Output
These three signals are the encoded value of the DMA transfer
size. They are used when the user attaches the L64360 to an
SBus. The following table shows combinational values for
HBS_S[2:0].

After a system reset, the L64360 3-states HBS_S[2:0].

HBS_WR Host/DMA Port Operation Type Output
HBS_WR qualifies the type of operation requested by the
L64360 asserting HBS_RQ. The L64360 asserts HBS_WR
HIGH when the L64360 is initiating a write. The L64360 deas-
serts HBS_WR LOW when the L64360 is initiating a read. After
a system reset, the L64360 3-states HBS_WR.

3.3
ACI
Transmitter

These signals transmit ATM cell data and control ATM cell data transmis-
sion. For more information seeChapter 9.

TX_ACK ACI Transmitter Data Acknowledgment Input
The Transmission Convergence Sublayer (TCS) framing logic
(external to the L64360) asserts TX_ACK HIGH when it has
sampled the data value on TX_D[7:0]. The L64360 responds to
TX_ACK by placing the next byte onto TX_D[7:0]. If the next
byte is the first byte of a new cell, the L64360 also asserts
TX_BOC. The L64360 ACI Transmitter can be gapped by deas-
serting TX_ACK when TX_CLK is free-running, or by shutting
TX_CLK off and on while constantly asserting TX_ACK HIGH.
If the external logic is unable to sample the byte on TX_D[7:0]
in a given cycle, it should deassert TX_ACK.

HBS_S2 HBS_S1 HBS_S0
DMA Transfer

Size (Bytes)

0 0 0 4
0 0 1 Not Supported
0 1 0 Not Supported
0 1 1 Not Supported
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 8

3-6 Signal Descriptions

TX_BOC ACI Transmitter Beginning of Cell Output
The L64360 ACI Transmitter asserts TX_BOC HIGH while the
first byte of a cell is sourced on TX_D[7:0]. TX_BOC is deas-
serted after the first TX_ACK is received. After a system reset,
the L64360 drives TX_BOC LOW.

TX_CLK ACI Transmitter Clock Input
All transmission signals are sourced or sampled on the rising
edge of this clock. TX_CLK drives the buffer inside the Trans-
mitter portion of the L64360 ATM Cell Interface. All data trans-
fers from the L64360 over TX_D[7:0] are synchronized to this
clock, as areTX_DRDY, TX_BOC, and TX_IDLE. Logic inside
the L64360 synchronizes the L64360 System Clock and the ACI
Transmitter data buffer circuitry, which is sequenced off of
TX_CLK. The system designer need not worry about metasta-
bility at the transmitter output. TX_CLK is the byte clock of the
external transmitter and can be operated at any frequency less
than or equal to half the System Clock.

TX_D[7:0] ACI Transmitter Data Bus Output
The L64360 sources byte-aligned cell data onto TX_D[7:0]. Bit
7 is the first bit to be transmitted over the serial line. After a sys-
tem reset, TX_D[7:0] are undefined.

TX_DRDY ACI Transmitter Data Ready Output
The L64360 assertsTX_DRDY LOW three cycles after it deas-
sertsTX_RST HIGH. The L64360 assertsTX_DRDY and
TX_BOC to indicate that external logic can sample TX_D[7:0]
and issue an acknowledge (TX_ACK). Once asserted,
TX_DRDY remains asserted until the next system or transmitter
reset or untilTX_FULL is asserted. After a system reset, the
L64360 3-statesTX_DRDY.

TX_FULL TCS Receive Buffer Full Input
This signal is provided for the UTOPIA Interface. When the
TCS Receiver Buffer is full, it notifies the ACI by asserting
TX_FULL. The ACI responds by deassertingTX_DRDY, which
should be connected directly to the Physical Layer enable signal.

TX_IDLE Transmitting Idle Cell Output
The L64360 ACI Transmitter asserts TX_IDLE HIGH when the
next outgoing cell is an Idle Cell. Transmission convergence
framing logic that does not handle Idle Cells must still assert
TX_ACK until the entire Idle Cell passes. After a system reset,
the L64360 3-states TX_IDLE.

ACI Receiver 3-7

TX_RST Transmitter Reset Output
AssertingTX_RST resets the Physical Layer. After the L64360
is powered on, the L64360 assertsTX_RST LOW within two to
four cycles of the L64360 System Clock.TX_RST is deasserted
two clock cycles after the Transmit Initialize Bit in the System
Control Register is set to one. After a system reset, the L64360
drivesTX_RST LOW.

3.4
ACI Receiver

These signals receive ATM cell data and control ATM cell data reception.
For more information seeChapter 9.

HEC_ERR HEC Error Output
The L64360 asserts HEC_ERR HIGH when the HEC Field that
is received (Byte 5 of a cell) does not equal the HEC Field that
the L64360 calculated from the ATM Header. HEC_ERR is only
active when the receiver is configured to accept and check the
HEC byte. After a system reset, the L64360 drives HEC_ERR
LOW.

RC_ACK ACI Receiver Data Acknowledgment Input
Asserting RC_ACK HIGH indicates that valid data has been
placed on RC_D[7:0]. Framing logic in the transmission conver-
gence unit should assert RC_ACK HIGH when it has placed data
on RC_D[7:0]. The L64360 responds to RC_ACK by sampling
RC_D[7:0] on the rising edge of RC_CLK. The ACI Receiver
can be gapped by deasserting RC_ACK if external logic is
unable to supply a byte on RC_D[7:0] in a given cycle.

RC_BOC ACI Receiver Beginning of Cell Input
Asserting RC_BOC HIGH signals the beginning of a cell to the
ACI Receiver. When the Physical Layer asserts RC_BOC, the
ACI Receiver starts a counter to count the number of bytes in the
incoming cell.

RC_CLK ACI Receiver Clock Input
All receive signals are sourced or sampled on the rising edge of
this clock. RC_CLK drives the buffer inside the ATM Cell Inter-
face Receiver. All data transfers over RC_D[7:0] to the L64360,
as well as the assertion of all output signals, are synchronized to
RC_CLK. Logic inside of the L64360 handles synchronization
between the L64360 System Clock and the ACI Receive Data
Buffer circuitry powered by RC_CLK. The system designer
need not worry about metastability at the Receiver input.
RC_CLK is likely to be the clock derived from the line data and

3-8 Signal Descriptions

can be operated at any frequency less than or equal to half the
System Clock.

RC_D[7:0] ACI Receiver Data Bus Input
The L64360 receives byte aligned cell data on RC_D[7:0]. The
Transmission Convergence Sublayer (TCS) framing logic uses
RC_D[7:0] to send byte aligned cell data to the L64360. Bit 7 is
the first bit received over the serial line.

RC_FULL ACI Receiver Cell Holder Buffer Full Output
The L64360 asserts RC_FULL HIGH when the internal
Received Cell Buffer (Holder) in the VCR is almost full (six
bytes before it is full).

When the BM Bit in the System Control Register is zero
(UTOPIA Mode), the L64360 receives only one more byte after
asserting RC_FULL. When BM Bit in the System Control Reg-
ister is one (SAI mode), the L64360 finishes receiving the cell
completely after asserting RC_FULL. After a system reset, the
L64360 drives RC_FULL LOW.

RC_RST ACI Receiver Reset Output
Because several parameters have to be configured before the
ACI can receive any cell, firmware controls the deassertion of
RC_RST. Setting the RI Bit in the System Control Register to
one deassertsRC_RST. After a system reset, the L64360 drives
RC_RST LOW.

3.5
Secondary Port

These signals control the Secondary Port, a 32-bit, multiplexed address
and data bus port. For more information seeChapter 10.

SP_ACK Secondary Port Data Acknowledgment Input
AssertingSP_ACK LOW indicates that valid data will be read or
written on SP_AD[31:0] in the next clock cycle. During a Sec-
ondary Port read operation, an external device should assert
SP_ACK LOW one cycle before valid data is available on
SP_AD[31:0]. During a Secondary Port write operation, an
external device should also assertSP_ACK one cycle before it
latches the write data on SP_AD[31:0].

SP_AD[31:0] Secondary Port Address/Data Bus Bidirectional
SP_AD[31:0] is a multiplexed address and data bus on the Sec-
ondary Port. When SP_ASEL is asserted HIGH, SP_AD[31:0]

Secondary Port 3-9

contains the information shown in the table below. When
SP_ASEL is deasserted LOW, SP_AD[31:0] contains data.

Deasserting SP_GNT, 3-states SP_AD[31:0]. The Byte Enables
on the Secondary Port, SP_AD[31:28], only apply to write trans-
actions. During read transactions, SP_AD[31:28] must be
asserted HIGH.

The table below maps the address phase SP_AD[31:28] signals
to their corresponding bytes on the data phase of SP_AD[31:0].

When the Block Fetch Bit is set, the external logic must respond
with the correct number of acknowledge cycles. For a descrip-
tion on the Atomic Operation, refer toSection 4.8, “Atomic
Transactions.”

SP_ASEL Secondary Port Address/Data Select Input
Asserting SP_ASEL HIGH causes the L64360 to drive an
address on SP_AD[31:0]. During a read operation, deasserting
SP_ASEL causes the L64360 to 3-state SP_AD[31:0] so that
external logic can drive the data onto SP_AD[31:0]. During a
write operation, deasserting SP_ASEL causes the L64360 to
drive SP_AD[31:0] with data.

SP_BWIDE Secondary Port Byte-wide Device Input
AssertingSP_BWIDE LOW, during read operations, indicates
that the external device attached to the port is eight bits wide.

SP_AD Bits Use Settings

[31:28] Byte Enables Deasserted LOW to select for Write,
All Asserted HIGH for Read

27 Not Used Deasserted LOW
26 Access Type Deasserted LOW for Data, Asserted

HIGH for Instruction
25 Block Fetch Bit Asserted HIGH
24 Atomic Bit Asserted HIGH
[23:22] Not Used Deasserted LOW
[21:0] Address –

SP_AD[31:28] Bit
(Address Phase)

SP_D[31:0] Byte
(Data Phase)

SP_AD31 SP_AD[31:24]
SP_AD30 SP_AD[23:16]
SP_AD29 SP_AD[15:8]
SP_AD28 SP_AD[7:0]

3-10 Signal Descriptions

With SP_BWIDE asserted, the Secondary Port executes four
cycles with sequential byte addresses beginning with the effec-
tive address. The external device has to assertSP_ACK along
with SP_BWIDE for all four byte accesses to guarantee the
L64360’s proper operation. The external device should provide
data on SP_AD[7:0] when it assertsSP_BWIDE.

SP_GNT Secondary Port Bus Grant Input
Asserting SP_GNT HIGH, causes the L64360 to drive the
address on SP_AD[31:0]. At the end of a transmission the
L64360 stops driving SP_AD regardless of the state of SP_GNT.
Deasserting SP_GNT LOW, 3-states SP_AD[31:0]. If SP_GNT
is asserted continuously, external logic can then sample the cor-
rect address in the same cycle that SP_RQ is asserted.

SP_RQ Secondary Port Access Request Output
When it has sourced a valid address on SP_AD[31:0], the
L64360 asserts SP_RQ HIGH to initiate an access to the Second-
ary Port. After a system reset, SP_RQ is undefined for two clock
cycles, then the L64360 drives SP_RQ LOW.

SP_WR Secondary Port Operation Type Output
SP_WR is valid only when SP_RQ is asserted HIGH. The
L64360 asserts SP_WR HIGH to indicate that it is requesting a
Secondary Port write operation. The L64360 deasserts SP_WR
LOW to indicate that it is requesting a Secondary Port read oper-
ation. After a system reset, the L64360 drives SP_WR LOW.

3.6
Interrupt/
Messaging

These signals control host messaging. The APU is based on the CW33300
described inCW33300 Enhanced Self-Embedding Processor Core User’s
Manual.

GPINT_AUTO General Purpose APU Interrupt Input
GPINT_AUTO is connected to APU Interrupt2. APU software
can disable or enable interrupts as necessary.

GPINT_TST L64360 Interrupt Input
GPINT_TST is connected to the CpCond0 signal in the APU.
External logic can assert GPINT_TST to alert the APU. Assert-
ing GPINT_TST HIGH sets the Branch on CpCond0 instruction
to TRUE.

Serial Interface 3-11

GPINT_TST can be used for message passing. APU firmware
samples this signal to determine if the Host has a message for the
APU.

HBS_INT Host Interrupt Output
The L64360 asserts the Host Interrupt when it wishes to interrupt
the Host. It is likely to be used as part of the messaging system.
The interpretation of this signal is defined by user firmware. The
L64360 may assert HBS_INT HIGH to indicate error condi-
tions, congestion problems, CS-PDUs reassembled, or other
conditions. The L64360 APU asserts HBS_INT by performing a
store operation to the Host Interrupt Register (refer toSection
4.7, “ATMizer Architecture-to-Host Messaging”). HBS_INT
remains valid for four clock cycles and is then deasserted. After
a system reset, the L64360 drives HBS_INT LOW.

3.7
Serial Interface

The Serial Interface signals control serial downloads. For more informa-
tion seeChapter 5.

SRL_ACK Serial Acknowledge Input
SRL_ACK controls the bit rate that is applied to the L64360 dur-
ing serial downloads. When downloading from a serial PROM,
asserting SRL_ACK HIGH causes the L64360 to latch the bit on
SRL_DIN on the rising edge of SRL_CLK16.

SRL_BOOT Serial Boot Select Input
AssertingSRL_BOOT LOW enables the Serial Interface. Deas-
sertingSRL_BOOT HIGH disables the Serial Interface.

SRL_CLK16 Serial Clock Output
SRL_CLK16 is the clock rate for the serial download mode, the
System Clock rate divided by 16. This signal clocks bits from a
serial device used in serial downloads to the L64360. When
using a serial PROM, the SRL_ACK must be asserted HIGH and
SRL_CLK16 should be used to clock the bits into the L64360.

SRL_DIN Serial Data Input Input
SRL_DIN is the data input for the serial downloading mode. The
first bit is Bit 31 Word 0, followed by Bit 30 Word 0, and so on.

3-12 Signal Descriptions

3.8
Miscellaneous
Operation

The Miscellaneous Operation signals drive the clocks and system reset.

CLK System Clock Input
The CLK input runs the APU, Host/DMA Port, the Secondary
Port, the VCR, and much of the logic in the ACI. CLK does not
affect the transfer of byte data to or from the L64360 over the
ACI (ACI transactions are controlled by TX_CLK and
RC_CLK). Supported frequencies on CLK are 25, 33, 40, and 50
MHz.

PRU_CLK Pacing Rate Unit Clock Input
The clock connected to the PRU_CLK pin must run at half or
less the System Clock Frequency (CLK). The down counters
associated with the ten PRPCs count down by one every clock
tick. The Clock Select Bit in the PRU Configuration Register
selects the clock inputs to the PRPCs to be either CLK or
PRU_CLK. In most applications, the PRPC clock should run at
the physical line frequency. In this case either the RC_CLK or
TX_CLK can be connected directly to PRU_CLK.

RST System Reset Input
AssertingRST LOW initiates the master reset of the L64360.
This signal also resets the ACI Transmitters and Receivers. This
signal is asynchronous.

STALL APU Pipeline Stall Output
The L64360 asserts this signal LOW when the APU pipeline is
stalled. The L64360 deasserts this signal HIGH when the APU
is executing instructions.

TEST Test Mode Input
Asserting this signal LOW causes the L64360 to 3-state all out-
put and bidirectional pins. In normal operation this signal should
be tied to VDD.

4-1

Chapter 4
ATMizer Processing Unit
(APU) and Prefetch
Buffer

This chapter describes the function and operation of the ATMizer Process-
ing Unit and the Prefetch Buffer.

This chapter has twelve sections:

■ Section 4.1, “APU Overview”

■ Section 4.2, “Header and Trailer Generation and Retrieval”

■ Section 4.3, “DMA”

■ Section 4.4, “Pacing Rate Unit (PRU) Configuration”

■ Section 4.5, “ACI Cell Queuing and Cell Processing”

■ Section 4.6, “Memory Allocation”

■ Section 4.7, “ATMizer Architecture-to-Host Messaging”

■ Section 4.8, “Atomic Transactions”

■ Section 4.9, “Host/DMA Port Priority”

■ Section 4.10, “Congestion Control”

■ Section 4.11, “APU External Access”

■ Section 4.12, “Prefetch Buffer”

4.1
APU Overview

The ATMizer Processing Unit (APU) is a 32-bit RISC CPU core based on
the MIPS R3000 architecture. The APU includes a CPU, a four-word write
buffer, and a cache controller. The powerful, user-programmable CPU
gives the ATMizer Architecture many unique capabilities.

TheCW33300 Enhanced Self-Embedding Processor Core User’s Manual
describes the core which is the basis for the APU.

The APU processes every incoming cell and generates every outgoing cell.
The APU provides the operational control necessary to support functions

4-2 ATMizer Processing Unit (APU) and Prefetch Buffer

such as SAR and cell switching of multiple AAL-type cells, scatter-gather
memory management operations, intelligent congestion control algo-
rithms, traffic statistics gathering, and robust ATMizer Architecture-to-
Host messaging. The APU firmware builds cells, controls messages
between the ATMizer Architecture and the Host CPU, and services chan-
nel sequencing. Cell building consists of SAR Header and Trailer genera-
tion, ATM Header retrieval from the Channel Parameter Entry (CPE) for
the Virtual Channel (VC), ATM Header manipulation and insertion, and
programming the DMA operation for SAR-PDU retrieval.

The user-written firmware controls most ATMizer Architecture functions,
including the following:

■ Header and Trailer Generation and Retrieval

■ DMA

■ Pacing Rate Unit (PRU) Configuration

■ ACI Cell Queuing and Cell Processing

■ Memory Allocation

■ ATMizer Architecture-to-Host Messaging

■ Atomic Transactions

■ Host/DMA Port Priority

■ Congestion Control

■ APU External Access

Sections4.2through4.11describe how the APU controls these functions.

Note The CpCond and Interrupt signals are internal to the APU. Refer to the
CW33300 Enhanced Self-Embedding Processor Core User’s Manual for
more information.

4.2
Header and
Trailer
Generation and
Retrieval

The APU firmware generates SAR Headers (AAL 1, 2, and 3/4) and Trail-
ers (AAL 2 and 3/4) during segmentation. Firmware can program the ACI
to generate and insert the CRC10 Field. SAR Header generation includes
sequence number generation and checking as well as message type inser-
tion and extraction (BOM, COM, EOM, and SSM). The APU also initiates
the appropriate DMA operations to retrieve SAR-Service Data Unit (SDU)
from memory-based realtime data buffers (AAL 1) or CS-PDUs. The APU
also retrieves and manipulates ATM Headers, which includes modifying

DMA 4-3

PTI and CLP fields. For cells that are to be switched, the APU makes the
initial switching decision based on information contained in the CPE for
the VC, as well as VCI/VPI translation if specified in the CPE.

4.3
DMA

The DMA Controller (DMAC) within the ATMizer Architecture handles
memory transactions between the VCR and Host memory. It manages the
functions of main and local (VCR) memory address incrementing, byte
count reduction, and byte alignments.

The APU initiates DMA operations to:

■ retrieve SAR-SDUs during segmentation

■ restore SAR-SDUs to their respective CS-PDUs during reassembly

■ switch entire cells, headers and trailers intact, to other memory-
mapped ATM ports during switching operations

■ transfer SAR-SDUs to and from realtime data stream buffers in appli-
cations supporting AAL 1 circuit interfaces (such as T1 lines)

The APU sets the following parameters in the DMAC to initiate a DMA
operation:

■ Main Memory Starting Address and Byte Offset

■ Local VCR Starting Address and Local Byte Offset

■ Number of Bytes to be Transferred (less than or equal to 64)

■ Transfer Direction (Read or Write)

■ Ghost Bit to generate CRC32 for non-contiguous PDUs

Writing to the DMAC causes the DMAC to initiate the transfer. The APU
user firmware should check to see if the DMAC is busy before issuing a
DMA command to the ATMizer Architecture. If it is busy, it should wait.
The APU can perform direct load/store operations from/to Host memory
while the DMAC is busy (APU steal cycle).

4.4
Pacing Rate
Unit (PRU)
Configuration

The APU writes to the Pacing Rate Unit to implement Peak Rate Pacing
Maximum Burst Length for traffic shaping during the segmentation pro-
cess. The PRU consists of 10 Peak Rate Pacing Counters (PRPCs) and 10
Peak Rate Pacing Initialization Registers. The APU sets the initial count
values in one of the 10 Peak Rate Pacing Initialization Registers and starts

4-4 ATMizer Processing Unit (APU) and Prefetch Buffer

the count operation. When one or more counters time out, the PRU informs
the APU by asserting Interrupt1 or CpCond2.

When the Host has a CS-PDU ready for segmentation, it passes a data
structure, called the Channel Parameter Entry (CPE), to the APU. The CPE
describes how to segment the CS-PDU and can be kept either in the VCR
or in external memory. In either case, the APU has a pointer to the CPE,
selects one of the 10 PRPCs, and attaches the CPE pointer or the CPE itself
to the PRPC. When a PRPC has elapsed, one or more CS-PDUs are ready
for segmentation.

If one or more counter expires at the same time, the APU can read the
Channel Group Credit Register (CGCR) to determine which PRPCs have
expired.

4.5
ACI Cell
Queuing and
Cell Processing

The APU queues cells for transmission by writing the VCR Start Address
of a cell into the Transmit Cell Address FIFO in the ACI Transmitter. If no
cell address is present in the FIFO when an end of cell boundary is reached,
the Transmitter automatically sends an Idle Cell. For received cells, the
APU decides between cell switching and circuit termination for each VC.

The APU performs internal cell switching (cell switching between its
receiver and transmitter) by passing the VCR addresses of a received cell
targeted for internal switching to the Cell Address FIFO in the ACI (ATM
Cell Interface) Transmitter.

The APU also sets the Global Pacing Rate Register (GPRR) in order to
shape the assigned cell content of the outgoing cell stream. The GPRR is
a simple count-down counter. When it reaches zero, The ACI Transmitter
forces an Idle Cell to the external framing logic. The APU may also pro-
gram the ACI to generate and insert the CRC10 Field for AAL 3/4 ATM
cells and generates or checks the HEC Field.

4.6
Memory
Allocation

During the reassembly process the APU manages the memory buffer. If
memory is to be allocated to incoming CS-PDUs in fragments, the APU:

■ tracks fragment boundaries

■ issues additional fragments to CS-PDUs as needed

■ generates link lists of the fragments allocated to a given CS-PDU

ATMizer Architecture-to-Host Messaging 4-5

■ sends messages from the ATMizer Architecture to the Host to inform
the Host of CS-PDU completion, errors, and congestion problems

If the CS-PDU is not contiguous in the transmit direction, the APU firm-
ware may have to recognize the difference between end-of-fragment
boundaries and end-of-CS-PDU boundaries.

4.7
ATMizer
Architecture-to-
Host Messaging

The ATMizer Architecture does not enforce a particular messaging system
between the APU and the Host system. Using the L64360, the user imple-
ments his own messaging system by polling the L64360 Interrupt input
signal, GPINT_TST (connected directly to CpCond0 and tested with the
Branch on CpCond0 True instruction), for an indication that the Host
wishes to pass messages to the L64360.

The APU can read or write to or from any Host/DMA Port or Secondary
Port memory-mapped location as part of a messaging mailbox system. The
APU Interrupt input signal, GPINT_AUTO, can also be used in addition to
or in place of GPINT_TST as part of the messaging system. Please note
that GPINT_AUTO is a true interrupt and GPINT_TST is a polled condi-
tion input.

The L64360 asserts the Host/DMA Port Interrupt output signal, HBS_INT,
to indicate to the Host that the L64360 wishes to or has already passed a
message to the Host system. The L64360 asserts HBS_INT when the APU
performs a store to the Host Interrupt Register. (The Host Interrupt Regis-
ter is not really a register. It is an address decode circuit with an Effective
Address of 0xFFF04B00.) Writing to the Host Interrupt Register causes
the L64360 to assert HBS_INT for four clock cycles and then deasserts it.
If the external system needs more than four cycles to recognize the inter-
rupt, it must latch HBS_INT and then clear the latch when finished.

4.8
Atomic
Transactions

The Secondary Port and the Host/DMA Port support atomic transactions
(locked back-to-back read-modify-writes) in hardware. The APU can per-
form atomic transactions, although the MIPS architecture does not have a
read-modify-write instruction. For the APU to do a read-modify-write,
Bit 24 of the Effective Address must be set to one. In the Secondary Port,
this bit is reflected on Bit 24 of the Physical Address during the address
cycle. If the bit is set, it is the responsibility of the external arbiter to guar-
antee that the bus is not given to other master after the current operation is
complete, because the L64360 performs the next operation in a locked

4-6 ATMizer Processing Unit (APU) and Prefetch Buffer

back-to-back manner. On the Host/DMA Port, if Bit 24 of the Effective
Address is set, the L64360 asserts the Host/DMA Port Operation Request
output signal, HBS_RQ until both transactions have finished.

When the APU firmware is initiating an atomic transaction on the Host/
DMA Port, if the APU does not perform the second transaction (write)
after it finishes the first transaction (read), the Host/DMA Port times-out
64 cycles after the acknowledge of the first transaction. The APU then
gives up the bus by deasserting HBS_RQ, sets the Timeout Error Bit in the
System Control Register, and asserts the APU internal Interrupt0 signal.

4.9
Host/DMA Port
Priority

There is only one pair of request and grant signals on the Host/DMA Port.
Since there can be three sources trying to access the Host/DMA Port, the
priority is set as follows:

1. Serial Request from Serial Interface

2. APU Read

3. APU Write

4. DMA Operations (Read or Write)

When the APU attempts a load, and the Host/DMA Port is still busy with
a DMA operation, the APU load preempts the DMA operation (APU steal
cycle). The Host/DMA Port asserts the DMA Operation Ending signal,
HBS_END, to suspend the DMA while performing the load. The Host/
DMA Port asserts a new Host/DMA Port Address Strobe, HBS_AS, in the
following cycle, along with the new address for the APU load operation.
When the Host/DMA Port slave asserts the Host/DMA Port Read/Write
Acknowledgment,HBS_ACK, to signal the end of the load transaction, the
DMA operation resumes. The preempt mechanism also applies to APU
stores. The DMA operations may be preempted more than once. However,
when fast-page-mode DRAM is used, the preempt mechanism should be
avoided. Software can avoid the preempt mechanism by not performing
APU transactions while DMA is still busy.

4.10
Congestion
Control

The ATMizer Architecture is capable of executing or facilitating almost
any congestion control algorithm. The APU looks at the appropriate ATM
Header Fields of each incoming cell for notification of congestion. If

APU External Access 4-7

congestion notification is found, the APU can take immediate action. Such
actions may include one or more of the following:

1. Notify the Host that congestion has been seen utilizing the ATMizer
Architecture-to-Host messaging scheme developed by the user

2. Lower the segmentation rate for each VC

3. Reduce the overall assigned cell throughput rate by setting a lesser
value in the Global Pacing Rate Register

4. Set the CLP fields of outgoing cells to zero instead of lowering the
overall information rate

4.11
APU External
Access

The APU can directly access the external devices through either the Host/
DMA Port or the Secondary Port. For APU direct access loads and stores,
the address space on both interfaces is 4 Mbytes. The APU has a four-word
write buffer which enhances throughput during back-to-back store transac-
tions. The APU also supports load scheduling, so a load operation does not
stall the APU if the data is not required immediately.

Effective Address Bits [23:22] define whether the operation is a Host/
DMA Port direct access or a Secondary Port direct access (see Figures4.3
through4.6).

This section explains APU direct access through the Host/DMA Port.
Direct access through the Secondary Port is explained inChapter 10.

Figure 4.1 shows the Host/DMA Port MSB Substitution Register format.

Figure 4.1
MSB Substitution
Register

The MSB Substitution Register’s Effective Address (the address used by
the code) is 0xFFF04D00.

The MSB (Most Significant Bit) Substitution Register holds the 10 most
significant bits of the address for an APU direct access through the Host/
DMA Port. These 10 bits are valid only during an APU load or store
through the Host/DMA Bus.

15 10 9 0

Reserved1

1. All reserved bits must be 0.

MSB Substitution Bits

4-8 ATMizer Processing Unit (APU) and Prefetch Buffer

When the APU accesses the Host/DMA Port, it uses the 22 lower bits of
the APU Effective Address and the 10 bits from the MSB Substitution
Register to form the Host/DMA Port Address, HBS_A[31:2], and the
Host/DMA Port Byte Enables, HBS_BE[3:0].

Figure 4.2 shows how the Host/DMA Port Address and the Host/DMA
Port Byte Enables are formed from the APU Effective Address and the
MSB Substitution Register.

Figure 4.2
Host/DMA Port
Address and Byte
Enables Formation

Figures4.3 and4.4 show the format of the Effective Address for APU
direct access through the Host/DMA Port.

Figure 4.3
Effective Address for APU
DMA/Host Port Access –
Cacheable

Figure 4.4
Effective Address for APU
DMA/Host Port Access –
Non-cacheable

Figures4.5 and4.6 show the format of the Effective Address for APU
direct access through the Secondary Port. Only 22 bits are required for SP
access. Bits [21:0] of the APU Effective Address are transferred directly to
SP_AD[21:0] during the address phase.

31 30 29 28 27 26 25 24 23 22 21 0

0 0 0 0 0 0 0 A1

1. A =1 for atomic operation. A = 0 for single load/store.

1 0 4-Mbyte Address Space

31 30 29 28 27 26 25 24 23 22 21 0

1 0 1 0 0 0 0 A1

1. A =1 for atomic operation. A = 0 for single load/store.

1 0 4-Mbyte Address Space

9 0
MSB Substitution Register

HBS_A[31:2] HBS_BE[3:0]
31 22 21 2

31 22 21 2 1 0

3 0

APU Effective Address

Encode

Prefetch Buffer 4-9

Figure 4.5
Effective Address for APU
Secondary Port Access –
Cacheable

Figure 4.6
Effective Address for APU
Secondary Port Access –
Non-cacheable

4.12
Prefetch Buffer

The Prefetch Buffer is a four-word data cache that works just like a normal
write-through cache system. The ATMizer Architecture uses the Prefetch
Buffer to efficiently load CPEs, buffer lists, and other data structures using
burst or block fetches.

Whenever the APU accesses external memory devices with cacheable
addresses, either port (Host/DMA Port or Secondary Port) can perform
block fetches, and store the data in the Prefetch Buffer, enhancing system
performance. The Block Fetch Size must be set to either two or four in both
the System Control Register and the BIU/Cache Configuration (BCC)
Register (refer to theCW33300 Enhanced Self-Embedding Processor Core
User’s Manual).

When executing a block fetch from the SP, asserting SP_AD25 informs the
memory system that the ATMizer Architecture is requesting a block on the
Secondary Port. If the transfer is through the Host/DMA Port, the Host/
DMA Port protocol handles the burst transaction automatically, which
means that a four-word block fetch functions the same as a 16-byte word-
aligned DMA operation.

The block fetch address is word aligned. The address wraps around, based
on a two-word or a four-word boundary, as shown in Tables4.1 and4.2.

31 30 29 28 27 26 25 24 23 22 21 0

0 0 0 0 0 0 0 A1

1. A =1 for atomic operation. A = 0 for single load/store.

1 1 4-Mbyte Address Space

31 30 29 28 27 26 25 24 23 22 21 0

1 0 1 0 0 0 0 A1

1. A =1 for atomic operation. A = 0 for single load/store.

1 1 4-Mbyte Address Space

4-10 ATMizer Processing Unit (APU) and Prefetch Buffer

Table 4.1
Two-word Block
Fetch Address
Offset

Table 4.2
Four-word Block
Fetch Address
Offset

Starting Address
Offset

Subsequent
Address Offset

0x0 0x4

0x4 0x8

0x8 0xC

0xC 0x0

Starting Address
Offset

Subsequent
Address Offset

Subsequent
Address Offset

Subsequent
Address Offset

0x0 0x4 0x8 0xC

0x4 0x8 0xC 0x0

0x8 0xC 0x0 0x4

0xC 0x0 0x4 0x8

5-1

Chapter 5
Instruction RAM (IRAM)
and Serial Interface

This chapter describes the function and operation of the Serial Interface
and how to load the Instruction RAM.

This chapter has five sections:

■ Section 5.1, “Overview”

■ Section 5.2, “Serial Downloading”

■ Section 5.3, “Serial Interface Data Addressing”

■ Section 5.4, “Multiple Downloading and ATMizer Booting”

■ Section 5.5, “Loading Code into the IRAM Example Software”

5.1
Overview

The Instruction RAM (IRAM) is a 4-Kbyte single-cycle SRAM contained
within the ATMizer Architecture. The IRAM holds up to 1024 instructions
of user-written firmware that power the APU. During normal operation
(when the APU is executing code) the APU can only read the IRAM. The
APU can write to the IRAM during diagnostic mode.

To load the user firmware into the IRAM, the user has to disable the cache
mechanism as explained inSection 5.5, “Loading Code into the IRAM
Example Software.” Disabling the cache mechanism puts the IRAM into
diagnostic mode. When the Serial Interface is enabled, the ATMizer Archi-
tecture stores the bitstreams from the Serial Interface or external logic into
the Host/DMA Port or the Secondary Port memory. The user must then
copy the user firmware into the IRAM using the Load IRAM Program in
Section 5.5, “Loading Code into the IRAM Example Software.”

5-2 Instruction RAM (IRAM) and Serial Interface

5.2
Serial
Downloading

Serial downloading is the process of downloading code from a serial
device through the Serial Interface to either the Secondary Port or the Host/
DMA Port. TheRST,SRL_BOOT, HBS_BOOT, SRL_CLK16,
SRL_ACK, and SRL_DIN signals control serial downloading.

To enable the serial downloading logic within the ATMizer, external logic
must first assertRST LOW for at least four clock cycles. External logic
must then deassertRST HIGH and keepSRL_BOOT asserted LOW
throughout the entire downloading process. When using a serial PROM,
RST should be connected through an inverter to the PROM Output Enable
signal (OE) and SRL_ACK should be tied HIGH so that when the external
logic deassertsRST, it also enables the Serial PROM.

After external logic deassertsRST, the ATMizer Architecture starts
SRL_CLK16 (CLK divided by 16). Since the ATMizer Architecture CLK
can be up to 50 MHz and Serial PROMs operate at less than 5 MHz, it is
necessary to divide the clock by 16. SRL_CLK16 should be connected to
the Serial PROM clock input. The Serial PROM presents data on
SRL_DIN signal, and the ATMizer Architecture latches this data on the
rising edge of SRL_CLK16.

During a serial download, the ATMizer Architecture takes data from the
Serial Interface (SRL_DIN) one bit a time, packs the data into a 32-bit
word and stores the data into either the Host/DMA Port or the Secondary
Port depending on the state of the HBS_BOOT signal. Asserting
HBS_BOOT selects the Host/DMA Port. Deasserting HBS_BOOT selects
the Secondary Port.

The external system can control the rate of the serial data transfer using the
SRL_ACK signal, since data on SRL_DIN is latched on the rising edge of
SRL_CLK16 only when SRL_ACK is asserted. When the external system
is not ready to present data on SRL_DIN, it can stall the ATMizer Archi-
tecture by deasserting SRL_ACK LOW. Whenever the external logic is
able to provide data, it can assert SRL_ACK HIGH, which causes the
ATMizer Architecture to receive more data. The ATMizer Architecture
expects the serial bitstream to start with Bit 31 of Word 0 and continue to
Bit 0 of Word N, where N is less than or equal to 4095. The bitstream fed
into the ATMizer Architecture is not stored directly into the IRAM. Instead
the bitstream is passed from the Serial Downloading Control Module to
either the Secondary Port (if HBS_BOOT deasserted) or the Host/DMA

Serial Interface Data Addressing 5-3

Port (if HBS_BOOT asserted) as 32-bit words. The ATMizer Architecture
stores these instructions temporarily into system memory.

After the entire code (less than or equal to 4 Kbytes) has been stored into
the system memory through the ATMizer Architecture, the external logic
must deassertSRL_BOOT HIGH to initiate the boot. Since it may be dif-
ficult to design logic that can deassertSRL_BOOT exactly one cycle after
the last bit of code has been loaded, LSI Logic recommends that the system
designer create a RC Circuit to deassertSRL_BOOT as soon as possible
after the entire code has been loaded. This procedure may cause some extra
data to be loaded into the Secondary Port or the Host/DMA Port, but this
should not present a problem as long as the user program does not try to
access this extra data.

5.3
Serial Interface
DataAddressing

The ATMizer Architecture loads up to 4 Kwords in one download cycle.
To provide flexibility for serial downloading, a portion of the first word
that the Serial Interface fetches (the Segment Address) is used as the upper
address for the serial downloading write operation. For a Host/DMA Port
write operation, Segment Address Bits [31:14] are passed to The Host/
DMA Port as HBS_A[31:14]. For a Secondary Port write, since there are
only 22 bits in the address, Segment Address Bits [21:14] are passed to the
Secondary Port as SP_AD[21:14]. Bits [31:23] and [13:0] of the Segment
Address are ignored and should be cleared to zeroes. This format allows
the system designer to dump the codes anywhere in the system memory on
a 16-Kbyte boundary. As each word arrives, the ATMizer Architecture
increments the Host/DMA or Secondary Port Address Bits [13:0] by four.
Tables5.1and5.2show examples of how the Segment Address is used for
the write address.

Table 5.1
Serial Interface
Data Addressing
through the
Secondary Port

Segment Address HBS_BOOT

Serial Download Write Address
(SP_AD[21:0])

Word 1 Word 2 . . . Word 4095

0x00000000 LOW 0x000000 0x000004 . . . 0x003FFC

0x00040000 LOW 0x040000 0x040004 . . . 0x043FFC

0x003FC000 LOW 0x3FC000 0x3FC004 . . . 0x3FFFFC

5-4 Instruction RAM (IRAM) and Serial Interface

Table 5.2
Serial Interface
Data Addressing
through the Host/
DMA Port

When the code to be downloaded requires less than 4 Kwords, external
logic can deassertSRL_BOOT HIGH when downloading is finished. If the
code to be downloaded requires more than 4 Kwords, external logic must
deassertSRL_BOOT at the 4-Kword boundary and at least 32 system
clock (CLK) ticks later, assert it again (multiple downloading). The first
word of the second download is decoded into another segment address the
same as in the first download.

Figure 5.1 shows how the Serial Interface uses the serial input to address
the data and store it.

Figure 5.1
Serial Downloading

5.4
Multiple
Downloading
and ATMizer
Booting

The ATMizer Architecture allows the user to have code larger than
1 Kword. When the code for a particular application exceeds 1 Kword,
non-timing critical routines may be kept in external, non-cacheable mem-
ory. The ATMizer Architecture can then execute this code.

To perform a second download, external logic must deassertSRL_BOOT
after performing the first download. This deassertion causes the ATMizer
Architecture APU to fetch instructions from either the Host/DMA Port (if

Segment Address HBS_BOOT

Serial Download Write Address
(HBS_A[31:2] + Bits [1:0] = 002)

Word 1 Word 2 . . . Word 4095

0x00000000 HIGH 0x00000000 0x00000004 . . . 0x00003FFC

0x01010000 HIGH 0x01010000 0x01010004 . . . 0x01013FFC

0xFFFFC000 HIGH 0xFFFFC000 0xFFFFC004. . . 0xFFFFFFFC

0000 0000 0000 0000 10XX XXXX XXXX XXXX

31 0

0000 0001 0010 0011 0100 0101 0110 0111Word 1

Word 0

0000 0000 0000 0000 00XX XXXX XXXX XXXX

31 0
Word 0

1000 1001 1010 1011 1100 1101 1110 1111Word 10x00000000

 0x00004000

 0x00008000

 0x0000C000

Serial
Interface

0x01234567

0x89ABCDEF

Memory
SP or Host/DMA Port Bit Streams

ATMizer
Architecture

Multiple Downloading and ATMizer Booting 5-5

HBS_BOOT is asserted HIGH) or the Secondary Port (if HBS_BOOT is
deasserted LOW). After the second downloading process starts, the
ATMizer Architecture arbitrates between the serial request and the APU
Instruction Fetch operation. The serial request has the higher priority.

If, while performing the second serial downloading, the APU Host/DMA
Port instruction fetch, a DMA operation, and a serial request all happen at
the same time, the serial request has the highest priority, the APU has the
second highest priority, and the DMA Engine has the lowest priority.

During a system reset, the APU hardware sets the APU Reset Vector to vir-
tual address 0xBFC00000. The ATMizer Architecture maps this virtual
address to a physical address based on the state of HBS_BOOT. Tying
HBS_BOOT HIGH causes the APU, upon reset, to map the Reset Excep-
tion Vector virtual address to physical address 0x00000000 of the Host/
DMA Port. Tying HBS_BOOT LOW causes the APU, upon reset, to map
the Reset Exception Vector virtual address to physical address
0x00000000 of the Secondary Port.

The code at this boot starting address should have a jump instruction which
transfers the APU program counter into the appropriate virtual address
space (0xA0800000 to 0xA08FFFFC for the Host/DMA Port, or
0xA0C00000 to 0xA0CFFFFC for the Secondary Port).

Using the Secondary Port to boot, for example, the following instructions
should be placed at the beginning of the memory location 0xA0C00000:

la r1, 0xA0C00500
j r1

The actual boot code starts at the address pointed to byr1 (0x500 in this
case). The jump ensures that the APU program counter generates the same
effective address as the physical address. (Note that the jump must be an
absolute jump as shown above.) From this point on, the APU program
counter is now in the 0xA0C00000 to 0xA0CFFFFC range.

The BEV Bit (Bit 22) in the APU Status Register determines the APU
General Exception Vector Address. A system reset sets the BEV Bit to one.
Software in the APU may clear or set the BEV Bit.

Setting the BEV Bit to one sets the APU General Exception Vector
Address to be the non-cacheable virtual address 0xBFC00180. The
ATMizer Architecture maps this virtual address to a physical address

5-6 Instruction RAM (IRAM) and Serial Interface

based on the state of HBS_BOOT. Tying HBS_BOOT HIGH causes the
APU, upon a general exception, to map the General Exception Vector vir-
tual address to physical address 0x00000180 of the Host/DMA Port. Tying
HBS_BOOT LOW causes the APU, upon general exception, to map the
General Exception Vector virtual address to physical address 0x00000180
of the Secondary Port.

LSI Logic recommends that the first instruction of the exception handlers
(located at 0x00000180 on either the Host/DMA Port or the Secondary
Port) redirect the APU using a jump instruction which transfers the APU
program counter into the appropriate virtual address space (0xA0800000
to 0xA08FFFFC for the Host/DMA Port, or 0xA0C00000 to
0xA0CFFFFC for the Secondary Port).

Clearing the BEV Bit to zero sets the APU General Exception Vector
Address to be the cacheable virtual address 0x80000080. The ATMizer
Architecture maps this address to IRAM location 0x00000080 and upon a
general exception jumps to this location.

After all the code is loaded into the IRAM through a series of load, inval-
idate, store, and validate operations, the APU should clear the IsC Bit to
Validate the IRAM and then branch to the beginning of the executable code
in the IRAM. This branch is a simple branch into a cacheable space as
shown below (the beginning address of the IRAM, most likely at Address
0x0000000).

la r1, 0x00000000
j r1

5.5
Loading Code
into the IRAM
Example
Software

In order to load instruction code from the Secondary Port or the Host/
DMA Port into the IRAM, the APU must be programmed to invalidate the
IRAM by setting the IsC Bit (Bit 16) in the APU Status Register.

In the example code below, the instructions to be loaded into the IRAM
reside in the Secondary Port (SP) beginning at Address 0xA0C01000.
There are 50 instructions to be loaded into the IRAM space beginning at
Address 0x00000000.

In order to transfer 1024 instructions, the programmer must change the
contents ofr5 from 50 to 1024. In order to load instructions from the Host/
DMA Port into the IRAM, the programmer must change the Secondary
Port Beginning Address into the Host/DMA Port Beginning Address. For

Loading Code into the IRAM Example Software 5-7

more detail explanation on the APU Internal Registers please refer to
Chapter 14.

/***
Function: This program is used to load a test program into

the IRAM from the Secondary Port (SP).
The program to be loaded into the IRAM is loaded at 0x1000 in
the Secondary Port memory.
***/
#include “regdef.h”

.text

.set noreorder

.set noat

li r1, 0x00034800 # Value to be loaded into APU BCC Reg
DS = 0
IS1 = 1
IBLKSZ = 0
INTP = 0, NOPAD = 0, BGNT = 1
LDSCH = 1
NOSTR = 1
(see
Section 14.2, “APU Core Registers”)

la r10, 0xfffe0130 # APU BIU/Cache Config Reg Address
sw r1, (r10) # Write to Config Reg
/***
Program loop to load test program from the SP to the IRAM.
r5 contains the number of instructions to be transferred from
the SP to the IRAM.
In each pass of the loop, one instruction word is transferred
from the SP to the APU Register, and from there to the IRAM.
***/
li r5, 50 # No. of instr words to fetch from SP
li r2, 0x00010000 # Bit 16 = 1 -> isolate cache
la r11, 0xa0c01000 # SP address (physical address 0x1000)

Where the IRAM program to be transferred
resides

la r12, 0x0 # The first location in the IRAM
loop: lw r3, (r11) # Fetch IRAM instr word from SP

addi r11, 0x4 # Point to next IRAM instr word in SP

5-8 Instruction RAM (IRAM) and Serial Interface

mtc0 r2, $12 # Write to CP0 Status Reg, enable
Isolate cache

sub r5, 1 # Decrement counter by 1

sw r3, (r12) # store instr word from SP to IRAM

mtc0 r0, $12 # write to CP0 Status Reg, disable isolate
cache

bne r5, r0, loop # fetch next IRAM instruction word
addi r12, 0x4 # point to next addr in IRAM

nop #
nop #
nop #
j r0, # r0 contains value “0” which is the

starting address of the IRAM
nop #
nop #

end

6-1

Chapter 6
Virtual Channel RAM
(VCR)

This chapter describes the function and operation of the Virtual Channel
RAM.

This chapter has five sections:

■ Section 6.1, “Overview”

■ Section 6.2, “Storing Cells”

■ Section 6.3, “Storing Channel Parameter Entries (CPEs)”

■ Section 6.4, “Cell Multiplexing and Demultiplexing”

■ Section 6.5, “VCR Partitioning Examples”

6.1
Overview

The Virtual Channel RAM (VCR) is a 1024 x 32 dual-ported Read/Write
SRAM that provides the ATMizer Architecture with many of its unique
capabilities. Almost all ATMizer Architecture operations involve the trans-
fer of data to and from the VCR. The VCR can be read and written by the
DMA Controller, the ATM Cell Interface and the APU.

All incoming cells (cells arriving over the ACI Receiver) are written into
the VCR prior to processing. The APU decides whether to terminate a cell
(reassemble it into a CS-PDU or a data buffer) or to switch a cell (inter-
nally or externally). All outgoing cells are either constructed in the VCR
(segmentation) or transferred to the VCR (external switching) prior to
transmission. In addition, Channel Parameter Entries (CPEs), memory
buffer lists, messages, and other parameters can all be stored within the
VCR. This ability to store parameters inside the ATMizer Architecture
allows the ATMizer Architecture to be used in a variety of cost-sensitive
applications such as memory-less network interface cards that support a
limited number of simultaneously active VCs.

In high-end applications, it is possible to support an unlimited number of
simultaneously active transmit and receive channels by storing all CPEs

6-2 Virtual Channel RAM (VCR)

externally. This procedure puts certain demands on the speed of local
memory that may force the usage of SRAM for CPE storage.

The VCR is the most configurable aspect of the ATMizer Architecture.
The software partitioning of the VCR can vary dramatically between appli-
cations. The VCR configuration affects the number of channels supported
and the size, structure, and speed of the external memory system.

All cells received from the ATM Cell Interface are written into the VCR to
await either reassembly or switching operations initiated by the APU.
AAL 1, 2, 3/4, and 5 cells are built in the VCR by a combination of DMA
operations and APU operations before being passed to the ACI Transmit-
ter. The VCR may also be used to store CPEs, available buffer lists, and
other data structures required for system operation. Some applications
store CPEs in the VCR, while other applications store CPEs in main mem-
ory. Some applications may store CPEs in both places.

The VCR can be used for the following functions:

■ Storing Cells

■ Storing Channel Parameter Entries (CPEs)

■ Cell Multiplexing and Demultiplexing

The following three sections describe these functions in more detail.

6.2
Storing Cells

The VCR can be used to store incoming and outgoing cells.

Incoming Cells The Receiver in the ATMizer Architecture ATM Cell Interface recon-
structs cells received from the external transmission convergence framing
logic in the VCR. The ACI allocates 64 bytes of VCR memory to each
incoming cell, although the actual cell size is user selectable (up to 64
bytes). The cell size must be programmed into the System Control Register
as part of the APU’s system initialization routine. The first 256 bytes (4
cells), 512 bytes (8 cells), 1024 bytes (16 cells) or 2048 bytes (32 cells) of
the VCR are set aside for Received Cell Holders (selected by the BUFSIZ
Field in the System Control Register). Cells are written into the VCR mod-
ulo 4, 8, 16, or 32. Cells must be processed before they are overwritten.
Cell buffering in the VCR helps to decouple the incoming cell stream from
memory interface latency and is especially helpful in situations where the

Storing Channel Parameter Entries (CPEs) 6-3

APU is temporarily unable to process incoming cells due to execution of
an extended routine.

Cells written into the VCR are processed in the order of their arrival by the
APU and are either switched over the internal Transmitter, switched over
the main memory interface, or reassembled into memory-based realtime
data stream buffers or CS-PDUs. The decision to switch or terminate a cell
is made by the APU after examining the information stored in the CPE for
the VC over which the cell arrived.

Outgoing Cells All cells must be either moved to (external switching) or constructed in
(segmentation) the VCR prior to transmission. Firmware can set aside an
area in the VCR to act as the staging area for cell switching and generation.
Outgoing cells are transferred from the VCR to the external transmission
convergence framing logic by the ACI Transmitter. The ACI Transmitter
uses VCR memory pointers. Whenever the APU wishes to have a VCR
resident cell transferred to the Transmission Convergence Framing Logic,
it simply writes a VCR pointer to the cell into the ACI Transmitter Cell
Address FIFO. The ACI Transmitter then performs the transfer.

This pointer method puts no restrictions on the internal location of cells
slated for transmission except that they be in the VCR. The ATMizer
Architecture can switch Received Cell Holder resident cells out over the
Transmitter by simply passing a pointer (to the cell) to the Cell Address
FIFO (internal switching). To switch a cell from an external device (to
source a pre-existing memory based cell out over the ATMizer Architec-
ture ACI Transmitter), the APU must first initiate a DMA operation to
bring the cell into the VCR from some temporary memory buffer. Once the
cell is in the VCR, the APU passes the VCR pointer for the cell to the Cell
Address FIFO in the same as it does for internal switching. Segmentation
requires ATM and SAR (AAL 1, 2, and 3/4) Headers and Trailers (AAL 2
and 3/4) to be appended to the SAR SDUs by the APU. Once a cell is con-
structed in the VCR, the APU again passes a cell pointer to the Cell
Address FIFO. The ACI Transmitter sends the cell to the transmission con-
vergence framing logic, one byte at a time.

6.3
Storing Channel
Parameter
Entries (CPEs)

The VCR can be used for storing Channel Parameter Entries.

6-4 Virtual Channel RAM (VCR)

Channel
ParameterEntries

A Channel Parameter Entry contains all of the pertinent information about
a single VC. A system that supports AAL 5 CS-PDU segmentation and
reassembly requires less information in a CPE than a system that supports
AAL 5 CS-PDU segmentation and reassembly and cell switching. A sys-
tem that supports simultaneous segmentation and reassembly of AAL 1, 2,
3/4, and 5 CS-PDUs requires an even more robust CPE for each VC.

The ATMizer Architecture does not enforce any specific CPE format. The
structure and location of CPEs are defined by the user. User firmware dic-
tates the CPE format, how VCs are grouped together, and how the segmen-
tation process is performed on a grouping. The system designer creates the
CPE format to fit his system and then writes the APU firmware to work
within this environment.

For the APU to generate a cell, it must know certain information about the
Virtual Circuit (VC) over which the cell will pass and information about
the CS-PDU from which the cell is generated. This information includes:

1. The main memory address of the CS-PDU or realtime data buffer from
which the SAR-SDU is retrieved

2. The number of bytes remaining in the CS-PDU or CS-PDU fragment
(in scatter-gather applications)

3. In scatter-gather applications, whether or not the current CS-PDU
fragment is the last fragment of a multi-fragment CS-PDU

4. The ATM Header that is to be appended to each cell

5. The ATM Adaptation Layer type (number) that is to be used to activate
the appropriate CRC circuitry and to segment or reassemble cells orig-
inating or terminating on the given VC

6. The previous SAR Header/Sequence Number for AAL 1, 2, and AAL
3/4

7. The CRC32 Partial Result for AAL 5 CS-PDU

Collectively, these parameters provide the APU with all of the information
that is needed to process an incoming cell or to segment a CS-PDU into a
stream of cells.

Tables6.1 and6.2 show the CPEs implemented by LSI Logic for the
ATMizer R/T System Development Platform Demo supporting AAL 5
CS-PDU segmentation and reassembly only.

Storing Channel Parameter Entries (CPEs) 6-5

Table 6.1
CPE for
CS-PDU AAL 5
Segmentation

Table 6.2
CPE for
CS-PDU AAL 5
Reassembly

Channel Groups A Channel Group is a group of VCs whose CPEs form a contiguous list,
either in the VCR or in main memory. Channel Groups are defined by the
user. The VCs that form a Channel Group reach their segmentation service
intervals simultaneously (they are driven by a common PRPC). Once a
PRPC times out, firmware running on the APU sequences through the list
of VCs/CS-PDUs (the Channel Group), generating a specified number of
cells from each CS-PDU before proceeding on to the next entry in the
Channel Group (seeFigure 6.1). The number of cells generated from each
CS-PDU before proceeding to the next Channel Group entry (and there-
fore, the next CS-PDU) is controlled by user firmware.

Figure 6.1shows some examples of software structures that can be stored
in the VCR.

In the example shown inFigure 6.1, a CPE for a VC over which we are seg-
menting and transmitting a CS-PDU, requires 32 bytes of information.
These 32 bytes include:

■ Four bytes for the CPE link list pointer, which points to the next CPE

■ Four bytes for the CPE link list pointer, which points to the previous
CPE

Entry Size

CPE Link List Pointer to Next 4 Bytes

CPE Link List Pointer to Previous 4 Bytes

CS-PDU Memory Starting Address 4 Bytes

Base ATM Header (to be appended to each cell)1

1. The APU handles PTI and CLP manipulation.

4 Bytes

CRC32 Partial Result 4 Bytes

Next DMA Address 4 Bytes

Channel Group Number 4 Bytes

Number of Bytes Left and Total Byte Count2

2. Two bytes for the number of bytes left and two bytes for the total byte count.

4 Bytes

Entry Size

CS-PDU Memory Starting Address 4 Bytes

CRC32 Partial Result 4 Bytes

CRC32 Final Result 4 Bytes

Next DMA Address 4 Bytes

6-6 Virtual Channel RAM (VCR)

■ Four bytes for the starting address of a CS-PDU in the memory

■ Four bytes for storing the ATM Header to be appended to each
SAR-PDU

■ Four bytes for CRC32 partial storage (AAL5)

■ The next DMA starting address

■ Channel group number used for the VC

■ Two bytes for the number of bytes left, and two bytes for the total byte
count for the CS-PDU

Note that a Channel Group is a user defined data-structure and not a struc-
ture enforced by the ATMizer Architecture.

The Host System manages CS-PDU sequencing over a single VC through
either a linked-list mechanism (parsing driven by the ATMizer Architec-
ture) or through an explicit messaging mechanism (the Host waits for a
message from the ATMizer Architecture that indicates that CS-PDU Seg-
mentation is complete, and then passes a new CS-PDU to the ATMizer
Architecture to be segmented and transmitted over the VC).

Passing a new CS-PDU to the ATMizer Architecture means passing a new
CPE to the ATMizer Architecture along with an indication of which Chan-
nel Group/PRPC to append the CPE. The ATMizer Architecture appends
this new entry to the specified Channel Group. The Host uses memory
mailboxes and Host-to-ATMizer messaging to pass a new CPE to the
ATMizer Architecture. CPEs for channels carrying CS-PDUs undergoing
reassembly can be built more compactly than CPEs for channels carrying
CS-PDUs undergoing segmentation.

Figure 6.1 shows a possible VCR construction for a system supporting
only 32 active VCs for both transmit and receive directions. In this exam-
ple, the APU uses the VCI contained in the ATM Header of an incoming
cell as an index into a look-up table to retrieve the CPE for the VC. CPEs
for receiver-oriented channels are listed in order of their VCIs. This restric-
tion does not apply to the transmit direction where a grouping and parsing
mechanism is employed.

Storing Channel Parameter Entries (CPEs) 6-7

Figure 6.1
Example VCR Software
Structures

Received Cell Holder 5

Received Cell Holder 4

Received Cell Holder 3

Received Cell Holder 32

Receive VC/CS-PDU 31

Receive VC/CS-PDU 32

Transmit Cell Builder 1

Idle Cell Holder

Transmit Cell Builder 2

Transmit Cell Builder 3

Transmit Cell Builder 4

Transmit VC/CS-PDU 1

Transmit VC/CS-PDU 2

0x07C3

0x07FF

Transmit VC/CS-PDU 31

Transmit VC/CS-PDU 32

Receive VC/CS-PDU 1

Receive VC/CS-PDU 2

.

.

.

.

.
.

.

.

.

.

Free Space for Group TableReceived Cell Holder 31

Received Cell Holder 1

0x0000 0x0003

0x003C 0x003F

Received Cell Holder 2

0x0043

0x007F

0x0040

0x007C

ATM Header

AAL5 Receive Cell Holder &

Not Used

0x0034
0x0038
0x003C

. .

ATM Header

Next CPE

AAL 5 Transmit Channel Parameter Entry

CRC32 Partial Result

Bytes Left Total Bytes

32 Bits32 Bits

. .

0x0000
0x0004
0x0008
0x000C

Transmit Cell Builder

0x07C0

0x07FC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CS-PDU Starting Address

Previous CPE

Next DMA Address

Group Number

AAL 5 Receive Channel Parameter Entry

CRC32 Partial Result

CS-PDU Starting Address

Next DMA Address

CRC32 Final Result

Payload

6-8 Virtual Channel RAM (VCR)

6.4
Cell
Multiplexing
and
Demultiplexing

The ATMizer Architecture can simultaneously handle up to 65536 VCs,
performing cell multiplexing and pacing for all of the active channels.
However, there are trade-offs to be made between the number of channels
supported, the data rate of the ATM Port, and the cost and structure of the
memory.

For example, in a network interface card operating at desktop speeds less
than or equal to 45 Mbits/s, it is possible to limit the number of VCs sup-
ported to 64 (32 Transmission and 32 Receive). In this case:

■ The VCR can be used to cache all the relative parameters for each of
these channels

■ The ATMizer Architecture need only access main memory to retrieve
and retire SAR-SDUs and Host Memory can be used for CS-PDU
storage

■ The NIC itself need not contain any memory

In applications requiring the support of a very large number of channels,
the VCR can not hold all of the needed channel information. It may be nec-
essary to provide high-speed SRAM, that can be accessed by the ATMizer
Architecture Secondary Port, for Channel Parameter Entry storage. The
SRAM gives the ATMizer Architecture fast access to the information
needed for segmenting and reassembling CS-PDUs and for the switching
of cells. CS-PDU storage could be handled in a local DRAM or SRAM-
based memory system that is accessible by the ATMizer Architecture
DMA Controller.

Systems can be a cross between the two examples above. In some systems,
it is possible to limit the number of simultaneously active transmission
channels. There is no limit on the number of transmission VCIs supported,
only in the number that can have CS-PDUs under segmentation at any one
time. If the number is limited to 32, then all Transmission Channel Param-
eters can be cached internally. The time saved by caching Transmission
Parameters in the VCR can be used to retrieve the parameters needed for
reassembly. This time usage may allow the use of a single interleaved
DRAM system for both CS-PDU and Channel Parameter storage. An
unlimited number of transmission VCIs can be supported by swapping out
a CPE/VC/CS-PDU for a new CPE/VC/CS-PDU once its CS-PDU (or CS-
PDU fragment) has been segmented.

VCR Partitioning Examples 6-9

6.5
VCR
Partitioning
Examples

Figures6.2 and6.3 show two examples of VCR constructions.

Figure 6.2 shows the VCR partitioning for a Network Interface Card (for
a PC or a Workstation) that supports a limited number of open channels. In
this example, all Channel Parameter Entries (CPEs) for both transmit and
receive channels are stored in the VCR, eliminating the need for local
memory in the Secondary Port.

Figure 6.3shows the VCR partitioning for a router that supports an unlim-
ited number of open channels but places a restriction on the number of VCs
that can have CS-PDUs under active segmentation at any one time. This
example system limits the number of transmission channels that can be
active simultaneously to 64, and caches all the CPEs for active channels in
the VCR. This example does not limit the number of open transmission
channels, only the number of channels that can have CS-PDUs undergoing
segmentation simultaneously.

Figure 6.2
VCR Partitioning for an
NIC

Figure 6.3
VCR Partitioning for a
Router

Once one CS-PDU has been completely segmented, the APU can swap out
its CPE for the next in line. CPEs for channels that are active in the receive
direction are stored in external local memory, which allows the router to
support an unlimited number of simultaneously active receive channels.
Without an intelligent memory fragment allocation plan, support for a
large number of VCs would overload most memory systems. Fortunately
the ATMizer Architecture combines support for external CPEs with a
capability to do link list-based CS-PDU scattering during reassembly allo-

Transmit and Receive
Cell Holders

32 Active Transmission

x 32 Bytes

Memory Fragment
Cache

32 Receive Channels
x

16 Bytes
Channels

Transmit and Receive
Cell Holders

Memory Fragment
Cache

224 Active Transmission Channels
x

16 Bytes

6-10 Virtual Channel RAM (VCR)

cating memory in fragments as small as necessary. The net result is that the
example router is able to support an unlimited number of open transmit and
receive channels from a single unified DRAM-based memory system with
a single restriction on the number of transmission channels that can be
actively undergoing segmentation at one time.

7-1

Chapter 7
Pacing Rate Unit (PRU)

This chapter describes the function and operation of the Pacing Rate Unit.

This chapter has eight sections:

■ Section 7.1, “Overview”

■ Section 7.2, “Peak Rate Pacing Counters (PRPCs)”

■ Section 7.3, “Channel Group Credit Register (CGCR)”

■ Section 7.4, “Count Initialization Register (CIR)”

■ Section 7.5, “Configuration Register (CR)”

■ Section 7.6, “Stall Register (SR)”

■ Section 7.7, “Cell Rate Pacing”

■ Section 7.8, “Channel Priority”

7.1
Overview

The Pacing Rate Unit (PRU) implements the Peak Rate Pacing and Maxi-
mum Burst Length control functions. When one of the 10 Peak Rate Pac-
ing Counters (PRPCs) reaches zero, the firmware starts to segment cell(s)
from all CS-PDUs associated with that PRPC. Anytime one or more
PRPCs has timed-out but has not yet been serviced, internal hardware
asserts the APU input CpCond2 or the Interrupt1 signal depending on the
timeout mode selected in the Configuration Register. Firmware running on
the APU periodically checks the state of CpCond2 by executing the
Branch on Coprocessor Condition 2 True Instruction. If CpCond2 is true,
at least one PRPC has timed-out and the APU must segment the CS-PDUs
attached to any PRPCs that have reached their service intervals.

The APU determines which PRPCs have timed-out by reading the 10-bit
Channel Group Credit Register (CGCR). Each bit set in the CGCR indi-
cates that the corresponding PRPC has timed-out. The PRPC can be
clocked by the System Clock (CLK) or the transmission line clock con-
nected to the PRU_CLK pin. Note that the maximum frequency of

7-2 Pacing Rate Unit (PRU)

PRU_CLK cannot exceed one half of the System Clock frequency. In some
applications, the PRPC counters must count with the transmission line
clock, so the Transmission Clock, TX_CLK, is connected to PRU_CLK.

The Pacing Rate Unit consists of:

■ Peak Rate Pacing Counters (PRPCs)

■ Channel Group Credit Register (CGCR)

■ Count Initialization Register (CIR)

■ Configuration Register (CR)

■ Stall Register (SR)

The following five sections describe these components.

Note The CpCond and Interrupt signals are internal to the APU core which is
part of the ATMizer Architecture. Refer to theCW33300 Enhanced Self-
Embedding Processor Core User’s Manual for more information.

7.2
Peak Rate
PacingCounters
(PRPCs)

The APU can use the Peak Rate Pacing Counters for pacing the rate of CS-
PDU segmentation, implementing the leaky bucket algorithm, controlling
usage parameters, or as general purpose counters. Each counter has an
associated Count Initialization Register (CIR). Eight of the PRPCs and
their associated CIRs are 12 bits wide. Two of the PRPCs and their associ-
ated CIRs are 24 bits wide.

The 10 Peak Rate Pacing Counters can be used to control the rate of CS-
PDU segmentation. Whenever one or more PRPCs times out, the PRU
asserts the APU CpCond2 or Interrupt1 input to inform the APU firmware,
which will then branch to the Segmentation routine.

The 24-bit PRPCs can be used to implement the leaky bucket algorithm.
One counter tracks the rate to fill the bucket, and the second counter tracks
the number of tokens in the bucket.

7.3
Channel Group
Credit Register
(CGCR)

The Channel Group Credit Register is a 16-bit APU read/write register
containing one bit for each PRPC (PRPCs 9 through 0 directly correspond
to Credit Bits [9:0]). When the PRPC counts down to zero, the PRU sets
the corresponding PRPC Credit Bit in the CGCR. Software can read the
contents of the CGCR at any time to see which PRPCs has timed-out. The

Count Initialization Register (CIR) 7-3

APU should use either the Load Halfword or Load Word instruction to
read the CGCR. Reading the CGCR clears the CGCR.

Figure 7.1 shows the Channel Group Credit Register format.

Figure 7.1
Channel Group
Credit Register

The CGCR’s Effective Address (the address that is used by the code) is
0xFFF040X0.

Since some PRPCs are associated with CpCond2 and other PRPCs are
associated with interrupts, the PRU allows the APU to indicate which bits
in the CGCR should be cleared when reading the register. Clearing the
CGCR Effective Address Bit 7 to zero causes the PRU to clear only those
bits configured for the CpCond2 method. Setting the Effective Address Bit
7 to one causes the PRU to clear only those bits configured for the Interrupt
Method. The APU should clear Effective Address Bits [6:4] to zero. Firm-
ware running on the APU can implement channel priority by selectively
servicing Channel Groups that have timed-out.

7.4
Count
Initialization
Register (CIR)

The APU initializes the PRPC counter value by writing to the correspond-
ing Count Initialization Register. For PRPCs 0 through 7, the initial value
is placed on CIR Bits [11:0] and for PRPCs 8 and 9, the initial value is
placed on CIR Bits [23:0]. The APU can also read the 10 PRPCs at the
same addresses (the 10 addresses are read/write). Store Halfword instruc-
tions should be used to write to PRPCs 0 through 7, and Store Word
instructions should be used to write to PRPC 8 and 9. Load Halfword
instructions should be used to read PRPC 0 through 7 and Load Word
instructions should be used to read PRPC 8 and 9.

Figure 7.2 shows the 12-bit Count Initialization Register format used for
PRPCs 0 -7.

Figure 7.2
12-Bit Count
Initialization
Register

15 10 9 0

Reserved1

1. All reserved bits must be 0.

Credit Bits (PRPCs 9 - 0)

15 12 11 0

Reserved1

1. All reserved bits must be zero.

Initialization Value

7-4 Pacing Rate Unit (PRU)

Figure 7.3 shows the 24-bit Count Initialization Register format used for
PRPCs 8 -9.

Figure 7.3
24-Bit Count
Initialization Register

The Count Initialization Register’s Effective Addresses are 0xFFF043XX
(seeTable 11.8).

Setting Effective Address Bit 7 to one causes the PRU to write the initial-
ization value into the CIR and the PRPC immediately. Clearing Effective
Address Bit 7 to zero causes the PRU to write the initialization value into
the CIR immediately, and to update the PRPC after it reaches zero. Effec-
tive Address Bit 6 should be cleared to zero.Table 7.1 shows how the
Effective Address Bits [5:0] select the CIR and the size of the CIR.

Table 7.1
Effective Address
Bits [5:0] CIR
Selection

7.5
Configuration
Register (CR)

The Configuration Register has Timeout and Clock Select fields for each
corresponding PRPC.

The Timeout Field is used to notify the APU when a PRPC has counted
down to zero. There are two methods for indicating timeout to the APU. In
the first method, the APU can check to see if a PRPC has timed-out by exe-
cuting a Branch On Coprocessor 2 Condition Instruction. The PRU asserts
CpCond2 as long as at least one PRPC associated with the CpCond2 tim-
eout indication method has its bit set in the CGCR. In the second method,

31 24 23 0

Reserved1

1. All reserved bits must be 0.

Initialization Value

Bits [5:0] CIR Size (Bits)

0000002 0 12
0000102 1 12
0001002 2 12
0001102 3 12
0010002 4 12
0010102 5 12
0011002 6 12
0011102 7 12
1000002 8 24
1001002 9 24

Configuration Register (CR) 7-5

the PRU asserts a timeout interrupt. The PRU asserts Interrupt1 to the APU
as long as at least one PRPC associated with the interrupt timeout indica-
tion method has its bit set in the CGCR. A PRPC may be configured to use
either timeout indication method, but not both.

PRPCs 0, 1, 2, and 3 are grouped, PRPCs 4, 5, 6, and 7 are grouped, and
PRPCs 8 and 9 are grouped. Software must determine which method each
group of timers will use for timeout indication.Table 7.2 shows how the
Timeout Field is used for this purpose. Software can change the timeout
mechanism dynamically. When one of the counters in a group times-out,
software must read the CGCR to find out which PRPC caused the
CpCond2 or the interrupt.

Each PRPC can be driven by either the System Clock (CLK) or by the Pac-
ing Rate Unit Clock (PRU_CLK). The APU uses the Clock Select Field to
select between these two clocks. Bits [9:0] select the clock for PRPCs 9
through 0. Clearing the PRPC’s corresponding bit to zero causes the PRPC
to be clocked using CLK. Setting the PRPC’s corresponding bit to one
causes the PRPC to be clocked using PRU_CLK.

Figure 7.4 shows the Configuration Register format.

Figure 7.4
Configuration
Register

The Configuration Register’s Effective Address is 0xFFF04100.

Note Firmware mustnotwrite to the Configuration Register using a Store Half-
word instruction.

Table 7.2
PRPC Grouping

15 13 12 10 9 0

Reserved1

1. All reserved bits must be 0.

Timeout Clock Select (PRPCs 9 - 0)2

2. CLK, if bit cleared to zero. PRU_CLK, if bit set to one.

Timeout Method1

1. CpCond Method, if bit cleared to
zero. Interrupt Method, if bit set
to one.

PRPCs

Bit 10 0, 1, 2, 3
Bit 11 4, 5, 6, 7
Bit 12 8, 9

7-6 Pacing Rate Unit (PRU)

7.6
Stall Register
(SR)

The PRU contains a Stall Register used to suspend one or more PRPCs.
Setting a Stall Mask Bit to one in the Stall Register causes the correspond-
ing PRPC to stop counting. Stall Mask Bits [9:0] correspond to PRPCs 9
through 0. Credit does not accumulate for a PRPC with its Stall Mask Bit
set to one or when a PRPC is stalled at zero. If a PRPC is stalled at zero,
the PRU sets its Credit Bit as soon as the Stall Bit is cleared. Once the Stall
Mask Bit is cleared to zero, the corresponding PRPC begins counting
again from where it left off. The APU should use either the Store Halfword
or the Store Word instruction to write to this register.

Figure 7.5 shows the Stall Register format.

Figure 7.5
Stall Register

The Stall Register’s Effective Address is 0xFFF04200.

7.7
Cell Rate Pacing

The ATMizer Architecture can implement Cell Rate Pacing by controlling
the CS-PDU Segmentation Rates.

Peak Rate Pacing
and Burst Length

The ATMizer Architecture can implement the ATM Layer Peak Rate Pac-
ing and Maximum Burst Length control functions.

Once a CS-PDU or CS-PDU fragment has been passed to the ATMizer
Architecture for segmentation, the ATMizer Architecture controls the rate
of cell generation from the CS-PDU and the number of back-to-back cells
generated from each CS-PDU. A CS-PDU can be attached to any of the 10
user-programmable Peak Rate Pacing Counters in the ATMizer Architec-
ture. Each PRPC counts down by one on each clock tick. Since each CS-
PDU attached to a given PRPC may have its own Burst Length value, the
count in the Peak Rate Pacing Register actually determines the Service
Interval for the Channel Group, not necessarily the peak rate of cell gener-
ation for CS-PDUs attached to that PRPC. CS-PDUs attached to a partic-
ular PRPC with similar characteristics, such as channel priority, are
collectively referred to as a Channel Group. More than one Channel Group
can be attached to a single PRPC. If the Burst Lengths for each CS-PDU
attached to a PRPC are identical, the PRPC count determines the actual
peak rate of segmentation for CS-PDUs belonging to that Channel Group.

15 10 9 0

Reserved1

1. All reserved bits must be 0.

Stall Mask (PRPCs 9 - 0)

Cell Rate Pacing 7-7

CS-PDUs are attached to a PRPC by the Host Processor. When the Host
passes a Segment CS-PDU information packet to the ATMizer Architec-
ture, it includes in the information packet an indication of which PRPC
should be used to define the Service Interval for segmenting the CS-PDU.
It also includes the Burst Length value for the CS-PDU (how many cells
should be generated and sent, back-to-back, for the CS-PDU at each ser-
vice interval). The ATMizer Architecture, upon receiving this Segment
CS-PDU information packet (through Host-ATMizer Messaging) appends
the Channel Parameters for the CS-PDU to the end of the specified Chan-
nel Group and begins the segmentation process on the CS-PDU the next
time its associated PRPC times-out.

When servicing a Channel Group, APU firmware can generate and send
one or more cells for one VC before servicing the next VC in the Channel
Group. The number of cells to be sent before proceeding to the next Chan-
nel Group entry can be defined either by construction (this value is the
same for each member of a Channel Group and embedded into the firm-
ware directly) or by a field inside the Channel Parameter Entry for the VC.
Firmware running on the ATMizer Architecture segments the number of
cells specified by this Burst Length value before proceeding to the next
Channel Group entry. A side effect of this process is that the amount of
time required to access and restore a Channel Parameter Entry can be
amortized over several cells, effectively reducing the number of APU
instructions and the amount of time required to generate a cell. This time
savings may be of importance in high-speed applications (155 Mbits/s)
supporting a large number of VCs (more than 512).

Average Pacing Average Pacing may not be implemented by the ATMizer Architecture. It
will probably be implemented by the Host Processor, which has access to
a realtime clock.

To maintain the Average Pacing Rate agreed to at connection establish-
ment, the Host Processor keeps a running total of the number of bytes sent
over each established VC. Prior to queuing a new CS-PDU for segmenta-
tion over a given VC, the Host Processor must first determine if queuing
the CS-PDU would violate the Average Rate for the VC. To do this the pro-
cessor calculates the amount of time that has passed since the last check-
point. It then divides the total number of bytes sent out over the VC since
the last checkpoint by the elapsed time. The result is the actual Average
Pacing Rate in bytes per second. If queuing the next CS-PDU would result

7-8 Pacing Rate Unit (PRU)

in a violation of the agreed to Average Pacing Rate for the Virtual Circuit,
then the Host Processor waits a period of time before passing the CS-PDU
to the ATMizer Architecture for segmentation. If queuing the CS-PDU
would not violate the Average Pacing Rate parameter, the CS-PDU is
passed to the ATMizer Architecture for segmentation. As statistical multi-
plexing issues become better understood, software can be modified to
implement Average Rate Pacing in the best way.

7.8
Channel
Priority

Firmware can use the CGCR to implement virtually any Channel Priority
algorithm. There are no priority mechanisms enforced in hardware. By
checking the CGCR Bits in a particular order, the APU can implement
high-priority and low-priority Channel Groups. To give higher priority to
CS-PDUs/VCs belonging to high-priority Channel Groups, the APU can
read the CGCR during the servicing of a lower-priority Channel Group to
see if a higher-priority Channel Group has timed-out. If it has, the APU can
suspend servicing the lower-priority Channel Group and service the
higher-priority Channel Group. After servicing all higher-priority chan-
nels, the APU can resume servicing of the lower-priority channel where it
left off.

The user can attach both high-priority and low-priority CS-PDUs to a sin-
gle PRPC in order to pace high-priority and low-priority CS-PDUs/VCs at
the same Service Interval Rate. Each PRPC can have two (or more) Chan-
nel Groups associated with it. A PRPC may have a high-priority Channel
Group and a low-priority Channel Group attached to it. The APU can ser-
vice all channels belonging to the high-priority Channel Group and then
check for pending high-priority requests by reading the CGCR before ser-
vicing the low-priority Channel Group attached to that particular PRPC.

PRPCs and their associated Channel Group or Channel Groups can be
given different priorities. If more than one Channel Group has reached its
service interval and is awaiting servicing the following servicing protocol
may be implemented:

■ High-priority requests are serviced before low-priority requests

■ Existing high-priority requests are serviced before new high-priority
requests

■ New high-priority requests are serviced before existing low-priority
requests

Channel Priority 7-9

This implementation of channel priority is different from the AAL 5 high-
medium-low CS-PDU Priority assignment, but both of these priority con-
structions influence the cell generation process. Channel priority affects
the Channel Group/CS-PDU servicing sequence. The ATM AAL 5 CS-
PDU priority is reflected in the PTI and CLP fields of the ATM Header.
Both functions are controlled by the ATMizer Architecture. For AAL 5
traffic, the Host must include the CS-PDU priority in the Segment CS-
PDU message packet sent to the ATMizer Architecture.

7-10 Pacing Rate Unit (PRU)

8-1

Chapter 8
DMA Controller (DMAC)

This chapter describes the function and operation of the DMA Controller,
which is contained within the Host/DMA Port.

This chapter has eight sections:

■ Section 8.1, “Overview”

■ Section 8.2, “Registers”

■ Section 8.3, “Programming the DMAC”

■ Section 8.4, “Cell Switching, Segmentation, and Reassembly”

■ Section 8.5, “CRC32 Generation”

■ Section 8.6, “Misaligned Operations”

■ Section 8.7, “Scatter and Gather Operations”

■ Section 8.8, “DMA Operation Completion”

8.1
Overview

The APU uses the DMA Controller (DMAC) to perform data transfers
between the VCR and Host/DMA Port external memory. The DMAC,
which can perform block transfers up to 64 bytes, supports every combi-
nation of local and main memory byte alignment on transfers. This support
for misaligned operations gives the ATMizer Architecture an ability to par-
ticipate in robust Scatter-Gather operations. The DMA Controller includes
registers, counters, and a data path that collectively control data transfer
operations between the VCR and Host/DMA Port external memory.

The DMAC also generates CRC32 for AAL 5 CS-PDUs and can be used
to retrieve and restore memory-based channel parameters.

The main DMA Controller functions include the following:

■ Retrieve SAR user payloads from memory-based CS-PDUs during
segmentation operations

8-2 DMA Controller (DMAC)

■ Write SAR user payloads back into memory-based CS-PDUs during
reassembly operations

■ Retrieve and restore application-specific data structures

The DMA Controller also contains CRC32-generation circuitry that gen-
erates the CRC32 values required for AAL 5 CS-PDU. CRC32 can be cal-
culated individually for each CS-PDU actively undergoing either
segmentation or reassembly. For CS-PDUs undergoing segmentation, the
final CRC32 result is appended, under APU control, to Bytes [48:44] of the
SAR-SDU of the last cell generated from the CS-PDU. For CS-PDUs
undergoing reassembly, the CRC32 result is compared with the CRC32
received in the last cell of the CS-PDU as a checking mechanism. Because
the ATMizer Architecture supports cell multiplexing and demultiplexing
from up to 64K VCs, the APU must provide CRC32 partial result storage
into CPEs and retrieval services to allow multiple concurrently active
CRC32 calculations to be performed by the single CRC32 generator.

8.2
Registers

This section defines the registers used in the DMAC. Please note that some
of the fields in the DMAC Control Register’s Effective Address contain
control data. Both the DMAC Control Register and some of the fields from
the DMAC Control Register’s Effective Address are used to configure the
DMAC Registers and Counters. Using this method the user can program
the DMA with one store instruction.

DMAC Control
Register’s
EffectiveAddress

Figure 8.1 shows the format of the Effective Address of the DMAC Con-
trol Register. For more information seeSection 11.1, “Memory Maps.”

Figure 8.1
DMAC Control Register’s
Effective Address

LO Local Address Byte Offset [31:30]
The APU firmware uses LO to inform the DMA Controller of the
offset (in bytes) of the first byte of valid data in the VCR.

31 30 29 24 23 22 21 20 19 18 17 16 15 14 13 12 11 2 1 0

LO BC 0 1 0 0 0 0 0 0 0
R
D

G 0 LAC 0 0

Registers 8-3

BC Byte Count [29:24]
The APU firmware uses BC to set the size (in bytes) of a DMA
transfer. Since BC can only hold a six-bit value (from 0 to 63), a
BC of 0000002 sets the size to 64 bytes.

RD Read/Write (Operation Direction) 14
This bit controls the direction of the DMA operation. The APU
firmware sets this bit to one to indicate that it wishes to perform
a read from main memory. The APU clears this bit to zero to
indicate that it wishes to perform a write to main memory.

G Ghost Bit 13
This bit is used to inform the DMAC that the DMA operation
being programmed is being done solely for the purpose of creat-
ing a CRC32 Partial Result (an intermediate calculation) for an
AAL 5 SAR-SDU that has been constructed in the VCR from
two or more CS-PDU data block fragments. If a SAR-SDU is
built from more than one data block, and if one of the data blocks
was not word aligned and of size evenly divisible by four, the
CRC32 Partial Generator in the DMAC is not able to calculate a
correct CRC32 Partial Result for the SAR-SDU over the numer-
ous DMA operations. Therefore, once the entire SAR-SDU has
been built up in the VCR, the APU has to force a CRC32 partial
generation by initiating a DMA Ghost Write operation.

When the Ghost Bit is set to one for a DMA write operation, the
write transaction does not go out to the bus. The DMAC, how-
ever, performs the Ghost Write operation, which calculates the
Partial Result and places it in the CRC32 Register. Once the
operation is complete, the APU can read the Partial Result. The
DMA Ghost Write operation is initiated by setting RD to zero
and G to one in the Effective Address.

LAC Local Address Counter [11:2]
The Local Address Counter holds the VCR read or write word
address (the local address). The APU initializes LAC with the
Local Starting Address at the beginning of a DMA operation.
The DMAC increments the LAC as the operation proceeds.

8-4 DMA Controller (DMAC)

DMAC Control
Register

Figure 8.2 shows the format of the DMAC Control Register.

Figure 8.2
DMAC Control Register

MAR Memory Address Register [31:22]
The Memory Address Register holds the ten most significant bits
of the main memory address during DMA operations. While the
DMAC does increment the main memory address for consecu-
tive transfers in a multiple word DMA operation, it does not
increment the value in the MAR. Therefore, if external logic
relies on sequential incrementing of the Host/DMA Port Address
Bus during multiple word DMA operations, the APU should not
initiate a DMA operation that crosses a 16-megabyte boundary.
The contents of MAR are reflected on output pins
HBS_A[31:24] when the HBS_GNT signal is asserted.

MAC Memory Address Counter [21:2]
The Memory Address Counter holds the starting word address
for the DMA operation. During a DMA operation, the Memory
Address Counter is incremented whenHBS_ACK is asserted by
external logic. The contents of the MAC are reflected on
HBS_A[23:2] when HBS_GNT is asserted.

MOR Memory (Byte) Offset Register [1:0]
The Memory Offset Register holds the two least significant bits
of the main memory starting address of a DMA operation. The
DMAC starts the memory access beginning at the byte pointed
to by MOR. TheHBS_BE[3:0] outputs indicate which bytes
should be stored to memory during DMA transfers.

31 22 21 2 1 0

MAR MAC MOR

Programming the DMAC 8-5

CRC32 Register Figure 8.3 shows the format of the CRC32 Register.

Figure 8.3
CRC32 Register

The CRC32 Register should be initialized to all ones by the APU prior to
beginning the first SAR User Payload retrieval for an AAL 5 CS-PDU. The
CRC32 Partial Result is an intermediate CRC32 calculation.

The CRC32 Partial Result, generated during the DMA operation, is read
from the CRC32 Register by the APU at the end of the DMA operation. It
is saved and then restored prior to the next segmentation operation. The
register is also used this way for CRC32 generation during reassembly.

The CRC32 Register’s Effective Address (EA[31:0]) is 0xFFF04CX0.
Clearing EA7 to zero causes the DMAC to return the CRC32 Partial
Result. Setting EA7 to one causes the DMAC to return the CRC32 Final
Results. EA[6:4] must always be cleared to zeroes.

8.3
Programming
the DMAC

In order to initiate a DMA operation between main memory and the VCR,
the APU programs the DMAC with the starting main memory address
(byte address), the local/VCR starting address (word aligned address writ-
ten into the Effective Address LAC and the starting byte offset within the
targeted word written into the Effective Address LO), the number of bytes
to be transferred, and the direction of the transfer. In addition, the APU
may need to preset the CRC32 Generator for AAL 5 CS-PDU CRC32 sup-
port or set the Ghost Bit.

Both the DMAC Control Register and some of the fields from the DMAC
Control Register’s Effective Address are used to configure the DMAC
Registers and Counters. The APU can configure the DMAC Control Reg-
isters and Counters, and initiate a DMA operation by executing a single
Store Word instruction. For AAL 5 CS-PDU Segmentation and Reassem-
bly, if the ATMizer Architecture is to be used for CRC32 generation and
checking, a second Store Word instruction is needed to initialize the
CRC32 Generator with the correct CRC32 Partial Result value. This sec-
ond instruction should be executed immediately before the Store Word

31 0

CRC32 Partial Result

8-6 DMA Controller (DMAC)

instruction that is used to initialize the DMAC Registers and initiate the
DMA operation. The CRC32 Register can be read at the end of a DMA
operation using a Load Word instruction.

8.4
Cell Switching,
Segmentation,
and Reassembly

The ATMizer Architecture, under APU user firmware control, can be used
to implement CS-PDU segmentation, CS-PDU reassembly, and ATM cell
switching. For each VC, the APU can decide whether to switch or termi-
nate an incoming cell. The decision can be based on static principles (cer-
tain VC numbers can be dedicated to switched VCs while other VC
numbers are dedicated to terminating VCs) or on dynamic principles (the
CPE for a given VC can have a flag that indicates whether its cells should
be switched or terminated).

Reassembly and
Cell Switching

If an incoming cell is to be switched, it can be passed, headers and trailers
intact, to any memory-mapped device using the ATMizer Architecture
DMA Controller. In networks implementing a ringlike structure or a sim-
ple two-way switching matrix, incoming cells can be switched directly
between the ACI Receiver and ACI Transmitter by simply passing a
pointer (to the cell in the VCR - the cell’s VCR starting address) to the ACI
Transmitter (the same procedure that is used for queuing a cell for trans-
mission). Using this method, cells can be switched within the ATMizer
Architecture, without using system memory.

The APU may perform operations, such as Virtual Path Indicator (VPI)/
Virtual Channel Indicator (VCI) Translation, and Congestion Notification
Insertion, on a cell before switching it. The APU performs these operations
by overwriting new values into specific fields in the cell. For example, if
VCI translation is required, the APU firmware sets a flag in the CPE, for
the VC that received the cell, that indicates that the cell is to be switched
with VCI Translation. The new VCI is included in the CPE as well. The
APU reads the new VCI from the CPE and writes it into the VCI Field of
the cell held in the VCR (the VCR holds either 4, 8, 16, or 32 64-byte cells
and the ACI Receiver writes cells into the VCR using modulo 4, 8, 16 or
32). The APU firmware decides whether to switch the cell over the back-
plane using the DMA Controller or to pass a pointer to the cell to the ACI
Transmitter. The specific procedures for implementing cell switching are
always defined by user firmware.

From the perspective of the DMA Controller and the ATM Cell Interface,
there is no distinction between cell switching and circuit termination. Cells

Cell Switching, Segmentation, and Reassembly 8-7

arriving over the ACI Receiver are written into the VCR. In the case of cir-
cuit termination, the APU initiates a DMA operation to transfer the User
Payload portion of a cell to its corresponding memory-based CS-PDU and
sets the LAC, LO, and BC values in the DMAC accordingly. In cell switch-
ing applications where a cell is to be transferred to a memory-mapped
device, the entire cell (headers and trailers included) must be transferred.
So the pointer written into the LAC should point to the beginning of the
cell instead of the beginning of the SAR User Payload Field. The Local
Offset is most likely zero, and the BC value should be large enough to
include all switching information, ATM, and SAR headers and trailers.

The diagrams inFigure 8.4(onpage 8-9) show the local address pointers
(labeled B) that would be written into the DMAC Local Address Counter,
Local Offset Register, and Transfer Length Counter to perform Reassem-
bly on 52- and 60-byte cells as well as the pointers (labeled A) that would
be written into these same registers to perform Switching operations on 52-
and 60-byte cells. The diagrams also point out that in the case of AAL 3/4
cells, the SAR User Payload is not word aligned in the VCR. Therefore,
the APU must set the Local Offset Field to 10 when initiating the DMA
transfer to inform the DMA Controller of the alignment condition. The
DMA Controller merges bytes from two VCR words into a single word to
be written to a word aligned data structure in main memory. If the MOR
Bit indicates that the targeted memory address is not word aligned, the
DMA Controller also adjusts the targeted local data to the proper memory
alignment.

The DMAC has the capability to transfer from any local offset to any mem-
ory offset and vice versa. This capability is especially important in AAL
3/4 Segmentation and Reassembly operations, in AAL 3/4 and AAL 5
Gather operations, and in AAL 3/4 or AAL 5 Scatter operations where the
system designer wishes to rely on the ATMizer Architecture to do higher
layer (TCP/IP) header stripping and packet alignment to accelerate Appli-
cation Layer routines.

Note When switching AAL 3/4 Cells, the Local Offset should be set to 002
because even though the SAR User Payload Field is misaligned, the cell
itself is not.

8-8 DMA Controller (DMAC)

Segmentation
and Cell
Switching

Fetching a cell from memory differs from fetching a SAR User Payload
from memory in both the size of the transfer (a cell is larger than a SAR-
SDU) and the LAC and LO initialization values. Segmentation is usually
triggered by an event such as a Peak Rate Pacing Counter timing-out. The
APU switching a cell from an external memory-mapped device must be
triggered by an external event.

Figure 8.4 shows the relationship between CS-PDU main-memory
addresses and the VCR Cell Holder (Addresses for a standard 52-byte cell
and a user specific 60-byte cell).

Cell Switching, Segmentation, and Reassembly 8-9

Figure 8.4
CS-PDU Main
Memory and VCR
Cell Holder
Addresses

ATM Header

5 6 7 8

41 42 43 44

45 46

A

B

• • • •

1 2 3 4

47 48

User Header

3 4 5 6

39 40 41 42

User Header

ATM Header

SAR Header 1 2

43 44 SAR Trailer

• • • •

1 2 3 4

AAL 3/4 CS-PDU

5 6 7 8

9 10 11 12

37 38 39 40

41 42 43 44

45 46 47 48

• • • •

Main Memory
AAL 3/4 Cell (52 Bytes)
VCR (Cell Builder Area)

ATM Header

SAR Header 1 2

3 4 5 6

39 40 41 42

43 44 SAR Trailer

SAR-SDUs are always word aligned
in main memory.

SAR-SDUs are half-word aligned in
the VCR Cell Builder.

Starting
Mar-Mac
Pointer

Seg Cell 1

16
 W

or
ds

 P
er

 C
el

l H
ol

de
r

A
re

a
in

 V
C

R

Starting
Mar-Mac
Pointer

Seg Cell 2

A

B

A

B

• • • •

• • • •

MS
Byte

LS
Byte

DMAC LO=10 for S&R
DMAC LO=00 for Switching
DMAC TLC=44 Bytes for S&R
DMAC TLC=52 Bytes for

DMAC LO=10 for S&R
DMAC LO=00 for Switching
DMAC TLC=44 Bytes for S&R
DMAC TLC=60 Bytes for

AAL 3/4 Cell (60 Bytes)
VCR (Cell Builder Area)

MAR

1 2 3 4

AAL 5 CS-PDU

5 6 7 8

45 46 47 48

49 50 51 52

• • • •

Main Memory

SAR-SDUs are always word aligned
in both main memory and the VCR
Cell Builder.

Starting
Mar-Mac
Pointer

Seg Cell 1

Starting
Mar-Mac
Pointer

Seg Cell 2

• • • •
41 42 43 44

• • • •

AAL 5 Cell (52 Bytes)
VCR (Cell Builder Area)

MS
Byte

LS
Byte

DMAC LO=10 for S&R
DMAC LO=00 for Switching
DMAC TLC=48 Bytes for S&R
DMAC TLC=52 Bytes for

CRC32

DMAC LO=10 for S&R
DMAC LO=00 for Switching
DMAC TLC=48 Bytes for S&R
DMAC TLC=60 Bytes for

AAL 5 Cell (60 Bytes)
VCR (Cell Builder Area)

K

E

Y

= SAR-SDU

= Unused
Pointers A = DMA Switching LAC Pointers
Pointers B = S&R LAC Pointers

User Header

5 6 7 8

41 42 43 44

User Header

ATM Header

45 46

• • • •

16
 W

or
ds

 P
er

 C
el

l H
ol

de
r

A
re

a
in

 V
C

R

A

B
1 2 3 4

47 48

8-10 DMA Controller (DMAC)

8.5
CRC32
Generation

CRC32s can be individually calculated for each CS-PDU actively under-
going either segmentation or reassembly. For CS-PDUs undergoing seg-
mentation, the final CRC32 result is appended (under APU control) to
Bytes [44:48] of the SAR-SDU of the last cell generated from the CS-
PDU. For CS-PDUs undergoing reassembly, the CRC32 result is used as a
checking mechanism by comparing it with the CRC32 received in the last
cell of the CS-PDU. Because the ATMizer Architecture supports cell mul-
tiplexing and demultiplexing from up to 64K VCs, the APU must provide
CRC32 Partial Result storage and retrieval services to allow for multiple
concurrently active CRC32 calculations to be performed by the single
CRC32 Generator.

As part of its Partial Results Management function, the APU must set the
CRC32 Register to all ones prior to retrieving the first SAR-SDU for an
AAL 5 CS-PDU. The 12-word DMA Read operation automatically gener-
ates a 32-bit CRC32 Partial Result in the CRC32 Register. The APU must
retrieve this value at the end of the DMA operation and save it to preset the
CRC32 Generator prior to the next transfer from the same CS-PDU. If
more than one cell is to be built from a CS-PDU before proceeding to the
next CS-PDU (the burst length is greater than one), and if no other DMA
operation takes place in the interim, the APU need not retrieve and restore
the CRC32 Partial Result until the final SAR-SDU has been retrieved from
the CS-PDU. Before proceeding to the next CS-PDU, the AAL 5 CRC32
Partial Result must be stored in a place where it can be retrieved the next
time that the CS-PDU is segmented (most likely in the CPE for the VC).

When the last SAR User Payload of a CS-PDU has been fetched from
memory, the APU reads the CRC32 Final Result from the CRC32 Register
and appends the result to the last four bytes of the cell in the VCR Cell
Builder. If the final DMA transfer is set as 48 bytes, user software must
ensure that the last four bytes of the CS-PDU in main memory (the CRC32
Field) are preset to all zeros. If the last transfer is executed as a 44-word
transfer, no such restriction applies.

On reassembly, the APU must preset the CRC32 Register with all ones
prior to initiating the first reassembly DMA operation for a CS-PDU. The
APU again retrieves the CRC32 Partial Result at the end of the DMA oper-
ation, saving it away in the VCR or system memory (where ever CPEs are
saved) and restoring it prior to reassembling the next cell of the CS-PDU.
Again, if the last transfer is queued up as a 48-byte transfer, the APU must
first set the CRC32 Field in the Cell Holder to all zeros before initiating the

Misaligned Operations 8-11

DMA operation. At the end of the last transfer, the APU reads the CRC32
Final Result from the CRC32 Register and compares it to the result carried
into the ATMizer Architecture in the last cell of the CS-PDU. If they differ,
a CRC32 error has been detected and the ATMizer Architecture must
inform the Host CPU utilizing the user-defined messaging system.

8.6
Misaligned
Operations

The ATMizer Architecture DMAC can perform a DMA operation of any
byte length less than or equal to 64 bytes, beginning at any VCR byte offset
and any memory byte offset. In a Segmentation-Implementing Gather, for
example, two physically disjunct data structures, one 53 bytes and one 91
bytes (87 bytes plus a blank 4-byte CRC32 Field) can form a single logical
AAL 5 CS-PDU. The ATMizer Architecture must perform the following
operations to segment this disjunct CS-PDU:

Note The operations are based on these assumptions:

1. The CS-PDU Fragment 1 (53 bytes) starts at memory address
0x00000000.

2. The CS-PDU Fragment 2 (91 bytes) starts at memory address
0x00001000.

3. The next active Transmit Cell Builder in the VCR starts at 0x0100.

The operations are:

Step 1. Build the first cell with the DMA Control Register and Effective
Address Fields (defined inSection 8.2, “Registers”) set as shown
in Table 8.1.

Table 8.1
Field Settings for
First Cell

Step 2. Build the first five bytes of the next cell with the DMA Control
Register and Effective Address Fields set as shown inTable 8.2.

Fields Setting Function

MAR, MAC, MOR 0x00000000 SAR-SDU Retrieval

BC 0x30 (48) Transfer 48 Bytes

LAC 0x110 ATM Header is placed (starts) at 0x010C.
Transmission Cell Builder starts at0x0110.

LO 0x0 (002) Offset starts at zero

8-12 DMA Controller (DMAC)

Table 8.2
Field Settings for
the First Five Bytes
of the Second Cell

Step 3. Build the last 43 bytes of the next cell with the DMA Control
Register and Effective Address Fields set as shown inTable 8.3.

Table 8.3
Field Settings for
the Remaining 43
Bytes of the Second
Cell

Step 4. Build the final cell with the DMA Control Register and Effective
Address Fields set as shown inTable 8.4.

Table 8.4
Field Settings for
Final Cell

The CRC32 Generator may be thrown off-track by the gap in the data
stream used to build the cell when building AAL 5 transition cells. Build-
ing a cell from one or more word-aligned data structures does not greatly
impact CRC32 generation when a data structure is always an even multiple
of four bytes. User firmware simply retrieves the CRC32 Partial Result
from the first DMA operation and restores it to the CRC32 Generator
before the second DMA transfer starts and the CRC32 generation process
proceeds without a problem.

If, however, the Gather function involves data structures that require non-
word-aligned accesses, as shown in Step 2 above, the CRC32 generator is
thrown out of alignment (because the CRC32 generator operates on 32 bits
of data at one time). Therefore, firmware must first completely construct

Fields Setting Function

MAR, MAC, MOR 0x00000030 Get remainder of first fragment

BC 0x05 (5) Transfer 5 Bytes

LAC 0x150 ATM Header starts at 0x014C. Transmission Cell
Builder starts at 0x150

LO 0x0 (002) Offset starts at zero

Fields Setting Function

MAR-MAC-MOR 0x00001000 Fill SAR-SDU from second fragment

BC 0x2B (43) Transfer 43 Bytes

LAC 0x155 ATM Header starts at 0x014C. Transmission Cell
Builder starts at 0x0155.

LO 0x0 (002) Offset starts at zero

Fields Setting Function

MAR-MAC-MOR 0x0000102B Get remainder of second fragment

BC 0x30 (48) Transfer 48 Bytes

LAC 0x190 ATM Header starts at 0x018C. Transmission Cell
Builder starts at 0x0190.

LO 0x0 (002) Offset starts at zero

Misaligned Operations 8-13

the SAR-SDU in the VCR, using as many data structures as required to fill
out the body of the cell and without regard to data structure alignment,
before asking for a CRC32 calculation.

Once the SAR-SDU has been constructed in the VCR, the CRC32 Partial
(or Final) Result is calculated by initiating a DMA Ghost Write operation
to an arbitrary address. The DMA Ghost Write operation acts internally
like a memory write operation. The DMAC performs a Ghost Write oper-
ation, internal to the ATMizer Architecture, at a rate of one word/cycle.
Once the operation has completed, the CRC32 value can be read from the
CRC32 Register the same as in any AAL 5 DMA Segmentation procedure.

Since the CRC32 Generator works on aligned data (data after it passes
through the DMAC byte aligners), future cells built from the final CS-PDU
fragment do not require Ghost operations. CRC32 generation proceeds
smoothly as long as another unaligned boundary condition is not
encountered.

On reassembly operations, if header stripping and data field alignment is
employed for application acceleration, the same issues may arise with cells
that contain the end of one header and the data field of a packet. On reas-
sembly, the CRC32 Generator works on VCR data before it reaches the
data aligners. Therefore, after the Ghost operation is done to generate the
CRC32 for the transition cell, future operations to a single fragment need
not utilize Ghost operations because the SAR-SDU is word aligned in the
VCR, even though it may not be word aligned after being written into main
memory. The CRC32 Generator uses data aligned to its VCR destination,
not the main memory, in both directions.

All the incoming and outgoing cells are stored right-aligned in the VCR.
For the DMA Controller to perform in the standard manner, the VCR/Main
Memory Starting Address Offset and Byte Count must be one of the com-
binations shown inTable 8.5.

Table 8.5
Starting Address
Offset and Byte
Count

Address Offset Byte Count

0x0 64
0x1 63
0x2 62
0x3 61
0x0 60

: :

8-14 DMA Controller (DMAC)

The DMA Engine in the DMAC always expects the last DMA operation to
be a word read/store. If user firmware programs a 64-byte DMA operation
starting with Address Offset 0x1, the ATMizer Architecture DMA first
transfers three bytes (bytes 0x1, 0x2, 0x3), then groups of four bytes (bytes
0x4, 0x5, 0x6, 0x7 and so on until 0x40, 0x41, 0x42, 0x43), which ends up
being a 67-byte DMA operation. The designer must be careful to build a
system that does not write over useful information during a DMA write.

8.7
Scatter and
Gather
Operations

The ATMizer Architecture provides the system designer with all of the
functionality needed to implement a fully robust scatter-gather ATM net-
work-to-Host interface. In the Gather direction (during segmentation) the
ATMizer Architecture is capable of generating cells from any number of
separate data structures as if they were a single contiguous CS-PDU. This
capability means that the Host Processor does not need to do a series of
time consuming data movement operations to form a contiguous CS-PDU
in a local buffer memory prior to initializing the Segmentation operation.
When using the ATMizer Architecture in a TCP/IP application, the TCP/IP
header may reside in a different location within Host memory from the
actual user CS-PDU data payload. Also, the actual CS-PDU data payload
field may actually consist of a number of discontinuous pages of memory.
Because the ATMizer Architecture supports Gather operations, there is no
need to move all of these data structures in advance into a single CS-PDU.

The actual implementation of Scatter and Gather functions are imple-
mented in user firmware. In general, the Gather function can be imple-
mented by having the Host Processor pass to the ATMizer Architecture a
series of Segment CS-PDU Fragment messages with the appropriate user
defined control structures. The APU, recognizing that it is involved in a
Gather operation, is programmed not to generate End-of-CS-PDU Header
fields at the end of a CS-PDU fragment. It is also programmed to resolve
the arrival at an End-of-CS-PDU fragment boundary (automatically
resolve the link list pointer or simply pass a message to the Host Processor
asking it to resolve the next pointer for it).

8.8
DMA Operation
Completion

The APU must determine that a DMA operation is complete before it
attempts to use the information retrieved by the DMA operation. In the
case of segmentation, the APU must determine that the DMA Controller
has retrieved the entire SAR-SDU before it can queue the cell for
transmission.

DMA Operation Completion 8-15

There are two methods for the APU to determine when a DMA operation
is complete:

■ Branch on Coprocessor Condition 3 True

■ Interrupt

These methods are described in the following two subsections.

Note The CpCond and Interrupt signals are internal to the APU core which is
part of the ATMizer Architecture. Refer to theCW33300 Enhanced Self-
Embedding Processor Core User’s Manual for more information

Branch on
Coprocessor
Condition 3 True

The DMA Controller generates a DMA_Busy internal signal whenever it
is involved in a DMA transfer. DMA_Busy is connected directly to the
APU’s CpCond3 input pin. Programmers familiar with the R3000 CPU
architecture understand that the four CpCond inputs to the R3000 can be
tested using a conditional branch instruction. If the APU wishes to deter-
mine if the DMAC is busy, it can execute a Branch on Coprocessor Condi-
tion 3 True instruction three clock cycles after the DMA Controller is
programmed. If CpCond3 is True (DMA_Busy is asserted), the DMA
Controller is still busy and the APU should not attempt to use the data
(queue the cell for transmission). If CpCond3 is False (DMA_Busy is not
asserted) the DMA Controller has finished its operation and the data is
valid in the VCR. The APU is free to queue the cell for transmission or
read the retrieved data from the VCR.

If the APU attempts to program a DMA operation into the DMA Control-
ler before the DMA Controller has completed a pending operation, the
APU stalls until the DMA operation is completed. As soon as the existing
operation completes, the new operation is loaded into the DMAC and the
APU continues.

Interrupt Internally, there is a signal connected to APU Interrupt3. When the byte
count during DMA transfer reached its terminal count, the DMA interrupt
signal is asserted to notify the APU that DMA operation is complete. This
interrupt is maskable by clearing the corresponding bit in the Hardware
Interrupt Mask Field of the APU Status Register (seeChapter 14). The
interrupt is cleared by writing to the DMAC Control Register to start
another DMA operation. The interrupt routine should check if there are
any more DMA operations to be done and if there are, the code should

8-16 DMA Controller (DMAC)

program the DMAC Control Register to start another DMA transfer. If
there are no DMA operations pending, the interrupt routine should mask
this interrupt.

9-1

Chapter 9
ATM Cell Interface (ACI)

This chapter describes the function and operation of the ATM Cell
Interface.

This chapter has eight sections:

■ Section 9.1, “Overview”

■ Section 9.2, “ATM Cell Size”

■ Section 9.3, “Frequency Decoupling”

■ Section 9.4, “ACI Transmitter”

■ Section 9.5, “ACI Receiver”

■ Section 9.6, “Traffic Shaping”

■ Section 9.7, “HEC Generation and Checking”

■ Section 9.8, “CRC10 Generation and Error Checking”

■ Section 9.9, “Interfaces”

9.1
Overview

The ATM Cell Interface (ACI) is the ATMizer Architecture’s eight-bit
interface to the ATM port-side circuitry. The ACI contains both the ATM
port-side transmitter and receiver functions and connects directly to the
Transmission Convergence Sublayer (TCS) framing circuitry. The ACI
Receiver logic receives data from the external framing logic and recon-
structs ATM cells in the VCR. The ACI Transmitter logic transfers cells
from the VCR to the external framing logic.

The ACI contains data buffers and frequency decoupling logic so that the
ATMizer Architecture ATM ports can be directly connected to the ATM
line transceivers. All metastability issues are addressed and solved by the
ATMizer Architecture. The ACI protocol conforms to the UTOPIA
PHY-to-ATM Layer Specification (Version 1.22) and the SAI Specifica-
tion (Version 2.3).

9-2 ATM Cell Interface (ACI)

The ACI Transmitter takes cells that have been built in the VCR and trans-
fers them one byte at a time to an external ATM line. The ACI Transmitter
can be programmed to generate and insert the HEC and generate and
append a CRC10 Field to AAL 3/4 cells. The ACI Transmitter also decou-
ples Cell Rates. If there is not an assigned cell in the VCR ready for trans-
mission, the ACI Transmitter automatically sends an Idle Cell.

The ACI Receiver accepts cells, one byte at a time, from the ATM line and
reconstructs these cells in the VCR so that the APU may process them
(either reassemble the cell or switch the cell).

Figure 9.1shows a block diagram illustrating how the ACI Transmitter and
Receiver are connected to other logic in the ATMizer Architecture.

Figure 9.1
ACI Transmitter and
Receiver Block
Diagram

TX_CLK

TX_ACK

TX_DRDY

TX_IDLE

TX_BOC

TX_D[7:0]

ACI Transmitter

VCR Address

Data Buffer and
Synchronizer

Generator

Data Out

Address

Data In

Transmit
Cell

Builder
(64 Bytes Each)

Received
Cell

Holders

VCR

CPU Data
Interrupt4

RC_BOC

RC_CLK

RC_ACK

HEC_ERR

RC_D[7:0]

ACI Receiver

VCR Address

Data Buffer and
Synchronizer

Generator

Received Cell
Counter CpCond1

TX_RST

TX_FULL

RC_RST

RC_FULL

Current

Cell Pointer

APU Firmware Writes to the
Received Cell Indicator Register
to Decrement the Cell Count by

Receive

Assigned Cell
Address FIFO

One

Data

Data

ATM Cell Size 9-3

9.2
ATM Cell Size

The user can program the size of an ATM cell (up to 64 bytes) to support
applications that employ extra header fields to convey switch specific
information. The typical ATM cell in the VCR is 52 bytes, but cells can be
56, 60, or 64 bytes. The HEC value is generated and inserted into the cell
as it is passed out of the ATMizer Architecture. Therefore, the actual ATM
cell on the line could be 53, 57, 61, or 65 bytes.

The APU firmware creates cells from memory-mapped CS-PDUs, Real-
time Data Streams, or from existing memory resident cells. The cells are
built in cell holding areas inside the VCR. Once built, the APU firmware
transfers the cells, one byte at a time, through the ACI to the TCS Framing
Circuitry. The ACI contains special buffering circuitry to decouple the
ATMizer Architecture System Clock frequency from the clock frequency
required by the Transmission Convergence Sublayer framing circuitry.
The ACI is driven by the ATM line-derived byte clocks.

In ATM, raw cell data is combined with certain overhead information to
form transmission frames. The logic that performs this framing is in the
Transmission Convergence Sublayer. ATM supports framing modes that
insert several framing bytes into each transmission frame. As a result,
bytes are received that do not correspond to data transfers between the TCS
Framing Logic and the ACI Ports. The system may need to gap data trans-
fers to and from the ACI Ports, so there must be a way to signal to the
ATMizer Architecture when no data transactions are desired (to create
gaps in the data stream). In the ATMizer Architecture application, external
logic can indicate that a data transfer is not desired by either stopping the
ACI Port clock(s) (running the ACI Ports off of gapped clocks) or deassert-
ing TX_ACK or RC_ACK (running the ACIs off of the free running line
clocks and using a data acknowledge mechanism to deal with gapping).

9.3
Frequency
Decoupling

The ATMizer Architecture contains all of the logic necessary for decou-
pling the ATMizer Architecture’s internal clock (the System Clock) from
the clock rates of the transmission lines. The system designer clocks byte-
wide data out of the ATMizer Architecture that is used to drive the trans-
mission line and clocks data into the ATMizer Architecture derived from
the received data stream. All frequency decoupling and metastability
issues are dealt with inside the ACI circuitry. The ATMizer Architecture
uses a simple handshake acknowledgment mechanism to allow external
logic to pause data transfers between the ATMizer Architecture and the
line transceivers. The pause may be required if external logic suspends the

9-4 ATM Cell Interface (ACI)

cell stream in order to generate and send or extract Transmission Conver-
gence Sublayer framing overhead.

9.4
ACI
Transmitter

The ACI Transmitter transfers cells from the VCR to the ATM Transmis-
sion Convergence Sublayer framing logic.

Transmitter Cell
Sources

There are three possible ways for cells to become available for transmis-
sion in the VCR:

■ Segmentation

■ Internal Switching

■ External Switching

Segmentation

In response to an internal or external event, the APU determines that it
must segment one or more CS-PDUs or generate a cell from one or more
realtime data buffers. The APU chooses an available Transmit Cell Holder
to be used in the cell building process. In order to accomplish segmenta-
tion, the APU initiates a DMA Read Operation to transfer the SAR-SDU
from a memory based CS-PDU or Realtime Data Buffer into the VCR. The
APU provides the DMA Controller with all of the proper address informa-
tion such that the SAR-SDU is transferred into the Transmit Cell Holder in
its proper cell location. The APU then generates or retrieves and appends
the necessary headers and trailers to the cell and queues the cell for trans-
mission. The APU queues the cell for transmission by writing the VCR
Starting Address of the cell into the Transmitter Cell Address FIFO.

Internal Switching

The ATMizer Architecture is capable of transferring cells that arrive over
the ACI Receiver (RC_D[7:0]) out of the ATMizer Architecture utilizing
the ACI Transmitter without having to pass the cell to main memory. This
process works as follows:

1. All cells arriving into the ATMizer Architecture over the ACI Receiver
Port are written into the VCR.

ACI Transmitter 9-5

2. The ATMizer Architecture sets aside the first 256 bytes (4 Cells), 512
bytes (8 Cells), 1024 bytes (16 Cells), or 2048 bytes (32 Cells) of VCR
memory for Received Cell Buffering.

3. Once a cell is written into the VCR the APU must process the cell. As
with all operations, the APU uses cell header fields as an index into a
VCR or memory based lookup table that contains information on how
the cell should be processed.

4. If the lookup yields information that indicates that the cell should be
sent out over the ACI Transmitter, the APU can perform any necessary
header manipulation operations (such as VCI or VPI translation and/or
congestion notification insertion) before queuing the cell for
transmission.

5. The APU queues the cell for transmission by writing the VCR starting
address of the cell into the Cell Address FIFO.

External Switching

In certain applications, the ATMizer Architecture has access to main
memory-based cells that have arrived over some other ATM port, but need
to be transferred out over the ATMizer Architecture ACI Transmitter.
Some user defined external event mechanism (through assertion of
GPINT_AUTO or through APU polling of some mailbox location)
informs the ATMizer Architecture of the need to switch a main memory
resident cell. If the ATMizer Architecture finds that a cell exists externally
(the location of which is likely to be known by convention), it can initiate
a DMA operation to bring the cell into the ATMizer Architecture. Once
inside, the cell headers can be modified by the APU (or they may have
already been modified by the ATMizer Architecture that placed the cell in
external memory). Once the cell has been fully retrieved from memory and
placed in the VCR, the APU queues the cell for transmission by writing the
VCR starting address of the cell into the Cell Address FIFO.

Queuing a Cell
for Transmission

Transmission Cells can be generated in one of three fashions. What is com-
mon to each of the scenarios listed previously is that the APU queues a cell
for transmission by writing an address pointer into the Cell Address FIFO.
This address pointer points to where the cell begins in the VCR. The
address is passed through the use of a Store Word Instruction with Effec-
tive Address Bits [31:0] = 0xFFF04500 if CRC10 does not need to be gen-

9-6 ATM Cell Interface (ACI)

erated and EA[31:0] = 0xFFF04540 if CRC10 is to be generated for the
cell to be transmitted.

If the APU attempts to write an address to the Cell Address FIFO, but the
Cell Address FIFO is already full, the write operation will cause the APU
to stall. The APU remains in the stall operation until the ACI Transmitter
finishes sending a cell and a location becomes available in the Cell Address
FIFO. The status of the FIFO can be checked by reading the System
Control Register Bits [2:0], which indicates how many addresses are left
in the FIFO. The APU can prevent writing an address into a full buffer (and
prevent the delays associated with it) by testing the state of the buffer
before beginning a segmentation or cell switching application.

Another way to prevent the APU from stalling due to a full address FIFO
is to enable APU Interrupt4. Interrupt4 is very useful for firmware coding.
The Assigned Cell Address FIFO can store up to four addresses. When
there is only one address left in the Cell Address FIFO, the ACI asserts
Interrupt4. Then the interrupt routine can fill the FIFO all at once by writ-
ing three more transmission cell addresses. The write operation clears
Interrupt4.

Note The CpCond and Interrupt signals are internal to the APU core which is
part of the ATMizer Architecture. Refer to theCW33300 Enhanced Self-
Embedding Processor Core User’s Manual for more information.

Cell Rate
Decoupling

The Cell Address FIFO mentioned above is a four-word FIFO that holds
the VCR addresses of cells that are ready for transmission. When the ACI
Transmitter reaches the end of a cell, it checks the Cell Address FIFO to
see if an address exists for a completed cell. If it does, the ACI Transmitter
automatically begins fetching the new cell from the VCR and sending it,
one byte at a time, to the external transmission convergence framing logic
over TX_D[7:0]. If an address does not exist in the Cell Address FIFO
when the end of the present cell is reached, the ACI Transmitter performs
Cell Rate Decoupling.

As part of its start-up code and prior to initiating transmitter operations, the
APU must build a complete Idle Cell in the last 64 bytes of the VCR space.
The Idle Cell pattern should be the same length as the user defined Trans-
mit Cell Size. By designating an area in the VCR as the Idle Cell Holder,
a user is free to generate an Idle Cell that matches his switch specific
structure.

ACI Transmitter 9-7

During normal operation, if the ATMizer Architecture reaches the end the
current cell and no other address is available in the Cell Address FIFO, it
sends the Idle Cell that resides in the last 64 bytes of VCR location. The
ATMizer Architecture asserts TX_IDLE to inform external logic that the
cell being transmitted is an Idle Cell. Please refer to the timing waveforms
in Chapter 13 for detailed timing of TX_IDLE assertion and deassertion.

Preparation for
Transmission

When the ATMizer Architecture powers up, the VCR content is undefined.
As part of its reset routine, the APU must create the Idle Cell pattern in the
VCR, select the HEC Transmit Mode in the System Control Register, and
select the Transmit Cell Size in the System Control Register.

After the Transmit Offset Field in the System Control Register is com-
pletely defined and the Idle Cell Pattern has been built, the program must
perform a second write to the System Control Register to set the Transmit
Initialize Bit. The first cell that the ATMizer Architecture sends out has to
be an Idle Cell, then the APU queues an assigned cell for transmission by
writing its start address into the Cell Address FIFO. Then the ACI Trans-
mitter sends the assigned cell after reaching the end of the current Idle Cell
transmission.

Firmware synchronizes the ACI Transmitter by:

1. Initializing the ACI Transmitter

– setting the Transmit Cell Size by writing a value to the Transmit
Offset Field in the System Control Register

– building an Idle Cell in the VCR

– configuring the HEC Transmit Mode

2. Setting the Transmitter Initialize Bit in the System Control Register

Setting this bit puts the ACI Transmitter in the normal operation. The
ACI deassertsTX_RST. The ACI Transmitter transmits Idle Cells until
the APU firmware writes the first Assigned Cell address in the Cell
Address FIFO. The first time firmware sets the Transmitter Initialize
Bit, the ACI Transmitter assertsTX_DRDY to indicate that it is ready
to transmit.

The ATMizer Architecture indicates that it has retrieved the first byte of
data by asserting itsTX_DRDY and TX_BOC outputs. After system reset
or transmitter synchronization, external logic must wait for the ATMizer

9-8 ATM Cell Interface (ACI)

Architecture to assertTX_DRDY and TX_BOC before asserting
TX_ACK. OnceTX_DRDY is asserted it will remain asserted and data
will continue to be sourced onto TX_D[7:0] as long as TX_CLK remains
within specification andTX_FULL is not asserted.

When the PHY Layer assertsTX_FULL, the Transmitter deasserts
TX_DRDY (TX_DRDY can be connected to the PHY Layer
TX_ENABLE signal), and external logic should deassert TX_ACK. For
more information, please refer toSection 9.9, “Interfaces.”

1. CRC10 During Transmission

Setting Effective Address Bit 6 (during the store to the assigned Cell
Address FIFO) informs the Transmitter that it must generate and insert
a CRC10 value for the next cell to be transmitted. Therefore, the Effec-
tive Address of the assigned Cell Address FIFO for cells that need
CRC10 is 0xFFF04540, and the Effective Address for cells without
CRC10 is 0xFFF04500.

2. HEC During Transmission

Setting first bit of the HH Field in the System Control Register (Bit 21)
to one, causes the ACI Transmitter to enable HEC generation on trans-
mission. HEC is placed after the cell header. So, for a 52-byte cell, the
ACI Transmitter transmits 53 bytes and for a 64-byte cell, the ACI
Transmitter transmits 65 bytes.

9.5
ACI Receiver

The ACI Receiver accepts bytes of cell data from the ACI Receiver Data
Bus, RC_D[7:0], and uses these bytes of data to reconstruct cells in the
VCR. The ACI Receiver also informs the APU that a cell has arrived by
asserting CpCond1. Upon detecting the arrival of a cell, the APU can read
the cell header and use it as an index into a VCR-based or memory-based
lookup table. From this lookup, the APU determines the AAL type (layer
number) used for the VC and the operations that must be performed on the
cell.

Received Cell
HandlingOptions

The Received Cells can be handled in one of four ways:

■ Reassembly

■ Internal Switching

■ External Switching

ACI Receiver 9-9

■ Discarding

Reassembly

The APU can choose to reassemble the cell into a CS-PDU in memory by
initiating the appropriate DMA operations. In the case of reassembly, the
DMA Controller is configured with the VCR address of the SAR-SDU, the
memory address of the CS-PDU and the appropriate transfer length count.
The DMA Controller then automatically accomplishes the reassembly
operation through a series of memory write transfers.

Internal Switching

The ATMizer Architecture can use the ACI Transmitter to transfer cells,
received by the ACI Receiver, out of the ATMizer Architecture, without
ever passing the cell out to main memory.

External Switching

In certain applications, the ATMizer Architecture needs to pass entire
cells, headers and trailers intact, to some other ATM port interface that has
access to the same memory space as the ATMizer Architecture (perhaps
another ATMizer Architecture). In such a situation, the ATMizer Architec-
ture may choose to first execute one or more header manipulation opera-
tions before transferring the cell to the centralized memory structure. After
performing these operations, the ATMizer Architecture initiates a DMA
operation to transfer the cell to memory so that another ATM port interface
can gain access to it. After transferring the cell to memory the ATMizer
Architecture can alert another port interface to the availability of the cell
by writing to a memory mapped mailbox location.

Discarding

The APU firmware can discard the cell by writing to the Received Cell
Indicator Register without initiating any DMA operations if the APU firm-
ware detects a CRC10 error. The write operation makes the Current
Received Cell Address Register point to the next received cell in the VCR.

Received Cell
Indication

This subsection explains how the APU recognizes that cells are waiting to
be processed in the VCR.

9-10 ATM Cell Interface (ACI)

The APU firmware can check for the presence of Received Cells that have
yet to be processed by periodically polling CpCond1 using the Branch on
CpCond1 True instruction. If the APU firmware detects that CpCond1 is
asserted, a cell is available, and it can begin processing the cell.

The APU finds out the location of a received cell in the VCR by reading
the Current Received Cell Address Register (Effective Address
0xFFF04400), which contains the starting address of the cell waiting to be
processed next. The logic in the ACI Receiver that generates the CpCond1
signal is simply an up/down counter. Each time a cell arrives, the counter
counts up by one.

Each time the APU has processed a cell, APU firmware lowers the counter
by writing to the Received Cell Indicator Register. (The Received Cell
Indicator Register is not really a register. It is an address decode circuit
with an Effective Address of 0xFFF0460C.) At the same time, the pointer
in the Current Received Cell Address Register is incremented by 0x64,
which points to the next cell if there is one.

Figure 9.2shows the Current Received Cell Address Register. The Current
Received Cell Address Register is a pointer that points to the Received Cell
Holder that currently needs servicing by the APU. After the APU firmware
writes to the Received Cell Indicator Counter at the end of the Received
Cell routine, the ACI changes the Current Received Cell Address Register
to point to the next Received Cell to be serviced.

Figure 9.2
Current Received Cell
Address Register

The Current Received Cell Address Register’s Effective Address is
0xFFF04400.

The Received Cell Indicator Register controls the Received Cell Counter
in the ACI. Each time a cell arrives, the ACI increments the Received Cell
Counter. While the Received Cell Counter is greater than zero, the ACI
asserts CpCond1. When the APU has finished servicing a cell, and written
to the Received Cell Indicator Register, the ACI decrements the Received

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 Current Received Cell Starting Address

ACI Receiver 9-11

Cell Counter by one. After all cells are serviced, the ACI clears the
Received Cell Counter to zero and deasserts CpCond1.

If the APU becomes occupied handling certain boundary conditions or
gets blocked from the memory backplane for a period of time, cells will
begin piling up in the VCR and the Received Cell Count will continue to
rise. Once the APU frees up, it should immediately begin draining the
Received Cell Buffer. Each time it processes a cell it reduces the Received
Cell Counter by one and then immediately checks to see if additional cells
are in the VCR by polling the CpCond1 input again. If CpCond1 remains
asserted, cells have accumulated in the ACI Receiver and should be
drained before processing any pending segmentation requests.

User firmware may use Interrupt5 (the Received Cell buffer is half full) to
handle the Received Cell operation. Upon interrupt, the user firmware
should jump to the Received Cell subroutine and start draining those cells.

The system designer may wish to interleave segmentation handling in with
Received Cell draining. This can be done, but it prolongs the period of time
required to drain the Received Cell Buffer and increases the chance that a
busy backplane will cause eventual Received Cell Loss.

The APU can check the number of cells in VCR that need to be serviced
by reading the System Control Register. System Control Register Bits
[13:8] (Effective Address 0xFFF04A00) contain the number of cells in the
Received Cell Holder that need processing. When Bits [13:8] are 0000002,
there are no cells. When Bits [13:8] are 1000002, there are 32 cells in the
Received Cell Holder that need to be processed.

If the Received Cell Buffer overflows, the ACI Receiver does not write
cells into the VCR until a location is available. The ACI Receiver asserts
the overflow signal output, RC_FULL, to indicate an overflow.

There are two ways for the ACI Receiver to handle an overflow:

1. If the BM Bit in the System Control Register is cleared to zero, the
ATMizer Architecture expects to handshake with a UTOPIA device.
The ATMizer Architecture will take only one more byte when it asserts
RC_FULL.

2. If the BM Bit in the System Control Register is set to one, the ATMizer
Architecture expects to handshake with an SAI device. The ATMizer

9-12 ATM Cell Interface (ACI)

Architecture will finish receiving the rest of the bytes from the current
cell and then stop.

Receiver Reset The ACI Receiver is reset by firmware. Upon a power-on reset, and after
RST is deasserted, the ATMizer Architecture does not deassertRC_RST.
Firmware must initialize all of the ACI Receiver parameters, such as Cell
Holder Size, Cell Size, and HEC handling, before setting the Receiver Ini-
tialize Bit in the System Control Register to one. Setting this bit to one
deassertsRC_RST.RC_RST should be connected to the Physical Layer
Reset. WhenRC_RST is deasserted, the ACI Receiver is then ready to
receive cells. If, before the Receive Initialize Bit is set to one, the ACI
Receiver detects the assertion of RC_BOC, it sets the RC_BOC Bit (Bit 6
of the System Control Register) to notify the APU.

Firmware must perform two stores to the System Control Register to ini-
tialize the ACI Receiver. The first store defines the ACI Receiver parame-
ters and the second sets the Receive Initialize Bit to one.

9.6
Traffic Shaping

User firmware can use the Global Pacing Rate Register (GPRR) for traffic
shaping (controlling the transmission rate). When the network experiences
congestion, the GPRR provides a fast way to slow down the transmission
rate of the ACI. A single APU instruction modifies the GPRR, which deter-
mines the percentage of assigned cells sent out over the ATMizer Archi-
tecture ACI Transmitter (transmission port). The amount of initial data
reduction, as well as the algorithm by which the ATMizer Architecture
returns to full-speed operation, can be implemented in APU firmware.
Algorithms can be modified as more is learned about ATM network
congestion.

Average and Peak Rate Pacing and Burst Length are useful for managing
the bandwidth used by a particular VC. OAM software can manipulate
these values for active VCs to manage the overall data throughput rate (or
information rate) on the Transmission line. However, it is almost impossi-
ble to effectively shape the overall ATM port information rate through this
mechanism. Shaping the overall information rate may be necessary when
connecting into a system that can only handle a limited information rate or
during periods of high congestion in a switching network. In the case of a
congested network, the latency between congestion notification and the
Host Processor’s ability to modify the pacing parameters may be high. As
a result, many cells are sent into a congested network and are lost, requir-
ing the retransmission of many CS-PDUs. This further exacerbates the

Traffic Shaping 9-13

congestion problem. And by the time the system responds to the notifica-
tion of congestion, the congestion situation in the network may have actu-
ally changed.

The ATMizer Architecture implements a Global Pacing Rate Unit, which
contains a 10-bit countdown counter and a register (GPRR). The GPRR
contains a value that is the maximum number of continuous assigned cells.
This Global Pacing Rate control mechanism is a quick way to limit the
overall transmission bandwidth used on the Transmission Port (ACI
Transmitter). When the counter reaches zero, the ACI Transmitter forces
an Idle Cell onto the outgoing cell stream.

Figure 9.3shows the Global Pacing Rate Register. The Store Word instruc-
tion should be used to write to this register.

Figure 9.3
Global Pacing Rate
Register

The Global Pacing Rate Register Effective Address is 0xFFF047X0.

If EA7 = 0, the GPRR function is disabled and no Idle Cell is transmitted.
If EA7 = 1, the GPRR is enabled and an Idle Cell is inserted when the
GPRR Counter counts down to zero.

Figure 9.4 shows the Maximum Line Utilization Rate when Count = 1
(50% Assigned Cells).Figure 9.5 shows the Maximum Line Utilization
Rate when Count = 2 (67% Assigned Cells).

Figure 9.4
Maximum Line
Utilization Rate
(Count = 1, 50%
Assigned Cells)

Figure 9.5
Maximum Line
Utilization Rate
(Count = 2, 67%
Assigned Cells)

15 10 9 0

Reserved1

1. All reserved bits must be 0.

Count

Assigned
Cell

Idle
Cell

Assigned
Cell

Idle
Cell

Assigned
Cell

Idle
Cell

....

Assigned
Cell

Assigned
Cell

Idle
Cell

Assigned
Cell

Assigned
Cell

Idle
Cell

....

9-14 ATM Cell Interface (ACI)

Note Even when the GPRR is disabled, Idle Cells are transmitted if there is no
active cell.

9.7
HEC
Generation and
Checking

In applications that generate and check their own HEC values, HEC gen-
eration can be disabled by clearing the HH0 Bit in the ATMizer Architec-
ture System Control Register. The ATMizer Architecture supports a
complete decoupling between HEC handling on transmitting and on
receiving. The ATMizer Architecture also allows for HEC errors to be
ignored on receives while still expecting that an HEC value will be passed
to the ATMizer Architecture from the Physical Layer. In some systems, the
Transmission Convergence Sublayer performs error detection and corrects
bit errors on the ATM Header but does not generate a new HEC. In this
case, the ATM header is corrected but the HEC value is still incorrect. The
ATMizer Architecture is equipped to handle such situations.

Some systems supporting external HEC generation require that a slot be
present in the transmit data stream in the Byte 5 (fifth byte) of the cell for
inserting the externally generated HEC. These systems should enable HEC
generation and just overwrite the fifth byte with the externally generated
HEC value.

The ATMizer Architecture supports the following HEC modes:

1. HEC generated on transmit and placed in Byte 5 of the cell

2. HEC not generated on transmit

3. HEC expected on Byte 5 and checked on receive

4. HEC expected on Byte 5 but not checked on receive (this is for the
SONET system where framing logic corrects the header, but leaves the
HEC Field incorrect)

5. HEC not expected in Byte 5 and therefore not checked on receive

Section 14.1, “System Control Register” shows how the HH Field in the
System Control Register defines HEC generation modes.

CRC10 Generation and Error Checking 9-15

9.8
CRC10
Generation and
Error Checking

Since the ATMizer Architecture can mix cells of all AAL types within a
single ATM Cell stream, the APU must indicate to the ACI Transmitter
when an AAL 3/4 cell is to be sent. For AAL 3/4 cells, the ACI Transmitter
calculates a CRC10 value for the SAR-PDU and appends it to the cell. The
APU indicates to the ACI Transmitter that CRC10 generation is required
by setting APU Address Bit 6 to one for the Store operation that writes the
address of the cell into the ACI Transmitter’s Cell Address FIFO. If the
APU clears Address Bit 6 to zero, the ACI Transmitter transmits the value
contained in the last two bytes of the Transmit Cell in the VCR 64-byte
Cell Holder location for the addressed cell.

For AAL 3/4 cells, the APU must construct the ATM Header and the SAR
Header from the cell and place them into the appropriate locations in the
VCR (cells are always bottom justified within a 64-byte Cell Holder area
in the VCR). The APU must also calculate the length of the actual
SAR-SDU in bytes and place it into the Length Indication (LI) Field of the
AAL 3/4 trailer before the cell can be sent through the Transmitter. The
ACI Transmitter transmits the LI Field out of the ATMizer Architecture in
Bits [7:2] of Byte 47 of the SAR-PDU. The ACI Transmitter inserts the
CRC10 value that it calculates into Bits [1:0] of Byte 47 and Bits [7:0] of
Byte 48 of the SAR-PDU. (Note that Byte 47 of the SAR-PDU is located
at Byte 62 of the Cell Holder and Byte 48 of the SAR-PDU is located at
Byte 63 of the Cell Holder, the last byte of the 64-byte Cell Holder.) The
APU writes the LI Field into Byte 62 right justified. The Transmitter left
justifies the LI Field before merging it with the two most significant bits of
the CRC10 and then transmits it off chip. The Transmitter is designed to
receive the LI Field right justified in Byte 62 of the Cell Holder (Byte 47
of the SAR-PDU) so that the APU does not have to perform a shift left
instruction to left justify the value.

Note 1 If the SAR-PDU is less than 44 bytes, the APU must fill all unused loca-
tions in the Cell Holder with zeros. If no pattern is explicitly written into
the unused bytes, the previous contents (whatever is stored in these loca-
tions in the VCR) is transmitted and is included in the CRC10 calculation.
If it is important to zero out all unused fields, the APU should use the DMA
Controller to stream zeros in from a reserved 64-byte location in memory
containing nothing but zeros. This allows the APU to perform other tasks
while the Cell Holder is being filled by zeros. Alternatively, the APU can
write zeros to all unused bits.

9-16 ATM Cell Interface (ACI)

Note 2 The DMA Controller does not clip VCR or memory writes at the end of
the write. For instance, when the DMA Controller writes the last two bytes
of the AAL 3/4 SAR-SDU into Bytes 60 and 61 of the Cell Holder in the
VCR, it also writes Bytes 62 and 63. Therefore, in most cases, software
should not write the LI Field value into Byte 62 of the Cell Holder until the
DMA operation has completed.

The ATMizer Architecture can intermix cells of all AAL types (numbers)
in a single cell stream. The ATMizer Architecture can also store up to 32
cells in the VCR. Since the ACI Receiver does not know the AAL type
when a cell arrives, it should not just check for CRC10 and discard the cell
if it has an error. The CRC10 circuitry calculates CRC10 on all incoming
cells and stores the result in an internal 32-bit register. In the cell reassem-
bly routine, the code detects the AAL type after getting the CPE for the
cell. If the cell is AAL 5, then CRC10 is ignored. But, if the cell is AAL
3/4, for example, the code should check the CRC10 validity. This checking
can be done in two instructions. The first instruction is a Load Halfword
that loads Bits [15:0] of the System Control Register (Bit 15 is the CRC
Error Bit) into a target register. If the CRC Error Bit is set to one, it indi-
cates that there is a CRC10 error in the cell. The Load Halfword instruction
extends the sign of Bit 15 in the target register. The second instruction is a
Branch On Less Than Zero (applied to the target register). If there is a
CRC10 error, this instruction causes a branch to an error handling routine.

9.9
Interfaces

The ATMizer Architecture ACI can be programmed to work with either
UTOPIA or SAI devices. When the BM Bit (Bit 24) of System Control
Register is cleared to zero (seeSection 14.1, “System Control Register”),
the ATMizer Architecture expects to communicate with UTOPIA interface
on the ACI side. When the BM Bit is set to one, the ACI communicates
with SAI devices.

UTOPIA The proposed standard interface between the Physical (PHY) Layer and
the ATM Layer is a subset of the ACI Interface. The Universal Test &
Operations PHY Interface for ATM (UTOPIA) is a proposed standard to
interface the multiple different PHY layers to the ATM Layer. There are
currently (July 1994) four PHY layers defined by the ATM forum and a
fifth one under study. By implementing the UTOPIA interface as a subset
of the ACI, the user can choose from a variety of PHY layers for their sys-
tem requirement. In the following explanation, the PHY Layer means the

Interfaces 9-17

transmission convergence logic external to the ATMizer Architecture and
the ATM Layer means the ACI within the ATMizer Architecture.

Transmit

On the transmit side, the following signals are defined by the proposed
standard, and they can be directly connected to the ACI Transmitter. Note
that input and output refers to direction in relation to the PHY Layer.

TxData[7:0] Transmitter Data Input
These signals are byte-wide data driven from the ATM Layer to
the PHY Layer. These signals are connected to the ACI’s
TX_D[7:0] signals.

TxSOC Transmitter Start of Cell Input
The ATM Layer asserts this signal HIGH when TxData[7:0]
contains the first byte of the cell. This signal is connected
directly to the ACI’s TX_BOC signal.

TxEnb Transmitter Enable Input
The ATM Layer asserts this signal LOW during cycles when
TxData[7:0] contains valid cell data.TxEnb should be connected
directly to the ACI’sTX_DRDY signal.

TxFull Transmitter Full Output
The PHY Layer asserts this signal LOW at least four cycles
before the PHY Layer is no longer able to accept transmit data.
This signal is connected directly to the ACI’sTX_FULL signal.
When the PHY Layer assertsTxFull, the ACI deasserts
TX_DRDY which is connected to the PHY LayerTxEnb on the
next clock cycle. WhenTX_DRDY is deasserted, the ACI does
not source data onto the TX_D[7:0] lines.

TxClk Transmitter Clock Input
This is a data transfer/synchronization clock input to the PHY
Layer. The ACI in the ATMizer Architecture is design to accept
any clock input up to 25 MHz. The clock supplied to the ACI
TX_CLK should also be connected to TxClk on the PHY Layer.

Receive

On the receive side, the following signals are defined by the proposed stan-
dard and they can be directly connected to the ACI Receiver. Note that
input and output refers to direction in relation to the PHY Layer.

9-18 ATM Cell Interface (ACI)

RxData[7:0] Receiver Data Output
These signals are byte-wide data driven by the PHY Layer to the
ATM Layer. These signals are connected directly to the ACI’s
RC_D[7:0] signals.

RxSOC Receiver Start of Cell Output
The PHY Layer asserts this signal HIGH when RxData[7:0]
contains the first byte of a cell. This signal should be connected
directly to the ACI’s RC_BOC signal.

RxEnb Receiver Enable Input
The ATM Layer asserts this signal LOW to inform the PHY
Layer to sample RxData[7:0] on the next rising edge of the
clock. This signal should be directly connected to ACI’s
RC_FULL signal. When the receive buffer in the VCR is full, the
ACI asserts RC_FULL which disablesRxEnb.

RxEmpty Receiver Empty Output
The PHY Layer asserts this signal LOW to inform the ATM
Layer that the PHY Layer buffer is empty and there is nothing to
give to the ATM Layer. WhenRxEmpty is asserted, there is no
valid data on the current cycle. This signal can be directly con-
nected to the ACI’s RC_ACK signal. When the PHY Layer
assertsRxEmpty LOW, the data in RxData[7:0] is invalid, and
sinceRxEmpty is connected to RC_ACK, the ACI ignores the
data in RC_D[7:0].

Figure 9.6 shows the UTOPIA Connection to the ATMizer Architecture.

Interfaces 9-19

Figure 9.6
UTOPIA
Connection to
ATMizer
Architecture

SAI The Standard ATM Interface (SAI) is a European ATM-cell-based stan-
dard in which both the transmitter and receiver use only three signal cate-
gories to transmit and receive (Cell_sync, Byte_clock, Cell_data[7:0]).
Cell_sync is Transmit and Receive Beginning of Cell signal, Byte_clock is
Transmit and Receive Byte Clock signal, and Cell_data[7:0] is Transmit
and Receive Byte Data Bus. Since the SAI functions like a subset of the
UTOPIA Interface, this section only explains the differences between the
SAI and UTOPIA modes.

For both transmit and receive, an SAI device aligns cell boundaries using
TX_BOC and RC_BOC. An SAI device sources or latches data on every
byte clock until it reaches 53 bytes. Then, another TX_BOC or RC_BOC
may be asserted to align cells perfectly. If not, an SAI device will wait for
the next TX_BOC or RC_BOC and then start counting another 53 bytes.

Figure 9.7 illustrates the connection between the ATMizer Architecture
and a generic SAI device.

TxData[7:0]

RxData[7:0]

RxClk

TX_DRDY
TX_FULL

TX_CLK

RC_FULL

Clock

VDD

ATMizer Architecture

UTOPIA

UTOPIA

HEC_ERR
RxEnb

RxEmpty
RC_CLK
RC_ACK

TxSOC
TxEnb
TxFull

TxClk

RxSOC RC_BOC

RC_RST
RC_D[7:0]

TX_ACK
TX_D[7:0]
TX_BOC

TX_RST
TX_IDLE

RC_CLK

9-20 ATM Cell Interface (ACI)

Figure 9.7
ATMizer
Architecture-to- SAI
Device Connections

In SAI Mode, the ATMizer Architecture still asserts TX_IDLE,
HEC_ERR, and TX_DRDY signals as in UTOPIA Mode, but the SAI
device is not connected to them.

In UTOPIA Mode during transmission, the ATMizer Architecture asserts
TX_BOC for Idle Cells. In SAI Mode, during transmission, the ATMizer
Architecture does not assert TX_BOC for Idle Cells.

In UTOPIA Mode during reception, after the ATMizer Architecture asserts
RC_FULL, it receives one more byte and then stops. In SAI Mode during
reception, after the ATMizer Architecture asserts RC_FULL, it receives
the remaining six bytes of the cell and then stops.

The SAI Transmitter does not distinguish between Assigned Cells and Idle
Cells. By setting the BM Bit to one, the ACI does not assert TX_BOC for
Idle Cells and it makes the SAI device take all the Assigned Cells and
ignore all the Idle Cells. On the receive side, UTOPIA states when
RC_FULL is asserted, only one more byte should be taken. Therefore
when BM = 0, the ATMizer Architecture asserts RC_FULL, takes one
more byte, and then stops. For SAI mode, it assumes its buffer will never
get full, therefore, when RC_FULL is asserted and BM is set to one, the
ATMizer Architecture will take the remaining six bytes of the current cell
and then stop. In this case, the external SAI device will keep sending cells
(asserting RC_BOC) to the ATMizer Architecture. If the VCR is not free
yet, the ATMizer Architecture will set the RC_BOC Error Bit in the Sys-
tem Control Register.

ATMizer SAI Generic

TX_BOC
TX_CLK

TX_D[7:0]

RC_BOC

RC_CLK

RC_D[7:0]

ComponentArchitecture

8

8

RC_ACK

+5 V

TX_FULL

TX_ACK

+5 V

Cell_sync

Byte_clock

Cell_data[7:0]

Receiver

Transmitter

Cell_sync

Byte_clock

Cell_data[7:0]

10-1

Chapter 10
Secondary Port (SP)

This chapter describes the function and operation of the Secondary Port.

This chapter has four sections:

■ Section 10.1, “Overview”

■ Section 10.2, “Operation”

■ Section 10.3, “SP Address and Data Bus (SP_AD[31:0])”

■ Section 10.4, “SP Hardware Design Tip”

10.1
Overview

The 32-bit Secondary Port (SP) is a 32-bit multiplex address, data, and
control path. It can be used to perform a variety of data transfers and con-
trol transfers between the APU and external devices.

The Secondary Port allows the APU to directly access external devices
through load and store instructions. The Secondary Port may also be used
to pass information between the ATMizer Architecture and the System
Controller, between two or more ATMizer Architectures, or as part of the
ATMizer Architecture-to-Host Messaging System. The Secondary Port
can be used to access external devices while the DMA Controller is busy,
and to pass information to an external device about an active DMA
operation.

In applications that require large number of Virtual Channels, the Channel
Parameters can be stored in an external high-speed SRAM connected to
the Secondary Port. The APU can efficiently transfer Channel Parameter
Entries into the Prefetch Buffer concurrent with a DMA operation.

10-2 Secondary Port (SP)

10.2
Operation

The Secondary Port has a multiplexed address and data bus with 4 Mbytes
of address space. During the address cycle, SP_AD[31:22] contains trans-
action information and SP_AD[21:0] contains the physical address for the
access. The address cycle is controlled externally by the SP_ASEL signal.
Asserting SP_ASEL HIGH causes the L64360 to drive an address on
SP_AD[31:0]. During a read operation, deasserting SP_ASEL causes the
L64360 to 3-state SP_AD[31:0] so that external logic can drive the data
onto SP_AD[31:0]. During a write operation, deasserting SP_ASEL
causes the L64360 to drive SP_AD[31:0] with data.

The Secondary Port supports byte operations as well as dynamic bus siz-
ing. When the Secondary Port requests a word read transaction, and the
external device is byte-wide, the device can assert theSP_BWIDE and
SP_ACK signals. WhenSP_BWIDE is asserted during a word transaction,
the Secondary Port generates three more transactions for the remaining
three bytes (the address incremented by one each time). Dynamic bus siz-
ing appears to the external device as a series of four single-byte read trans-
actions. Please refer toSection 13.1, “Secondary Port,” for more details.

Instruction Fetch When the user’s firmware exceeds 4 Kbytes, the L64360 cannot execute all
the code from the IRAM. In this case, the user can store the extra code into
the Secondary Port memory. Firmware can use either jump or branch
instructions to execute code back and forth between the IRAM and the SP
memory. Firmware should only use non-cacheable address space (starting
at 0xA0C00000) to jump or branch to the SP memory. The latency penalty
for executing an instruction off-chip is design dependent.

Single
Load/Store To acquire and update data from or to the SP memory, firmware can initiate

load and store operations with an Effective Address of 0xA0CXXXXX.
For Store Word, Store Halfword, or Store Byte instructions,
SP_AD[31:28] reflect Write Byte Enables (active LOW) for the corre-
sponding bytes. For load operations, the ATMizer Architecture drives
SP_AD[31:28] HIGH during the address phase. Even though firmware can
issue a Load Word, Load Halfword, or Load Byte instruction, the SP hard-
ware always performs a Load Word instruction and then returns the proper
bytes to the APU.

SP Address and Data Bus (SP_AD[31:0]) 10-3

Block Fetch When user firmware needs to acquire a block of data from the Secondary
Port memory (a CPE for example), it may issue a load operation with a
cacheable Effective Address of 0x00CXXXXX. Depending on how the
System Control Register and the APU BCC Register are set, SP hardware
will perform two-word or four-word block fetches. The fetched block must
be within a two-word or four-word boundary. If the external address latch
cannot support address wraparound for block fetches, it may assert
SP_ASEL, which makes the SP hardware drive a new address onto
SP_AD[31:0] for external logic to latch.

Byte Device
Access (Boot
PROM)

Every time the ATMizer Architecture asserts SP_RQ to initiate a word
operation, SP_AD[31:0] show address and control information. The
ATMizer Architecture waits until the external device assertsSP_ACK.

If the ATMizer Architecture detects the assertion ofSP_BWIDE and
SP_ACK, it always expects data on SP_AD[7:0] during the data phase.
After the ATMizer Architecture finishes the first byte access, it initiates
three more transactions with addresses incremented by one each time.
External logic has to assertSP_BWIDE during all four accesses to ensure
proper operation.

10.3
SP Address and
Data Bus
(SP_AD[31:0])

Figure 10.1 shows the Secondary Port Address and Data Bus,
SP_AD[31:0] during the address phase (SP_ASEL asserted).

Figure 10.1
SP_AD[31:0]

WBE Write Byte Enables [31:28]
For a write operation, the ATMizer Architecture clears a WBE
Bit to zero to indicate that it intends to store the corresponding
byte (shown in the table below) of SP_AD[31:0] to the slave
device during the data phase.

31 28 27 26 25 24 23 22 21 0

WBE 0 T BF A 0 0 ADDRESS

10-4 Secondary Port (SP)

For a read operation, the ATMizer Architecture sets all four bits
to one since it always loads a full word.

T Type 26
This bit determines the access type. The ATMizer Architecture
clears this bit to zero to indicate that the Secondary Port is per-
forming data transactions. The ATMizer Architecture sets this
bit to one to indicate that the Secondary Port is fetching
instructions.

BF Block Fetch 25
The Secondary Port sets this bit when it requests a burst transfer.
The size of the burst depends on the value programmed into the
Cache Block Size in the APU Configuration Register and the
System Control Register. If the beginning address is not aligned
to the size of the block transfer, the Secondary Port wraps the
address around to get all the words that fall within the Effective
Address. If the external address latch cannot generate subse-
quent addresses, it may relatch the addresses by asserting
SP_ASEL after each word operation is finished. For more details
please refer to the functional waveforms inSection 13.1, “Sec-
ondary Port.”

A Atomic 24
Setting this bit indicates to the external arbiter that the following
atomic transactions (read-modify-writes) should be locked. It is
the responsibility of the external arbiter to guarantee that the bus
is not given to another master after the first read. This bit is
reflected from Bit 24 of the Effective Address.

ADDRESS Memory Address [21:0]
These bits address one of the 4 Mbyte pieces of Secondary Port
memory space. These bits are reflected from Bits [21:0] of the
Effective Address.

WBE Byte Enabled1

1. If bit set to one.

Bit 31 SP_AD[31:24]

Bit 30 SP_AD[23:16]

Bit 29 SP_AD[15:8]

Bit 28 SP_AD[7:0]

SP Address and Data Bus (SP_AD[31:0]) 10-5

Figure 10.2 shows the format of the Effective Address that the firmware
uses to access memory through the Secondary Port.

Figure 10.2
SP Effective Address

CACHEABLE Cacheable Data Access [31:28]
This field distinguishes between cacheable and non-cacheable
data access space.

The APU firmware clears these bits to 0x0 when the access is to
a cacheable space. The SP performs a block-fetch operation and
feeds the data into the four-word Prefetch Buffer. The APU firm-
ware sets these bits to 0xA when the access is to a non-cacheable
space. The SP performs a single load/store operation.

In applications that require more than 1 Kword of instructions
with the extra code residing in the Secondary Port memory, the
code has to be executed through non-cacheable accesses because
the IRAM internal to the ATMizer Architecture is not a true
cache and the Instruction Cache Controller is not activated.

A Atomic 24
Setting this bit to one informs the external arbiter that the Sec-
ondary Port must retain bus ownership. This bit reflects onto Bit
24 of the Physical Address, SP_AD24, during the address cycle.

APU firmware sets and clears this bit. If the firmware issues the
first load operation with the A Bit set to one, it must issue the
second store operation with the A Bit set to one.

ADDRESS Memory Address [21:0]
These bits address one of the 4 Mbyte pieces of Secondary Port
memory space. These bits reflect onto SP_AD[21:0], during the
address cycle.

31 28 27 26 25 24 23 22 21 0

CACHEABLE 0 0 0 A 1 1 ADDRESS

10-6 Secondary Port (SP)

10.4
SP Hardware
Design Tip

Since the SP protocol does not conform to any standard bus specification,
there are several ways for an external device to handshake with the
ATMizer Architecture. The following information may help the system
hardware designer shorten access latency.

If there are no other masters sharing the SP device with the ATMizer
Architecture, the system hardware designer can tie SP_GNT to HIGH,
which makes SP_AD[31:0] have a valid address at the same cycle when
SP_RQ is asserted. External latch circuitry can keep latching the address
when SP_RQ is deasserted. Freezing the latch after SP_RQ is asserted
makes the address available one clock cycle earlier. This method will not
support atomic operation, however, since the external latch circuitry needs
SP_RQ to toggle in order to get the new address.

The Write Byte Enables are valid only after SP_RQ is asserted. For sys-
tems that always perform word operations, the above method saves one
clock cycle. If the firmware cannot avoid doing byte or halfword accesses,
it does not help for external logic to latch the address one clock cycle ear-
lier, since it has to wait for the valid Write Byte Enables to generate proper
chip enables anyway.

11-1

Chapter 11
System Mapping

This chapter describes the ATMizer Architecture system hardware map.

This chapter has three sections:

■ Section 11.1, “Memory Maps”

■ Section 11.2, “Interrupts”

■ Section 11.3, “Coprocessor Condition (CpCond) Connections”

11.1
Memory Maps

This section contains the following:

■ Internal Memory Map

■ External Memory Map

■ System Memory Map Summary

All APU accesses to the internal registers and the VCR last one CPU cycle.

Chapter 14 defines all the ATMizer Architecture registers.

Internal Memory
Map

Table 11.1 shows the Internal Memory Map of the APU Address Bits
(Effective Addresses). The subsections following the tables explain the
variable bits.

Please refer toChapter 14 and theCW33300 Enhanced Self-Embedding
Processor Core User’s Manual for APU Core register definitions.

1
1

-2
S

yste
m

 M
a

p
p

in
g

Table 11.1
Internal Memory Map

APU Address Bits (Effective Address)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W Description

VCR

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 X X X X X XX X X X X X R/W VCR Access

PRU

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 T 0 0 0 0 0 0 0 RChannel Group Credit Reg

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 WConfiguration Register

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 WStall Register

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 R R R R R 0 RPeak Rate Pacing Counters

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 I 0 R R R R R 0 R/WCount Initialization Regs

ACI

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 RCurrent Rec Cell Addr Reg

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 F C 0 0 0 0 0 0 W Transmit Cell Addr FIFO

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 W RecCell Indicator Reg

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 E 0 0 0 0 0 0 0 WGlobal Pacing Rate Reg

Control

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 R/WSystem Control Register

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 WHost Interrupt Register

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 P 0 0 0 0 0 0 0 R/WCRC32 Register

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 W MSBSubstitution Register

DMA

LO LO BC BC BC BC BC BC 0 1 0 0 0 0 0 0 0 RD G 0 L L L L L L L L L L 0 0 W DMA Control Register

Memory Maps 11-3

PRU

Clearing the T Bit (Bit 7 of the Credit Register’s Effective Address) to zero
causes the PRU to clear all PRPC bits associated with CpCond2 timeout
indication methods. Setting the T Bit to one causes the PRU to clear all
PRPC bits associated with the Interrupt1 timeout indication method.

Clearing the I Bit (Bit 7 of the Count Initialization Register’s Effective
Address) to zero causes the PRU to immediately write the initialization
value into both the Count Initialization Register and the Peak Rate Pacing
Counter, overwriting their values. Setting the I Bit to one causes the PRU
to write the initialization value into the Count Initialization Register, but
the Peak Rate Pacing Counter is allowed to continue with its count. Once
the count reaches zero, the PRU writes the new initialization value into the
Peak Rate Pacing Counter.

Table 11.2shows how the R Bits (Bits [5:1] of the PRPC Initialization and
PRPCs’ Effective Addresses) are used to select which one of the 10 Peak
Rate Pacing Counters are the target of the operation.

Table 11.2
PRPC Initialization
and Content
Register Selection

ACI

Tables11.3and11.4show the use of the C and F Bits (Bits 6 and 7 of the
Transmit Address FIFO’s Effective Address).

Table 11.3
CRC10 Generation
Control

Table 11.4
HEC Error Control

R Bits Target PRPC R Bits Target PRPC R Bits Target PRPC

000002 PRPC 0 001002 PRPC 4 100002 PRPC 8

000012 PRPC 1 001012 PRPC 5 100102 PRPC 9

000102 PRPC 2 001102 PRPC 6

000112 PRPC 3 001112 PRPC 7

C Bit Description

0 Do not Generate CRC10

1 Generate CRC10

F Bit Description

0 Normal Operation Mode

1 If HEC is enabled, force an
error into the HEC Byte

11-4 System Mapping

The E Bit (Bit 7 in the GPRR’s Effective Address) is used to enable and
disable Global Pacing. Clearing the E Bit to zero disables Global Pacing,
so the ACI does not transmit any Idle Cells between Assigned Cells when
the GPRR Counter reaches zero. But, if there is no cell available for trans-
mit in the Transmit Address FIFO, ACI does transmit Idle Cells. Setting
the E Bit to one enables Global Pacing, so the ACI inserts Idle Cells into
the cell stream when the Global Pacing counter reaches zero.

Control

The P Bit (Bit 7 in the CRC32 Register’s Effective Address) is used to
specify whether the value returned in the CRC32 Register is a Partial
Result or Final Result. Clearing the P Bit to zero causes the CRC32 Reg-
ister to return the CRC32 Partial Result to the APU. Setting the P Bit to
one causes the CRC32 Register to return the CRC32 Final Result to the
APU. The Final Result is returned as the complement of the Partial Result.

DMA

Table 11.5shows the DMA Control Register’s Effective Address Field def-
initions.Table 11.6 shows the combined use of the RD and G Bits (Bits
[14:13] of the DMA Control Register’s Effective Address). For more
detailed information seeSection 8.2, “Registers.”

Table 11.5
DMA Control Register’s
Effective Address Fields

APU Address Bits Field Description

EA[31:30] LO VCR Local Address Byte Offset

EA[29:24] BC Transfer Length Byte Count (1 - 63, 0000002 = 64bytes)

EA[23:15] 0100000002 Indicates that the DMA Control Register is the target of the store

EA14 RD Read/Write (Operation Direction)

EA13 G Ghost Bit

EA[11:2] L VCR Local Address Counter

Memory Maps 11-5

Table 11.6
Operation Direction
(RD) and Ghost Bit
(G) Settings

ExternalMemory
Map

Table 11.7 shows the External Memory Map (Secondary Port and Host/
DMA Port Direct Access Memory Map).

RD Bit G Bit Description

0 0 Initiate DMA Write Operation

0 1 Initiate DMA Ghost Write Operation

1 0 Initiate DMA Read Operation

1 1 Illegal Combination

1
1

-6
S

yste
m

 M
a

p
p

in
g

Table 11.7
External Memory Map

APU Address Bits (Effective Address)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Description

Cacheable - User/Supervisor

0 0 0 0 0 0 0 A1

1. If A = 1, the operation is atomic. If A = 0, it is not atomic.

1 0 X2

2. X can be either zero or one.

X X X X X X X X X X X X X X X X X X X 0 0 Host/DMA Port Direct Access

0 0 0 0 0 0 0 A 1 1 X 0 0 Secondary Port Direct Access

Non-Cacheable - Supervisor

1 0 1 0 0 0 0 A 1 0 X 0 0 Host/DMA Port Direct Access

1 0 1 0 0 0 0 A 1 1 X 0 0 Secondary Port Direct Access

Memory Maps 11-7

System Memory
Map Summary

Table 11.8 shows the system memory map summary.

Table 11.8
System Memory
Map Summary

Destination APU Effective Address

Host/DMA Port Cacheable Direct Access 0x00800000 to 0x00BFFFFC

Secondary Port Cacheable Direct Access 0x00C00000 to 0x00FFFFFC

Host/DMA Port Non-cacheable Direct Access 0xA0800000 to 0xA0BFFFFC

Secondary Port Non-cacheable Direct Access 0xA0C00000 to 0xA0FFFFFC

Host/DMA Port Atomic Access 0xA1800000 to 0xA1BFFFFC

Secondary Port Atomic Access 0xA1C00000 to 0xA1FFFFFC

VCR Access 0xFFF00000 to 0xFFF00FFC

PRU Channel Group Credit Register 0xFFF04000 or 0xFFF04080

PRU Configuration Register 0xFFF04100

PRU Stall Register 0xFFF04200

PRU Count Initialization Register 0 0xFFF04300 or 0xFFF04380

PRU Count Initialization Register 1 0xFFF04302 or 0xFFF04382

PRU Count Initialization Register 2 0xFFF04304 or 0xFFF04384

PRU Count Initialization Register 3 0xFFF04306 or 0xFFF04386

PRU Count Initialization Register 4 0xFFF04308 or 0xFFF04386

PRU Count Initialization Register 5 0xFFF0430A or 0xFFF0438A

PRU Count Initialization Register 6 0xFFF0430C or 0xFFF0438C

PRU Count Initialization Register 7 0xFFF0430E or 0xFFF0438E

PRU Count Initialization Register 8 0xFFF04320 or 0xFFF043A0

PRU Count Initialization Register 9 0xFFF04324 or 0xFFF043A4

PRU Peak Rate Pacing Counter 0xFFF04300 to 0xFFF04324

ACI Current Received Cell Address Register 0xFFF04400

ACI Transmit Cell Address FIFO 0xFFF04500, 0xFFF04540,
0xFFF04580, or 0xFFF045C0

ACI Received Cell Indicator Register
(Decode Circuit)

0xFFF0460C

ACI Global Pacing Rate Register 0xFFF04700 or 0xFFF04780

System Control Register 0xFFF04A00

(Sheet 1 of 2)

11-8 System Mapping

11.2
Interrupts

The APU has six interrupt inputs. Each of these interrupts can be enabled
or disabled by software running on the APU (see theCW33300 Enhanced
Self-Embedding Processor Core User’s Manual). The ATMizer Architec-
ture uses all six of the APU interrupt pins. User firmware may choose to
enable and use any of these interrupts.

Table 11.9 defines the six APU interrupts.

Table 11.9
APU Interrupts

11.3
Coprocessor
Condition
(CpCond)
Connections

The APU can check the state of any one of the CpCond inputs by executing
a Branch on Coprocessor X Condition True/False instruction.
GPINT_TST differs from GPINT_AUTO in that it is not an interrupt in the
classic sense but simply a signal whose state can be tested by the APU by
issuing the Branch on CpCond0 True/False instruction.

Table 11.10 defines the four coprocessor conditions.

Host Interrupt Register (Decode Circuit) 0xFFF04B00

CRC32 Register 0xFFF04C00 or 0xFFF04C80

MSB Substitution Register 0xFFF04D00

DMA Control Register 0xXX40XXXX1

APU BIU/Cache Configuration Register 0xFFFE0130

APU Coprocessor Registers $3, $5, $6, $7, $8, $9, $11, $12,
$13, $14, $15

1. X can be zero or one.

Interrupt Definition

0 Watchdog Timeout

1 PRU Counter Timeout

2 GPINT_AUTO (General Purpose Interrupt Available on the Pin)

3 DMA Complete

4 One Address Left

5 Received Cell Buffer Half Full

Table 11.8 (Cont.)
System Memory
Map Summary

Destination APU Effective Address

(Sheet 2 of 2)

Coprocessor Condition (CpCond) Connections 11-9

Table 11.10
CpCond Definitions

CpCond Definition

0 GPINT_TEST (General Purpose Test Pin - Pin 170) (seeSec-
tion 4.7, “ATMizer Architecture-to-Host Messaging”)

1 Received Cell Indication (seeSection 9.5, “ACI Receiver”)

2 PRU Transmit Request (CGCR Bit Set) (seeChapter 7)

3 DMA Busy (seeSection 8.8, “DMA Operation Completion”)

11-10 System Mapping

12-1

Chapter 12
Operation

This chapter describes the ATMizer Architecture operation.

This chapter has six sections:

■ Section 12.1, “Programming the ATMizer Architecture”

■ Section 12.2, “Theory of Operation”

■ Section 12.3, “Initializing the PRU”

■ Section 12.4, “The ATMizer Architecture in Operation”

■ Section 12.5, “Congestion Notification and Handling”

■ Section 12.6, “Initializing the Internal Registers”

12.1
Programming
the ATMizer
Architecture

No two ATMizer Architecture applications are likely to be identical. Each
system designer usually creates APU firmware specifically tailored to
his/her implementation. The basic firmware routine usually centers around
the Idle Loop shown inFigure 12.1, which checks for the existence of one
of three conditions and takes the appropriate actions if one of the states
exists. The order in which the CpCond pins are tested in our example Idle
Routine is significant. In this example, the firmware checks for Received
Cell Indication first since it is more important not to drop a received cell
(if the received cell buffer overflows) than it is to prevent an Idle Cell from
being transmitted.

12-2 Operation

Figure 12.1
APU Idle Loop

The user firmware should always check for Received Cell Indication
before checking for either a Host Messaging Request or a Transmit Cell
Request. Because the ATMizer Architecture can be asked to accomplish
certain complex functions, the servicing of either a Received Cell Indica-
tion, transmit cell request, or message request could take longer than the
time normally allotted in steady state operation. As a result, cells may
accumulate in the VCR and firmware may wish to always drain this buffer
before proceeding with the segmentation routine.

12.2
Theory of
Operation

This section contains two subsections that explain how the ATMizer
Architecture operates during cell reassembly and segmentation.

CpCond1 False

CpCond0 False

Check for Received Cell Indication
CpCond1 Asserted by ACI
(Branch on CpCond1 True)

Check for Transmit Request
CpCond2 Asserted by PRU
(Branch on CpCond2 True)

Check for Host Message Indication
CpCond0 Asserted by Host
(Branch on CpCond0 True)

Reassembly
Routine (see Figure 12.2)

Messaging
Routine

Segmentation
Routine (see Figure 12.3)

CpCond1 True

CpCond0 True

CpCond2 True

CpCond2 False

Theory of Operation 12-3

Reassembly When a cell arrives, the ACI extracts and checks the HEC Field and puts
the cell into the VCR. Since there is no way of detecting the AAL type yet,
the CRC10 circuitry must check the CRC10 Field of every incoming cell
regardless of the AAL type. Once the cell is buffered, the ACI generates an
interrupt to notify the APU that there is at least one new cell in the buffer.
Alternately, the APU can poll a condition signal to find out if there is at
least one new cell in the buffer.

Firmware can implement an interrupt mechanism using the Received Cell
Indicator Register (RCIR) as an up/down counter. Each time a new cell
arrives, the counter is incremented by one. If the counter is greater than
zero, the ACI asserts interrupts and coprocessor condition signals. Each
time the APU processes a cell, at the end of the reassembly routine the
APU must write to the RCIR to decrement the counter by one. The first
step in processing a cell is to extract the cell header and find the VCI and
VPI fields. The VCI/VPI are used to index a data structure that describes
the cell.

Once the data structure is retrieved, the APU can find out more information
about how to proceed with processing the cell. The cell’s data structure
(called a Channel Parameter Entry or CPE) may contain information such
as the AAL type, the Host memory address (where the CS-PDU resides),
the CRC32 Partial Value for AAL 5, and the previous SAR Header for
AAL 3/4. Next, the CPU may decide whether to translate the VCI/VPI and
switch the cell back for transmission or to terminate the cell. In the case of
termination, the APU programs the DMA controller with the Host memory
address found in the data structure. In the case of AAL 5, the APU initial-
izes the CRC32 generation circuitry with the CRC32 Partial Value found
in the data structure.

For AAL 5, it is necessary to have partial CRC32 value because the CRC32
mechanism is calculated over the whole CS-PDU. Once the SAR-SDU is
transferred into the host memory, the CPU retrieves the new CRC32 Partial
Value and updates the data structure. If this is the last SAR-SDU for AAL
5, the CRC32 value can be checked against the last four bytes of the pay-
load. In the case of an error, the APU informs the Host by some predefined
messaging protocol. If it is not the last SAR-SDU for the particular CS-
PDU, the APU also updates the Host memory address for the next SAR-
SDU transfer.

12-4 Operation

Another significant advantage in having an embedded APU is the ability
to allocate the Host memory dynamically through a predefined messaging
protocol. Dynamic memory allocation is very attractive for the AAL 5
reassembly process because there is no way to know the CS-PDU size
beforehand. For AAL 3/4, there is a Buffer Size Field in the CS-PDU
Header. This field does not exist for AAL 5 so the user information can be
up to 65536 bytes. If 1 Kbyte of CS-PDU is active and 64 Kbytes of mem-
ory space is allocated for each active CS-PDU, then 64 Kbytes of memory
needs to be allocated beforehand. If the average packet size is 4 Kbytes,
then almost 94% of memory space is wasted (60 Mbytes).

Another attractive feature of having an embedded APU and DMA control-
ler is that the CS-PDU needs not be contiguous in the Host memory. The
CS-PDU can be scattered throughout the Host memory. This feature is
extremely attractive in desktop applications such as ATM adapter cards.
Most operating systems configure and allocate memory in pages and use
virtual addressing. The page size is usually small. For example, in the
SPARC Reference Memory Management Unit (MMU), one page is 4
Kbytes. A 64-Kbyte AAL 5 CS-PDU needs 16 pages. When the MMU
allocates these pages, most likely they will not be contiguous. After a CS-
PDU is assembled, the embedded CPU can interrupt and notify the Host
processor through a predefined messaging system.

Figure 12.2 illustrates a typical reassembly routine triggered by the inter-
rupt or condition signals.

Theory of Operation 12-5

Figure 12.2
Reassembly Routine

Start

Is it
AAL 5?

Is it
AAL 3/4?

Yes

No

No

Yes

Initialize
CRC32

Read Current Cell Holder Pointer

Extract ATM Header

Use VCI and VPI
to Generate Data
Structure Pointer

Get Data Structure

Check for CRC10
Extract Header and Trailer

Initialize and Start DMA

Update Data
Structure and Write

Done

Receive Cell Indicator

12-6 Operation

Segmentation The event that triggers a segmentation process can be generated when one
or more of the Peak Rate Pacing Counters elapse or by a predefined mes-
saging system with the Host processor. For AAL 1 datastreams, the APU
can poll a memory map register for a Ready to Segment Flag to be set by
an external device such as a DS1 termination device. In this discussion, the
Peak Rate Pacing Counters are used as the segmentation triggering
mechanism.

The Peak Rate Pacing Counters can be used to index a link list of pointers.
These pointers point to a data structure describing the particular CS-PDU
to be segmented. When one or more counters elapse, the APU can be inter-
rupted and the firmware should vector into the segmentation routine. The
first task for the segmentation routine is to use the counter and index a par-
ticular link list. The APU can implement a priority mechanism to select
which CS-PDU will be segmented first.

The data structure to describe a CS-PDU for segmentation process is
slightly different compared to the data structure for the reassembly process
described in the previous subsection. The data structure for segmentation
contains information such as the ATM Header, the CRC32 Partial Value
for AAL 5, the current Host memory address pointing to the SAR-SDU to
be transferred, and the transfer count. Other useful control information
such as the maximum burst size and priority can be included in the data
structure. The maximum burst size can be used to inform the APU to trans-
fer multiple SAR-SDUs from the Host memory into the cell buffer mem-
ory for segmentation.

For AAL 5 CS-PDU, the CPU needs to initialize the CRC32 circuitry with
the CRC32 Partial Value before the transfer begins. Once the SAR-SDU is
in the cell buffer memory, the APU needs to generate the cell header. The
cell header is retrieved from the data structure and the APU may process
some of the fields, such as the VCI, the VPI, the GFC, the CLP, and the PT.
For AAL 3/4, the APU must also generate the SAR Header and Trailer.
The SAR Header and Trailer from the previous SAR-SDU can also be
stored in the data structure. The APU may need to manipulate some of the
field such as incrementing the SN Field. When the cell is ready for trans-
mission, the APU informs the ACI to fetch the cell from the cell buffer
memory and passes it to the TCS. The HEC can be inserted dynamically
during the transmission. Depending on the physical layer used, the HEC
generation circuitry is programmable and is capable to insert or skip the
HEC Field.

Theory of Operation 12-7

If the cell originated from AAL 3/4 CS-PDU, the APU activates the
CRC10 circuitry and the CRC10 Field is inserted at the end of the cell dur-
ing transmission. Before returning from the segmentation routine, the APU
has to update the data structure by restoring the new CRC32 Partial Value
for AAL 5, updating the SAR header for AAL 3/4, incrementing the trans-
fer count, and so on.Figure 12.3illustrates a typical segmentation routine
triggered by the peak rate counters. For more information on CRC10 gen-
eration for AAL 3/4, refer toSection 9.8, “CRC10 Generation and Error
Checking.”

Figure 12.3
Segmentation Routine

Start

Generate Data
Structure

Pointer List

Get Data
Structure

Is it
AAL 5?

Generate
ATM Header

Is it
AAL 3/4?

Generate SAR Header
Prepare for CRC10

Initiate ACI
Transmission

Update and Restore
Data Structure

Another
Counter
Elapsed?

Return

Yes

No

Yes

No

No

Yes
Determine

Which Counter
has Elapsed

Initialize
CRC32

Program DMA
Controller

12-8 Operation

12.3
Initializing the
PRU

At the beginning of operation, software should initialize the PRU. The rec-
ommended method for initializing the PRU is as follows:

1. Software stalls all timers by writing 0x3FF into the Stall Register.

2. Software programs the configuration register to indicate to the PRU
which clock each of the PRPCs is to be driven from (Configuration
Register Bits [9:0]) and to indicate to the PRU which time out indica-
tion method is to be used for each of the three timer groups (Bits
[12:10]).

3. Software clears the CGCR by reading the CGCR twice. The first time
the CGCR should be read with Address Bit 7 cleared to zero to clear
those bits associated with the CpCond2 timeout method. The second
time the CGCR should be read with Address Bit 7 set to one to clear
those bits associated with the Interrupt1 reporting mechanism.

4. Software programs the initialization value for each of the PRPCs and
enables the counter by writing to the Stall Register, which unstall the
PRPCs.

The following code demonstrates how to initialize and use the PRU:

#include "regdef.h"
/**
This program is written to test the ATMizer Architecture PRU.

The following software checks that:
1) The Credit Register works properly with Interrupt1
2) The clearing mechanism for timers associated with
Interrupt1 works properly
**/

/* Define Register Addresses */

#define Magic 0xa0ffff00
#define Happy 0xa0ffff04
#define Sad 0xa0ffff44

#define cir_prpc r1
#define conf_reg r2
#define stall_reg r3
#define cr_reg r4

Initializing the PRU 12-9

#define apu_bcc r5
#define hbs_addr r6
#define sys_ct_reg r7
#define apu_d r8
#define stall_val r9
#define imm_val r12
#define del_val r13

.text

.set noreorder

.set noat

/* Initialize On-chip and Off-chip Addresses */

la r30, Happy
la r29, Sad

/**
r28, r27, r26 are reserved for address of exception subroutine
**/
la r25, excp1
la r26, excp2
la r27, excp3
la r28, excp4

la cir_prpc, 0xfff04300 # count initialization reg_prpc

la conf_reg, 0xfff04100
la stall_reg, 0xfff04200
la cr_reg, 0xfff04000

la apu_bcc, 0xfffe0130
la hbs_addr, 0xa080ae00
la sys_ct_reg, 0xfff04a00

li apu_d, 0x00004890 # apu_reg <- nopad, enable
i$, d$, 4-word block

li stall_val, 0xffffffff
li imm_val, 0x004 # Timer starting count value
li del_val, 0xffe # The value loaded to CIR only

(delays load)

12-10 Operation

/**
Clear the error condition bits in the sys_ct_reg
set block size = 4 (for hp block fetches by CPU)
**/
li r10, 0x00080070
sw r10, (sys_ct_reg)

/**
Initialize APU BCC Reg: no wait state between bus
transactions, enable i$, d$, block size = 4
**/
sw apu_d, (apu_bcc)

/* Clear PRU CpCond and Interrupt */

sw stall_val, (stall_reg) # Write 0xfffffff to stall reg
sw r0, (conf_reg) # Initialize PRU Config Reg with r0
lw r10, (cr_reg) # Read from Credit Reg
lw r10, 0x80(cr_reg) # Read from Credit Reg

/* Enable interrupt.1 */

lw r11, (apu_bcc) # Read APU BCC Register
nop
ori r11, r11,0x00001000
sw r11, (apu_bcc) # Write to BCC Reg to change

interrupt polarity
nop
li r11, 0xf0400801 # Write to cp0 Status Reg, bev = 1,

int.1 = 1, en-intr
mtc0 r11, $12
nop

/**
Verify that the credit register is functioning properly
This is done for each CIR/PRPC timer using Interrupt.1
reporting Mechanism.
**/

/* Disable interrupts */

Initializing the PRU 12-11

li r11, 0xf0400800 # Write to cp0 Status Reg, bev = 1,
int.1 = 1, dis-intr

mtc0 r11, $12
nop

/* Stall the timers */

sw stall_val, (stall_reg) # Write 0xfffffff to Stall Reg to
stall all the timers

/* Configure Timers 0,1,2,3 as interrupt1 Timers */

li r13, 0x0400 # Configure Timers 0,1,2,3 as
intr.1 (Bit 10 = 1)

sw r13, (conf_reg)

/**
Program Cpcond2 timers with immediate and delayed values
**/

li imm_val, 0x04 # Initial value loaded to Cpcond2
timers

li del_val, 0x20 # Delayed timer value to Cpcond2
timers

sh imm_val, 0x8(cir_prpc) # Load cir/timer4 immed. A7 = 0
sh imm_val, 0xa(cir_prpc) # Load cir/timer5 immed. A7 = 0
sh imm_val, 0xc(cir_prpc) # Load cir/timer6 immed. A7 = 0
sh imm_val, 0xe(cir_prpc) # Load cir/timer7 immed. A7 = 0

sw imm_val, 0x20(cir_prpc) # Load cir/timer8 immed. A7 = 0
sw imm_val, 0x24(cir_prpc) # Load cir/timer9 immed. A7 = 0

/**
Load delayed timer values into Cpcond2 timers
**/
sh del_val, 0x88(cir_prpc) # Load cir/timer4 with delayed

value A7 = 1
sh del_val, 0x8a(cir_prpc) # Load cir/timer5 with delayed

value A7 = 1

12-12 Operation

sh del_val, 0x8c(cir_prpc) # Load cir/timer6 with delayed
value A7 = 1

sh del_val, 0x8e(cir_prpc) # Load cir/timer7 with delayed
value A7 =1

sw del_val, 0xa0(cir_prpc) # Load cir/timer8 with delayed
value A7 = 1

sw del_val, 0xa4(cir_prpc) # Load cir/timer9 with delayed
value A7 = 1

/**
Program interrupt.1 timers with immediate and delayed values
**/

li imm_val, 0x2f # Initial value loaded to
interrupt.1 timer0

sh imm_val, 0x0(cir_prpc) # Load cir/timer0 immed. A7 = 0
li imm_val, 0x8f # Initial value loaded to

interrupt.1 timer1
sh imm_val, 0x2(cir_prpc) # Load cir/timer1 immed. A7 = 0
li imm_val, 0x10f # Initial value loaded to

interrupt.1 timer2
sh imm_val, 0x4(cir_prpc) # Load cir/timer2 immed. A7 = 0
li imm_val, 0x1af # Initial value loaded to

interrupt.1 timer3
sh imm_val, 0x6(cir_prpc) # Load cir/timer3 immed. A7 = 0

/**
Load delayed timer values into interrupt.1 timers
**/
li del_val, 0x3ff # Delayed timer value to

interrupt.1 timers
sh del_val, 0x80(cir_prpc) # Load cir/timer0 with delayed

value A7 = 1
sh del_val, 0x82(cir_prpc) # Load cir/timer1 with delayed

value A7 = 1
sh del_val, 0x84(cir_prpc) # Load cir/timer2 with delayed

value A7 = 1
sh del_val, 0x86(cir_prpc) # Load cir/timer3 with delayed

value A7 = 1

The ATMizer Architecture in Operation 12-13

/**
Clear the Credit Register
**/

lw r10, (cr_reg) # Read from Cpcond2 address. A7 = 0
lw r10, 0x80(cr_reg) # Read from interrupt1 address.

A7 = 1

/**
Enable interrupt.1
**/
li r11, 0xf0400801 # Write to cp0 status reg, bev = 1,

int.1 = 1, en-intr
mtc0 r11, $12
nop

/***
Release all the timers
***/
sw r0, (stall_reg) # Release all timers

12.4
The ATMizer
Architecture in
Operation

Figure 12.4shows the ATMizer Architecture in a system supporting AAL
1 and AAL 5 circuit termination and cell switching.

12-14 Operation

Figure 12.4
ATMizer
Architecture
Example

Data Types
Supported

The ATMizer Architecture is capable of handling a combination of data
types from a variety of data sources. If the necessary data and control infor-
mation, such as the Residual Time Stamp (RTS) values for AAL 1 connec-
tions, can be accessed by the ATMizer Architecture from a memory
mapped entity (either a RAM or a peripheral interface controller), the
ATMizer Architecture can create an ATM cell or cell stream from the data
source. Realtime datastream sources can be Digital Signal Level 1 (DS1),
line termination, or packet generating sources such as workstations,
packet-based LANs, and WAN interfaces. The data source can also be
ATM cells switched from other ATM ports which is mapped into the
ATMizer Architecture DMA memory space or is accessible over the
ATMizer Architecture ATM Port Cell Interface.

OE
Data[7:0]
Adr
Rd/Wrx
Rc Data Rdy
Tx Location Available

Host/DMA Memory Interface
ATMizer Architecture

ATM
Port

RC
Cell

Buffs

AAL 5
Tx
Cell

Buffs

Ch
Params

etc.

DS1
Tx & RC
Buffs

Secondary Port

8 8
Clocks

and
Control

Transmission
Convergence
Framing Logic

DS1_0

DS1
Lines

Tx
Rc

OE
Data[7:0]
Adr
Rd/Wrx
Rc Data Rdy
Tx Location Available

DS1_1

DS1
Lines

Tx
Rc

OE
Data[7:0]
Adr
Rd/Wrx
Rc Data Rdy
Tx Location Available

DS1_7

DS1
Lines

Tx
Rc

DS1 Terminations

AAL 5 CS-PDUs

Expansion,
Bus Control

Switch Interface
Ethernet Interface
etc.

2-Word Tx and Rc Buffers, RTS

The ATMizer Architecture in Operation 12-15

Cell Generation Almost all aspects of the cell generation process are controlled by the ATM
Processing Unit (APU) under user firmware control. To accomplish seg-
mentation, the APU functions as an event-driven device. A segmentation
triggering event can be an external event, such as the filling of a DS1 buffer
or an internal event such as the timeout of one of the ten internal Peak Rate
Pacing Counters (PRPCs).

The APU detects external events by periodically polling a Host/DMA Port
or Secondary Port memory-mapped register that has a bit associated with
each possible external event, or by polling the GPINT_TST signal for an
indication that an external event has occurred. Polling GPINT_TST is a
faster mechanism because its state can be tested with a single APU instruc-
tion (Branch on Coprocessor Condition 0 True). However, since
GPINT_TST may be used as part of the Host-to-ATMizer messaging sys-
tem, the assertion of GPINT_TST may have to be qualified by access to a
message-type field or register somewhere in the Host/DMA Port or Sec-
ondary Port memory space. For the example inFigure 12.4, GPINT_TST
assertion might alert the ATMizer Architecture to a DS1 Buffer Full
Condition.

In general, internal PRPC timeout events are used to pace the segmentation
of CS-PDUs while external events (GPINT_TST assertion) are used to
pace cell generation from realtime datastreams. When one or more
counters times out the Pacing Rate Unit responds by asserting the Copro-
cessor Condition 2 (CpCond2) input to the APU. The APU frequently
checks the state of this input by executing a single Branch on Coprocessor
Condition 2 True instruction. If the APU detects CpCond2 asserted, it
branches to the segmentation routine and reads in a 10-bit value from the
Channel Group Credit Register (CGCR) that indicates which counters
have expired. The APU can then proceed to segment the CS-PDUs associ-
ated with the Peak Rate Pacing Counters that have expired. Since the APU
can read the CGCR at any time, even in the midst of servicing a Channel
Group, the user is able to implement almost any channel priority scheme
that fits the application.

AAL 1 Realtime Datastreams

The ATMizer Architecture is capable of generating AAL 1 SAR-PDUs
from memory-mapped data buffers. In most cases, datastreams such as
DS1 lines will be terminated and synchronized to the ATMizer System
Clock, then prebuffered in dual 48-byte buffers in main memory. Once a

12-16 Operation

buffer fills, the ATMizer Architecture can be instructed (through an exter-
nal event) to retrieve the SAR User Payload, retrieve RTS, or generate
Sequence Number/Sequence Number Protection (SN/SNP) values and
append the SAR Header and transfer the cell to the transmission conver-
gence framing logic using the ACI Transmitter. As the ATMizer Architec-
ture is generating a cell from one buffer, the other buffer is being refilled
by the realtime data source. Eventually the second buffer fills and the first
buffer becomes the active fill buffer. AAL 1 datastreams are continuous in
time. The APU under user firmware control creates the Sequence Number
and Sequence Number Protection fields internally but is passed the Resid-
ual Time Stamp Field from an external device. Residual Time Stamp val-
ues can be passed to the ATMizer Architecture in Byte 0 of the SAR-SDU
(the logical positioning, in this case external logic calculates the RTS and
writes it into the data buffer) or the APU can proactively retrieve the RTS
value, when needed, utilizing either the Secondary Port or the DMA Con-
troller. The APU implements RTS and SN/SNP interleaving on transmis-
sion and passes the SAR SDUs and RTS values to the appropriate buffers
or interfaces. The APU also performs SN/SNP checking on reassembly.
The actual AAL 1 cell generation and received cell handling routines must
be written by the user.

Figure 12.5 shows AAL 1 Circuit Emulation and Data Buffering.

Figure 12.5
AAL 1 Circuit
Emulation and Data
Buffering

In situations where DS1s are to be sourced over an ATM port, the DS1 low
data rates allow for multiple lines to be easily handled. In low-speed

Memory

Null Convergence Sublayer

96-Byte Buffer

SAR
Sublayer

From A

SAR Payload
47 Bytes

Cell Payload
48 Bytes

From B

SAR Payload
47 Bytes

Cell Payload
48 Bytes

From A

SAR Payload
47 Bytes

Cell Payload
48 Bytes

A

B

Time

ATM
Header

The ATMizer Architecture in Operation 12-17

applications, the ATMizer Architecture itself can be programmed to han-
dle the transfer of data from a small-word buffer in the DS1 Physical Inter-
face Device to the dual 48-byte buffers in main memory. In some
applications the VCR itself could provide the dual data buffer functional-
ity. Using the ATMizer Architecture in this way alleviates the need for
intelligent DMA operations at the DS1-Main Memory Interface and sim-
plifies memory controller design. Since the overhead on the ATMizer
Architecture to facilitate these transfers is quite high, dumb DS1 ports may
only be usable at ATM port speeds at or below DS3 rates. It is up to the
user to make a final determination if a chosen implementation can sustain
the desired throughput rates.

AAL 3/4 and 5 CS-PDUs Segmentation

Figure 12.6 shows AAL 3/4 CS-PDU Segmentation.

Figure 12.6
AAL 3/4 CS-PDU
Segmentation

If an internal event occurs (a PRPC has expired forcing the assertion of
CpCond2), the APU firmware can determine which PRPC expired by read-
ing the Channel Group Credit Register. The APU firmware can then parse
through the list of Channel Parameter Entries that are attached to the
expired PRPC, segmenting a number of cells from each CS-PDU before
proceeding on to the next entry in the Channel Group. As the APU parses
through the Channel Parameter Entries in the Channel Group, it can gen-
erate one or more cells from a given CS-PDU before proceeding on to the
next Channel Parameter Entry in the list. This list will either be in the VCR
or main memory, depending on the application. VCR-resident lists have
limits on their sizes (a limit on the number of channels that can be active

SAR
Sublayer

SAR Payload
44 Bytes

Cell Payload
48 Bytes

ATM
Layer

ATMizer

SAR Payload
44 Bytes

Cell Payload
48 Bytes

SAR Payload
44 Bytes

Cell Payload
48 Bytes

Type
1 Byte

B Tag
1 Byte

BA Size
2 Bytes

CS-Payload
0-65,536 Bytes

PAD
0-3 Bytes

PCF
1 Byte

E Tag
1 Byte

Length
2 BytesSublayer

Convergence

CS Header CS TrailerCS Payload

Architecture

12-18 Operation

simultaneously) but allow for less costly memory system implementations,
while memory-based lists have few restrictions on their size but may
require a fast SRAM to support the processors need for fast access to the
entry (as well as fast access to restore the updated entry to memory at the
end of the segmentation/cell generation burst for each Channel Parameter
Entry/CS-PDU).

Figure 12.7 shows AAL 5 CS-PDU Segmentation.

Figure 12.7
AAL 5 CS-PDU
Segmentation

Contiguous CS-PDUs

In the most straightforward of system implementations, AAL 3/4 and 5
CS-PDUs are created in system memory by a Host Processor. The
ATMizer Architecture’s job is to segment these CS-PDUs into a series of
SAR-SDUs, generate and append ATM Adaptation Layer headers and
trailers and ATM headers to the SAR-SDUs, and then transfer the newly
built cells to the external Transmission Convergence Sublayer framing
logic one byte at a time using the ACI Transmitter. CS-PDUs undergoing
segmentation are resident and contiguous in system memory prior to the
ATMizer Architecture beginning the segmentation process. In addition to
performing segmentation and ATM cell generation, the ATMizer Architec-
ture will also calculate the CRC32 for AAL 5 CS-PDUs and append the
resulting four bytes of CRC32 code to the end (Bytes [53:50]) of the last
cell generated from the given AAL 5 CS-PDU. The Host Processor
constructs the entire AAL 3/4 or 5 CS-PDU in system memory but, in the

SAR PDU
48 Bytes

Cell Payload
48 Bytes

SAR PDU
48 Bytes

Cell Payload
48 Bytes

SAR
Sublayer

SAR PDU
48 Bytes

Cell Payload
48 Bytes

ATM
Layer

ATMizer

PAD
0-47 ByteSublayer

Convergence

CS Trailer

Host CPU

CS-PDU Payload
0-65,535 Bytes

Control
2 Bytes

Length
2 Bytes

CRC 32
4 Bytes0000

User Generated – Memory Based

ATMizer

Generated

Architecture

Architecture

The ATMizer Architecture in Operation 12-19

case of AAL 5, should stuff all zeros into the last four bytes (the CRC32
Field).

Non-Contiguous CS-PDUs

This subsection describes the Gather function of Scatter-Gather DMA.

In more complicated system environments, CS-PDUs may be resident in
noncontiguous memory. Memory fragmentation may occur in ATM net-
work interface card applications, for instance, if the operating system
builds higher-layer header fields apart from the actual user payload portion
of the packet, or if the operating system creates headers from different lay-
ers physically separate though they logically belonging to the same CS-
PDU. It may also occur if the User Payload Field consumes more than one
page in a virtual memory system and memory management software allo-
cates noncontiguous pages to the application. Forced moves to create a
contiguous CS-PDU are wasteful of system resources and time. Fortu-
nately, such moves are unnecessary in systems employing the ATMizer
Architecture.

In routing applications (or CSU/DSU applications), the system designer
may wish to provide for the segmentation of packets (CS-SDUs) prior to
their complete arrival. Segmenting a CS-SDU as it arrives reduces the
amount of buffer memory required in the bridging mechanism. It also
reduces the latency attributable to the router. In applications employing
ATM Adaptation Layer 5, the ATMizer Architecture can begin packet seg-
mentation as soon as enough bytes arrive for the Host Processor to estab-
lish the route and before the Host Processor has built the CS-PDU trailer.

In addition, the router may allocate memory to incoming packets in blocks
of size less than the maximum packet size (these blocks are referred to as
memory fragments). This router memory allocation mechanism is useful in
applications where packet sizes can vary dramatically. Small packets may
take up a single memory fragment while much larger packets may require
the allocations of several fragments. The ATMizer Architecture proceeds
through the segmentation process one fragment at a time; communicating
with the Host Processor or accessing a link list of the CS-PDU from system
memory as fragment boundaries are reached.

In Gather applications, the APU periodically reaches the end of a particu-
lar CS-PDU fragment. The APU must be able to determine if it has reached
the end of a fragment or if it has actually reached the end of the CS-PDU.

12-20 Operation

This information is needed to ensure that the APU does not prematurely
insert an EOM identifier into the SAR Headers of AAL 2 and 3/4 cells or
encode an EOM identifier into the PTI fields of the ATM Headers of AAL
5 cells. Therefore, it is important that a flag field be included in the Chan-
nel Parameter Entry that indicates whether the fragment represents end of
CS-PDU or if more fragments exist for the CS-PDU. Firmware running on
the APU must check this condition during the segmentation process. Since
the APU must check the resulting byte count each time it decrements it, it
is possible to signal end-of-CS-PDU by providing a byte count in the
Channel Parameter Entry that will reach exactly zero at the end of a frag-
ment that represents the end of the CS-PDU and one that will produce a
negative result for fragments that are not the last fragment (the byte count
would be at least one byte less than the actual count). These and other tech-
niques can be employed to dramatically reduce the number of APU
instructions required to generate (or process) a cell and shall be expanded
upon later in the section on programming the APU.

As mentioned previously, the APU may choose to generate more than one
cell from a given CS-PDU before proceeding on to the next CS-PDU. This
choice is up to the user but it is important to understand that generating
multiple cells per CS-PDU reduces the number of APU cycles required to
build a cell. The APU cycles required to retrieve and restore the Channel
Parameter Entry for the CS-PDU can be amortized over the number of
cells generated.

Once the cell generation routine has been entered, cell generation involves
the APU retrieving a Channel Parameter Entry (from the internal VCR or
externally), using the DMA Address to initiate a Memory Read operation
to retrieve the SAR-SDU (size dependent on AAL type and on Gather
algorithm employed), retrieving the ATM Header from the Channel
Parameter Entry, modifying certain fields (GFC, PTI, CLP) if necessary,
and writing the Header into the appropriate location in the VCR (just in
front of where the DMA Controller was instructed to write the SAR-SDU).
If the cell is an AAL 3/4 cell, the APU must also retrieve the previous SAR
Header and use it the previous sequence number to generate the current
SAR Header. The APU must also set the LO Field in the VCR by writing
it to the end of where the DMA Controller was instructed to write the SAR-
SDU after the SAR-SDU retrieval has completed (since the DMAC does
not clip VCR or memory write operations on the tail end of the last word).
Finally, the APU must queue the cell for transmission by writing its VCR
address into the Cell Address FIFO in the ACI Transmitter. AAL 5 cells do

The ATMizer Architecture in Operation 12-21

not require SAR Header or Trailer generation operations but they do
require CRC32 Partial Results maintenance and CRC32 insertion into the
last cell of a CS-PDU.

Figure 12.8 shows the Cell Generation Data Path.

12-22 Operation

Figure 12.8
Cell Generation
Data Path

Virtual
Channel

RAM

Tx Cell Buff 1
Tx Cell Buff 2

Rc Cell Buff 1
Rc Cell Buff 2

Rc Cell Buff 4/8/16/32

32

32

Tx
Buffer

Rc
Buffer

TX_CLK
TX_ACK

RC_CLK
RC_ACK

32

8

8

32

DMA Controller

DMA Memory Port

Main Memory
CS-PDUs

Datastream Buffers

Host
CPU

Expansion
Bus

Interface

32 32 32

Host Bus

DS1s
Frame Relay
Ethernet

Secondary
Port

The ATMizer
Data Path

APU

RC_D[7:0]TX_D[7:0]

ATM Port

TX_DRDY_

TX_IDLE

TX_BOC RC_RST_

etc.

Note:
1. CS-PDUs undergoing segmentation reside in system memory. SAR-SDUs are retrieved from memory (AAL 5

SAR-SDU = 48 bytes, AAL 1 SAR-SDU = 47 bytes) and placed in a Tx (Transfer) Cell Buffer in the VCR. SAR
and ATM Headers are appended by the APU and then the cell is queued for transmission over the ATM Cell
Interface. An eight-byte buffer (Tx Buffer) in the ACI sits between the VCR and the line driver. Data is fetched
from the VCR Tx Cell Buffer relative to the ATMizer Architecture System Clock (CLK) but transferred out of the
eight-byte buffer (Tx Buffer) relative to the line’s byte clock (ACI’s TX_CLK).

2. CS-PDUs undergoing reassembly also reside in system memory. Data from the Receiver is temporarily buffered
in a second eight-byte buffer (Rc Buffer). This buffered data is then transferred to the Received Cell Buffers in the
VCR. The combination of buffering provides all of the buffering needed in many applications.

RC_BOC

The ATMizer Architecture in Operation 12-23

CS-PDU
Reassembly
Process

In addition to segmentation, the ATMizer Architecture performs reassem-
bly operations on AAL 3/4 and 5 CS-PDUs and AAL 1 realtime datas-
treams. In the case of AAL 5 CS-PDUs, reassembly is the process of
reconstructing CS-PDUs in system memory from a stream of cells
received over the ATMizer Architecture ATM Port Cell Interface. This
stream of cells contains SAR-PDUs from a number of VCs/CS-PDUs
simultaneously so the ATMizer Architecture has to track operations on a
number of active CS-PDUs.

The exact number of open VCs that the ATMizer Architecture can support
is implementation dependent. By restricting the number of active channels
and caching all channel parameters in the VCR, low-cost network interface
cards (NICs) can be built that use system memory for CS-PDU storage,
alleviating the need for dedicated memory on the NICs themselves. In
higher-speed applications, a larger number of channels (up to 65536) can
be supported through the provision of external local DRAM and/or
SRAM. In these implementations, the ATMizer Architecture obtains the
Channel Parameter Entries from external memory.

Of course, not all high-speed (155 mbps) applications will support very
large numbers of VCs. For example, an implementation of an ATM back-
bone may choose to encapsulate all traffic from a single network under a
single VC/VP. At the destination ATM switching point, the Convergence
Sublayer strips out the ATM encapsulation information exposing a diverse
stream of higher-layer packets. In such systems, these high-speed ATM
interface devices may wish to support only a limited number of network
segments/VCs (64 – 128), and as a result, all channel parameters can be
cached inside the ATMizer Architecture so local memory could consist of
only DRAM.

The addition of internal memory allows ATMizer Architecture users to
make several trade-offs between system cost (with or without local mem-
ory, with DRAM or with SRAM), ATM data rates, and the number of chan-
nels supported. If the external memory is capable of supplying data to the
ATMizer Architecture on the clock cycle following the address, then the
penalty of having an external CPE is minimal. With the four-word cache,
four words can be fetched in seven cycles by strobing the first word into
the APU while the other three are being fetched.

12-24 Operation

Scatter Function

When the first cell of a CS-PDU arrives over the ATMizer Architecture
ATM Port Cell Interface, a buffer must be set aside in memory for reassem-
bly. Because the ATMizer Architecture is capable of scatter operations and
buffer management, it is possible to allocate buffer space one block at a
time. The ATMizer Architecture can then construct a link list of the buffers
used during the reassembly process, requesting additional buffer alloca-
tions as the CS-PDU extends beyond the bounds of the existing buffers.

With AAL 3/4 CS-PDUs, an intelligent decision can be made up front con-
cerning buffer allocation since AAL 3/4 CS-PDUs contain a CS-PDU
length indicator in their headers. But with AAL 5 CS-PDUs, size can not
be determined until the last cell of the CS-PDU has arrived. Without a scat-
ter capability, the system would be forced to allocate the maximum size
buffer to each new AAL 5 CS-PDU, which could put a severe strain on
memory resources if many channels are active simultaneously.

With scatter control, the granularity of buffer allocations can be as small as
the designer wishes. User firmware running on the ATMizer Architecture
retrieves available buffer lists, constructs link lists for the CS-PDUs during
reassembly, and passes these lists or pointers to these lists to the Host Pro-
cessor upon completion of the reassembly process (or perhaps it could
append the pointer to the next buffer to the present buffer).

The ATMizer Architecture provides the resources to implement the scatter
function–the APU, the DMA Controller, and ATMizer Architecture-to-
Host Messaging. User firmware, downloaded to the ATMizer Architecture
at system reset time, implements the buffer allocation and link list pointer
management processes chosen by the system designers as the best mecha-
nism for their application.

AAL 3/4 CRC10 Error and AAL 5 CRC32 Error Checking

If AAL 3/4 cells are to be supported, the reassembly routine has to check
the CRC10 Error Bit in the System Control Register for an indication of
CRC10 errors. Of course, if the Channel Parameter Entry for a VC indi-
cates that the cell is encoded using AAL 1 or 5, CRC10 error checking
should not be employed.

AAL 5 CRC32 error checking is explained in detail inSection 8.5,
“CRC32 Generation.”

Congestion Notification and Handling 12-25

12.5
Congestion
Notification and
Handling

Switching nodes within an ATM network that is experiencing congestion
can inform ATM end stations by modifying the ATM headers of ATM cells
passing through them. An end station receiving marked cells may take cor-
rective action. During reassembly, the APU can search each cell header for
notification of congestion.

If congestion is indicated, the APU can execute whatever congestion han-
dling algorithm the system designer has chosen to implement. There are
several steps that the ATMizer Architecture APU can take in reaction to
congestion notification:

1. The APU can inform Host software of the congestion problem but take
no additional action. Host software can lower Average and Peak seg-
mentation rates or Burst Lengths for one or more CS-PDUs/VCs.

2. The APU can react by increasing the service intervals for one or more
Channel Groups (increase the initialization values in one or more
PRPCs).

3. The APU can lower the Global Pacing Rate for the overall Transmis-
sion pipe.

4. The APU can choose to selectively lower the CLP value for one or
more VCs. For realtime sensitive datastreams, CLP reduction may be
preferable to throttling the VC.

These and other actions can be taken separately or together to achieve an
efficient congestion handling mechanism. It is important to note that the
hardware does not implement any congestion control algorithm. Software
running on the ATMizer Architecture must check for congestion and
implement a congestion control routine.

The best congestion control algorithms may not be fully understood until
enough equipment is fielded to put real life demands on ATM-based net-
works. Much of existing equipment may not be able to be updated to deal
with actual congestion problems. Systems employing the ATMizer Archi-
tecture do not have this problem. Because it is programmable, the ATMizer
Architecture can execute virtually any congestion control algorithm.
Because its firmware is downloaded at system reset time, software patches
can be sent out to existing customer sites with new congestion algorithms
for the ATMizer Architecture when more is learned about actual network
congestion. Because the APU sits directly at the line interface, the
ATMizer Architecture can react quickly, within a single cell time, to

12-26 Operation

congestion notification found on an incoming cell. And because it has
access to the Peak Pacing Rate registers, Maximum Burst Length values,
Global Pacing Rate Register and the CLP fields in the ATM headers, the
ATMizer Architecture has flexibility in implementing congestion control.

12.6
Initializing the
Internal
Registers

The following code gives an example of how to access the ATMizer Archi-
tecture Internal Registers and enable the coprocessors internal to the APU.

#include “regdef.h”

#define cr_reg r1 /* PRPC Credit Register (R) */
#define conf_reg r2 /* PRPC Configuration Register (W) */
#define stall_reg r3 /* PRPC Stall Register (W) */
#define cnt_init r4 /* PRPC Count Init Register (R/W) */
#define rcv_cell r5 /* Received Cell Pointer (R) */
#define txadr_reg r6 /* Transmit Address FIFO (W) */
#define rcind r7 /* Received Cell Indicator (W) */
#define gprr r8 /* Global Pacing Rate Register (W) */
#define sys_ct_reg r9 /* System Control Register (R/W) */
#define pr_reg r10 /* CRC32 Register (R/W) */
#define dma_msb_reg r11 /* DMA MSB Substitution Reg (W) */
#define sp_addr r12 /* SP Scratch Pad (R/W) */
#define hostint r13 /* Host/DMA Port Int Addr Reg (R) */

.text

.set noreorder

.set noat

la sp_addr, 0xa0f00000 # SP Scratch Pad Address
(Physical Address 0x300000)

la cr_reg, 0xfff04000 # PRU Credit Register
la conf_reg, 0xfff04100 # PRU Configuration Register
la stall_reg, 0xfff04200 # PRU Stall Register
la cnt_init, 0xfff04300 # PRPC Count Initialization Base

Register
la rcv_cell, 0xfff04400 # Received Cell Pointer
la sys_ct_reg, 0xfff04a00 # System Control Register
la pr_reg, 0xfff04c00 # CRC32 Register
la hostint, 0xfff04b00 # Host/DMA Port Interrupt Register
la dma_msb_reg, 0xfff04d00 # MSB Substitution Register

Initializing the Internal Registers 12-27

/***
Enable coprocessors so CpCond bits can be tested
***/

li r19, 0xf0400000 # Enable all coprocessors and set
bootstrap exception vector to 1

mtc0 r19, $12 # Write to cp0 Status Register

/***
The following sequence of instructions clears the PRU CpCond
and Interrupt timeout mechanism
***/

li r19, 0xffffffff
sw r19, (stall_reg) # Disable all counters
sw r0, (conf_reg) # All counters are configured for

CpCond2 timeout method and are
clocked using the System Clock

lw r19, (cr_reg) # Clear credit register bits associated
with CpCond2 timeout method by reading

lw r19, 0x80(cr_reg)# Clear Credit Register bits associated
with Interrupt1 timeout method by
reading nop

sw r0, (stall_reg) # Enable counters

/***
The following instructions writes the values 0x30, 0x40, 0x50,
0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 and 0xc0 into counters 0,
1, 2, 3, 4, 5, 6, 7, 8, and 9 respectively. The values are
written in immediate mode (the value is written in the
initialization register as well as the PRPC itself). After the
write, the code reads from each counter.
***/

li r14, 0x30
li r15, 0x40
li r16, 0x50
li r17, 0x60
li r18, 0x70
li r19, 0x80
li r20, 0x90

12-28 Operation

li r21, 0xa0
li r22, 0xb0
li r23, 0xc0

sh r14, (cnt_init) # Write to counter 0
sh r15, 0x2(cnt_init) # Write to counter 1
sh r16, 0x4(cnt_init) # Write to counter 2
sh r17, 0x6(cnt_init) # Write to counter 3
sh r18, 0x8(cnt_init) # Write to counter 4
sh r19, 0xa(cnt_init) # Write to counter 5
sh r20, 0xc(cnt_init) # Write to counter 6
sh r21, 0xe(cnt_init) # Write to counter 7
sw r22, 0x20(cnt_init) # Write to counter 8
sw r23, 0x24(cnt_init) # Write to counter 9

lh r14, (cnt_init) # Read from counter 0
lh r15, 0x2(cnt_init) # Read from counter 1
lh r16, 0x4(cnt_init) # Read from counter 2
lh r17, 0x6(cnt_init) # Read from counter 3
lh r18, 0x8(cnt_init) # Read from counter 4
lh r19, 0xa(cnt_init) # Read from counter 5
lh r20, 0xc(cnt_init) # Read from counter 6
lh r21, 0xe(cnt_init) # Read from counter 7
lw r22, 0x20(cnt_init) # Read from counter 8
lw r23, 0x24(cnt_init) # Read from counter 9

/***
The following instruction illustrates a load from the Host/DMA
Port memory space into the APU Register R20 and then a store
from the APU Register R20 into the VCR. The ATMizer
Architecture is big-endian on both ports as well as
internally.
***/

li r19, 0x282 # 10 MSB of Main Memory Address
sw r19, (dma_msb_reg) #
la r19, 0x9d000c # Main Memory Effective Address
lw r20, (r19)
la r21, 0xfff00fcc # VCR Address
sw r20, (r21) # Store into the VCR

Initializing the Internal Registers 12-29

/***
The following instruction causes the ATMizer Architecture to
assert HBS_INT
***/

sw r0, (hostint) # Generate interrupt

/***
The following loop waits for receive cell
***/

loop: bc1f loop # Check for CpCond1, if not asserted, loop here
nop

12-30 Operation

13-1

Chapter 13
Functional Waveforms

This chapter contains and describes the ATMizer Architecture functional
waveforms.

This chapter has five sections:

■ Section 13.1, “Secondary Port”

■ Section 13.2, “Host/DMA Port”

■ Section 13.3, “Serial Interface”

■ Section 13.4, “ACI Transmitter”

■ Section 13.5, “ACI Receiver”

Note In some places within the waveforms, the letter A represents Address, the
letter B represents Byte, the letter D represents Data, and the letter W rep-
resents Word.

13.1
Secondary Port

Figure 13.1 shows the ATMizer Architecture performing a single-word
read and a single-word write through the Secondary Port. First the
ATMizer Architecture asserts SP_RQ to initiate a transaction. The external
arbiter gives the bus grant to the ATMizer Architecture by asserting
SP_GNT. The ATMizer Architecture generates valid addresses on
SP_AD[31:0] after external logic asserts SP_GNT. External logic latches
the address and control information at the rising edge of CLK when
SP_GNT and SP_ASEL are both asserted HIGH. After external logic has
latched the address, it deasserts SP_ASEL to start the data phase of the
transaction.

For a read operation, the ATMizer Architecture detectsSP_ACK LOW at
the rising edge of CLK and latches the data on rising edge of CLK one
clock cycle later.

13-2 Functional Waveforms

For a write operation, the ATMizer Architecture drives write data after
external logic deasserts SP_ASEL LOW. One clock cycle after it detects
SP_ACK LOW, the ATMizer Architecture terminates the transaction by
deasserting SP_RQ.

Figure 13.1
Secondary Port
One-Word Read
and Write

Figure 13.2shows the fastest access through the Secondary Port. SP_GNT
is tied HIGH all the time, so the ATMizer Architecture presents the address
on SP_AD[21:0] one cycle before asserting SP_RQ. This technique allows
external logic to latch the address one clock cycle earlier. Whenever the
ATMizer Architecture asserts SP_RQ, external logic can assertSP_ACK.
The ATMizer Architecture can terminate the transaction on the next clock
cycle, resulting in a two-clock-cycle access. Unlike SP_AD[21:0],
SP_AD[31:28], the Write Byte Enables, are valid at the same cycle that the
ATMizer Architecture asserts SP_RQ.

CLK

SP_WR

SP_RQ

SP_ASEL

SP_AD[31:0]

SP_GNT

SP_ACK

Address Data Address Data

Read Cycle Write Cycle

MD94.167

Secondary Port 13-3

Figure 13.2
Secondary Port
Fastest Access

Figure 13.3 shows the ATMizer Architecture performing a block fetch
operation through the Secondary Port. As inFigure 13.1, the ATMizer
Architecture starts the transaction by asserting SP_RQ. External logic
asserts SP_GNT, and the ATMizer Architecture generates the address on
SP_AD[31:0]. External logic latches the address and control information
at the rising edge of CLK when SP_GNT and SP_ASEL are both asserted
HIGH, and assertsSP_ACK for four clock cycles starting from the next
CLK pulse. SP_AD25 should be latched as the Block Fetch Bit. The
ATMizer Architecture latches the data on the next four CLK pulses. In this
example, external address latch wraps around the address on two-word or
four-word boundaries depending on the Block Fetch size. After the
ATMizer Architecture latches the last word of data, it terminates the trans-
action by deasserting SP_RQ.

CLK

SP_WR

SP_RQ

SP_ASEL

SP_AD[31:0]1

SP_GNT

SP_ACK

Data Data

MD94.169

Address

Read Cycle Write Cycle

Address

13-4 Functional Waveforms

Figure 13.3
Secondary Port
Four-Word Read

Figure 13.4 shows the same function asFigure 13.3, except in this exam-
ple, external logic toggles SP_ASEL during the word operations. If the
external address latch cannot increment the address based on a four-word
boundary as inFigure 13.3, external logic can assert SP_ASEL HIGH for
one or more cycles to make the ATMizer Architecture drive the next
address. The external address latch can then latch the next address.

Figure 13.4
Secondary Port Four-
Word Read with SP_ASEL
Toggle

Figure 13.5 shows the ATMizer Architecture communicating with a byte-
wide device, such as a Boot PROM. The byte-wide device’s D[7:0] must

CLK

SP_WR

SP_RQ

SP_ASEL

SP_AD[31:0]

SP_GNT

SP_ACK

Address Data Data Data Data

MD94.168

CLK

SP_WR

SP_RQ

SP_ASEL

SP_AD[31:0]

SP_GNT

SP_ACK

MD94.196

A Data A + 4 Data A + 8 Data A + 12

Mod 16 Mod 16 Mod 16

Data

Host/DMA Port 13-5

be connected to SP_AD[7:0]. When the ATMizer Architecture starts the
access by presenting an address on SP_AD[31:0], external logic must
assertSP_BWIDE andSP_ACK to inform the ATMizer Architecture that
it is a byte-wide device. The ATMizer Architecture then performs three
subsequent accesses, incrementing the address by one each time. External
logic must assertSP_BWIDE during all four accesses.

Figure 13.5
Dynamic Bus Sizing on
Secondary Port

13.2
Host/DMA Port

Figure 13.6 shows the ATMizer Architecture performing a single-word
load/store operation through the Host/DMA Port. The ATMizer Architec-
ture initiates an access by asserting HBS_RQ. The external arbiter grants
the bus to the ATMizer Architecture by asserting HBS_GNT. The follow-
ing clock cycle, the ATMizer Architecture puts the correct address onto
HBS_A[31:2], sets the correct byte enables onHBS_BE[3:0], and asserts
HBS_AS, the address strobe.

HBS_WR deasserted indicates a read operation. HBS_WR asserted indi-
cates a write operation. For a read operation, whenever external logic
assertsHBS_ACK, the ATMizer Architecture latches the data on
HBS_D[31:0] and terminates the transaction by deasserting HBS_RQ. For

SP_ASEL

CLK

SP_WR

SP_RQ

SP_AD[31:0]

SP_GNT

SP_ACK

SP_BWIDE2

Note:
1. During a byte access, the ATMizer Architecture always expects byte data on SP_AD[7:0].

Bn1 An+1 Bn+1 An+2 Bn+2 An+3 Bn+3An

13-6 Functional Waveforms

a write operation, the ATMizer Architecture sources the address on
HBS_A[31:2] and data on HBS_D[31:0] at the same time.

For a single-word access as shown inFigure 13.6, the ATMizer Architec-
ture assertsHBS_END to inform external logic that it is waiting for the last
acknowledgment,HBS_ACK.

When the ATMizer Architecture detects the deassertion ofHBS_ACK, it
terminates the operation.

Figure 13.6
Direct Load/Store
Word Through DMA
Port

Figure 13.7 shows a 16-byte DMA operation. The ATMizer Architecture
starts the DMA operation by asserting HBS_RQ (CLK Pulse 1). External
logic grants the bus by asserting HBS_GNT one clock cycle later (CLK
Pulse 2). On the next clock cycle (CLK Pulse 3), the ATMizer Architecture
sources the address on HBS_A[31:2], the byte enables onHBS_BE[3:0],
and the 16-byte DMA SIZE signals for SBus operation on HBS_S[2:0].
The ATMizer Architecture also assertsHBS_AS and deasserts

CLK

HBS_AS

HBS_RQ

HBS_A[31:2]

HBS_BE[3:0]

HBS_GNT

HBS_ACK

MD94.171

Address

0

HBS_END

HBS_S[2:0]

HBS_WR

HBS_D[31:0] Data

HBS_WR

HBS_D[31:0] Data

0

Read

Write

Host/DMA Port 13-7

HBS_END. The ATMizer Architecture detects the firstHBS_ACK asser-
tion by external logic, and sources the next address and data (CLK Pulse
5). The ATMizer Architecture does not source the next address and data
until it detects anotherHBS_ACK assertion. In this example,HBS_ACK
remains asserted throughout the transaction, so the next addresses and data
are immediately sourced. At the rising edge of CLK Pulse 7, since the
ATMizer Architecture has sourced 12 bytes, it assertsHBS_END to
inform the external device that the current transfer will end the next time
external logic assertsHBS_ACK. At the rising edge of CLK Pulse 8, the
ATMizer Architecture detects the lastHBS_ACK assertion, and terminates
the DMA operation.

Figure 13.7
16-Byte DMA
Transactions

Figure 13.8 shows how the DMA Engine works when a DMA operation
does not align on a word boundary. This example uses a 16-byte DMA
operation with an address offset of 0x2. The access starts at address A1

CLK

HBS_AS

HBS_RQ

HBS_A[31:2]

HBS_ACK

HBS_GNT

HBS_END

HBS_BE[3:0]

HBS_WR

HBS_D[31:0]

HBS_WR

HBS_D[31:0]

HBS_S[2:0]

A1 A2 A3 A4

0

4

Data1 Data2 Data3 Data4

Data1 Data2 Data3 Data4

MD94.172

Read

Write

1 32 4 5 6 7 8 9

13-8 Functional Waveforms

with HBS_BE[3:0] = 0xC (a read of the lower two bytes), followed by
three four-byte DMA read operations at addresses A2, A3, and A4. The
fifth operation should be a halfword (two-byte) access withHBS_BE[3:0]
equal to 0x3. Since the last word of DMA operation of the ATMizer Archi-
tecture has to be a word access, the ATMizer Architecture performs the
fifth access as a word operation, resulting in an 18-byte DMA operation.

Figure 13.8
Non-Word-Aligned
16-Byte DMA
Transactions

Figure 13.9shows the ATMizer Architecture performing an atomic opera-
tion through the Host/DMA Port. The first read accesses a four-word
block. When the ATMizer Architecture finishes the first block fetch oper-
ation, it keeps HBS_RQ asserted, and a second operation (a write) occurs
later.

CLK

HBS_AS

HBS_RQ

HBS_A[31:2]

HBS_ACK

HBS_GNT

HBS_END

HBS_BE[3:0]

HBS_WR

HBS_D[31:0]

HBS_WR

HBS_D[31:0]

HBS_S[2:0]

A1 A2 A3 A4

0

4

Data1 Data2 Data3 Data4

Data1 Data2 Data3 Data4

Read

Write

MD94.198

A5

0xC

Data5

Data5

Host/DMA Port 13-9

Figure 13.9
Block Fetch followed by a
Single-Word Store

Figure 13.10 shows a 16-byte DMA read with a CPU steal cycle. The
ATMizer Architecture starts the DMA operation and detects the assertion
of HBS_ACK. Internally, the APU (CPU) issues a write operation. Since
the APU has a higher priority than the DMAC, the ATMizer Architecture
suspends the DMA operation by assertingHBS_END after detecting the
secondHBS_ACK assertion. The ATMizer Architecture reasserts
HBS_AS along with outputting a new CPU write address and data. After
the ATMizer Architecture detects theHBS_ACK assertion for the CPU-
steal cycle, it reassertsHBS_AS and resumes the stalled DMA operation.

CLK

HBS_AS

HBS_RQ

HBS_WR

HBS_A[31:0]

HBS_GNT

HBS_BE[3:0]

A1

HBS_ACK

HBS_S[2:0]

A2 A3 A4 Address

HBS_D[31:0]

00

D2 D3 D4 DataD1

MD94.173

HBS_END

04

13-10 Functional Waveforms

Figure 13.10
16-ByteDMATransaction
with CPU Steal Cycle

Figure 13.11 shows Host/DMA Port operation with HBS_AOE,
HBS_DOE Toggle andHBS_AS Save Cycle.

Figure 13.11shows how the Host/DMA Port operates with HBS_GNT tied
HIGH all the time, and how HBS_AOE and HBS_DOE affect the Host/
DMA Port output pins. The first operation is a single-word write operation.
In this case, the ATMizer Architecture assertsHBS_AS at the same cycle
it asserts HBS_RQ, which saves one bus clock cycle. The single-word
write operation also shows HBS_AOE and HBS_DOE deasserted for two
to three cycles, which makes the Host/DMA Port 3-state all of the control
outputs (HBS_AS, HBS_WR,HBS_BE[3:0],HBS_END, HBS_S[2:0]),
the address bus (HBS_A[31:2]), and the data bus (HBS_D[31:0]).

The following operation is a nine-byte DMA write where the external arbi-
ter deasserts HBS_GNT at the same cycle the ATMizer Architecture
asserts HBS_RQ. If the ATMizer Architecture detects HBS_GNT asserted

CLK

HBS_AS

HBS_RQ

HBS_WR

HBS_A[31:0]

HBS_GNT

HBS_BE[3:0]

HBS_D[31:0]

MD94.174

A1 A2 A3 Address A4

0 00

HBS_ACK

HBS_END

HBS_S[2:0]

D1 D2 D3 Data D4

0 44

First Three Words of
16-Byte DMA Read

CPU Steal
Cycle Write

DMA
Read Finish

Host/DMA Port 13-11

at the rising edge of CLK when it asserts HBS_RQ, the ATMizer Architec-
ture initiates the transaction even though the external arbiter deasserts
HBS_GNT one cycle later. The nine-byte DMA operation shows that the
ATMizer Architecture does not have the bus grant throughout the entire
bus cycle, but it still performs all operations.

Figure 13.11
Host/DMA Port
Operation with
HBS_AOE, HBS_DOE
Toggle andHBS_AS Save
Cycle

MD94.199

CLK

HBS_AS

HBS_RQ

HBS_WR

HBS_A[31:0]

HBS_GNT

HBS_BE[3:0]

HBS_D[31:0]

Address Address Address1 Address2

0xE 00

HBS_ACK

HBS_END

HBS_S[2:0]

Data Data Data1

00

0

HBS_DOE

HBS_AOE

0

Data2

Address3

0

Data3

Single Word Write 9-Byte DMA Write with
HBS_AS Save Cycle

13-12 Functional Waveforms

13.3
Serial Interface

Figure 13.12shows a serial downloading of x words. When external logic
deassertsRST, the ATMizer Architecture checks the status ofSRL_BOOT.
If SRL_BOOT is asserted LOW, the ATMizer Architecture enables the
serial downloading process and generates SRL_CLK16 (system clock
divided by 16), which can drive a serial device such as a Serial PROM.
Sometime after external logic deassertsRST, the serial device drives Bit 31
Word 0 onto SRL_DIN and asserts SRL_ACK. If SRL_ACK is asserted,
the ATMizer Architecture latches in one bit of data on every rising edge of
SRL_CLK16. If the serial device cannot provide data every SRL_CLK16
pulse, it can deassert SRL_ACK to inform the ATMizer Architecture not
to latch bit data for the following rising edge of SRL_CLK16. When the
external serial device is able to provide data again, it asserts SRL_ACK
back to HIGH, and at the next rising edge of SRL_CLK16, the ATMizer
Architecture latches the following bit. External logic deasserts
SRL_BOOT to HIGH after the ATMizer Architecture has latched Bit 0
Word (X-1). Then the ATMizer Architecture starts fetching instructions
either from the Host/DMA Port or the Secondary Port.

Figure 13.13 shows the completion of a 4-Kword serial download. The
maximum downloading size for each downloading is 4 Kwords. The wave-
form shows an external serial device providing bit data with no wait state,
so SRL_ACK is asserted HIGH all the time. After the ATMizer Architec-
ture has latched the last bit (Bit 0 of Word 4095), the external device deas-
sertsSRL_BOOT to HIGH to cause the ATMizer Architecture to boot
from either the Host/DMA Port or Secondary Port.

Figure 13.14 shows two successive serial downloads, used when the user
firmware requires more than 4 Kwords. The first download is the same as
that inFigure 13.13. After the first download is complete, external logic
deassertsSRL_BOOT HIGH for at least 32 system clock cycles and then
asserts it LOW again to start the second download. SRL_CLK16 stays
HIGH wheneverSRL_BOOT is deasserted HIGH. WhenSRL_BOOT is
deasserted the first time, the ATMizer Architecture starts fetching instruc-
tions from the Host/DMA or Secondary Port. After the ATMizer Architec-
ture starts booting from the Host/DMA or Secondary Port, both APU
instruction fetch and Serial downloading processes occur at the same time.
If user firmware requires more than 8 Kwords, a multiple downloading
process can be implemented.

S
e

ria
l In

te
rfa

ce
1

3
-1

3

Figure 13.12
Serial Downloading Less Than 4 Kwords

Figure 13.13
Completion of 4-Kword Serial Downloading

CLK

SRL_CLK16

RST

SRL_DIN

SRL_ACK

16 Clock
Cycles

SRL_BOOT

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 1 Bit 0
Word 0 Word (X-1)

CLK

SRL_CLK16

SRL_BOOT

RST

SRL_DIN

SRL_ACK

Bit 31 Bit 30 Bit 29 Bit 1 Bit 0

MD94.176

Word 4095Word 0

1
3

-1
4

F
u

n
ctio

n
a

l W
a

ve
fo

rm
s

Figure 13.14
Multiple Serial Downloading

CLK

SRL_CLK16

RST

SRL_DIN

SRL_ACK

SRL_BOOT

MD94.197

Bit 30Bit 31 Bit 2 Bit 1 Bit 0 Bit 30Bit 31 Bit 2 Bit 1 Bit 0

First Downloading
4K Words

32 System
Clock Cycles Minimum

Second Downloading
X Words

Word 0 Word 4095 Word (X-1)Word 0

ACI Transmitter 13-15

13.4
ACI
Transmitter

Figure 13.15shows the user firmware initializing the ACI Transmitter and
the ATMizer Architecture transmitting the first Idle Cell. The ATMizer
Architecture asserts TX_IDLE HIGH when the system reset,RST, is deas-
serted. When user firmware sets the TI Bit in System Control Register to
one, the ATMizer Architecture ACI module deassertsTX_RST and starts
to transmit. Three clock cycles after deassertingTX_RST, the ATMizer
Architecture sources TX_D[7:0] and assertsTX_DRDY and TX_BOC.
External logic asserts TX_ACK when it has latched the byte data. When-
ever TX_ACK is asserted on the rising edge of TX_CLK, the current byte
is latched by the framing logic and new byte data is sourced on TX_D[7:0]
by the ATMizer Architecture. After receiving Byte 5, the framing logic
cannot keep up with the ATMizer Architecture so it deasserts TX_ACK for
three TX_CLK cycles, which makes Byte 6 remain sourced on
TX_D[7:0]. When external logic receives Byte 6, it asserts TX_ACK
again, and the ATMizer Architecture starts sourcing new byte data on
TX_D[7:0].

13-16 Functional Waveforms

Figure 13.15
ACI Transmitter
Initialization

TX_CLK

TX_RST

TX_DRDY

TX_IDLE

TX_BOC

TX_FULL

TX_ACK

TX_D[7:0] B12 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

MD94.178

Note:
1. BM refers to the BM Bit in the System Control Register.
2. B1 = Byte 1 of Cell 1.

TX_BOC

(BM = 0)1

(BM = 1)

Cell 1

ACI Transmitter 13-17

Figure 13.16 shows the ATMizer Architecture transmitting an Assigned
Cell. The ATMizer Architecture assertsTX_DRDY and transmits the first
Idle Cell. When the ATMizer Architecture has an Assigned Cell to trans-
mit, it deasserts TX_IDLE four cycles before asserting TX_BOC and
sourcing the cell on TX_D[7:0]. If the cell following the Assigned Cell is
an Idle Cell, the ATMizer Architecture asserts TX_IDLE three cycles
before sourcing the Idle Cell on TX_D[7:0]. Setting the BM Bit in the Sys-
tem Control Register to one causes the ACI Transmitter to deassert
TX_BOC at the beginning of Idle Cell transmission (SAI mode). Clearing
BM to zero causes the ACI Transmitter to assert TX_BOC at the beginning
of Idle Cell transmission (UTOPIA mode).

Figure 13.16
ACI Assigned Cell
Transmission

TX_CLK

TX_DRDY

TX_IDLE

TX_BOC

TX_BOC

TX_ACK

TX_D[7:0]

MD94.179

(BM = 1)1

(BM = 0)

B53 B1 B2 B49 B50 B51 B52 B53 B1 B2

Cell (X - 1)
is an Idle Cell

Cell X is a Valid
Assigned Cell

Cell (X + 1)
is an Idle Cell

Cell (X - 1) Cell (X + 1)

Note:
1. BM refers to the BM Bit in the System Control Register.
2. B49 = Byte 49 of Cell (X-1).

Cell X

B3 B4 B5 B6 B7B52B53B51B50B492

13-18 Functional Waveforms

Figure 13.17 shows the behavior of the ATMizer Architecture when the
framing logic chip assertsTX_FULL. When the ATMizer Architecture
detectsTX_FULL asserted, it deassertsTX_DRDY on the next cycle and
holds the data on TX_D[7:0]. When the framing logic chip asserts
TX_FULL back to HIGH (inactive), the ATMizer Architecture asserts
TX_DRDY on the next cycle and sources the next byte to be transmitted
on TX_D[7:0].

Figure 13.17
ACI TX_FULL Assertion

13.5
ACI Receiver

Figure 13.18shows the initialization of the ACI Receiver. After user firm-
ware sets the RI Bit in the System Control Register, the ATMizer Architec-
ture deassertsRC_RST to indicate that it is ready to receive cells. When
the ATMizer Architecture detects the first assertions of RC_BOC and
RC_ACK, it latches the first byte of the first cell and then latches the fol-
lowing bytes. As the ATMizer Architecture transmits a cell, if the framing
logic cannot keep up with the ATMizer Architecture, external logic can
deassert RC_ACK for several cycles, causing the ATMizer Architecture to
ignore the data on RC_D[7:0] until RC_ACK is reasserted again.

TX_CLK

TX_FULL

TX_DRDY

TX_ACK

TX_D[7:0]

TX_BOC

MD94.180

B461 B47 B49B48 B50 B51 B52 B53 B1

Cell (X + 1)

B2

Note:
1. B46 = Byte 46 of Cell X.

Cell X

B3

A
C

I R
e

ce
ive

r
1

3
-1

9

Figure 13.18
ACI Receiver Initialization

Figure 13.19shows the ATMizer Architecture asserting RC_FULL HIGH when the internal Received
Cell Buffer (Holder) in the VCR is almost full (six bytes before it is full). When the BM Bit in the
System Control Register is zero (UTOPIA Mode), the ATMizer Architecture receives only one more
byte on RC_D[7:0] after asserting RC_FULL. When BM Bit in the System Control Register is one
(SAI Mode), the ATMizer Architecture finishes receiving the cell completely after asserting
RC_FULL.

Several cycles later, after the APU has processed the cell, it frees up the VCR and the ACI Module
deasserts RC_FULL. Then the ATMizer Architecture is able to continue receiving the remaining
bytes (UTOPIA Mode) or to latch data at the beginning of the next cell (SAI Mode).

Also in this example, the ATMizer Architecture expects a HEC byte on the fifth byte and asserts
HEC_ERR on the sixth byte because there is an error.

RC_CLK

RC_ACK

RC_RST

RC_FULL

HEC_ERR

RC_BOC

RC_D[7:0] B11 B2 B3 B4 B5 B6 B7

MD94.181

Note:
1. B1 = Byte 1 of Cell 1.

Cell 1

13-20 Functional Waveforms

Figure 13.19
ACI Receiver HEC_ERR
and RC_FULL Assertion

LK

RR

OC

CK

:0]

:0]

CK

MD94.182

OC

B50B12 B2 B3 B4 B5 B6 B49 B51 B52 B53 B1

BM = 01

B1 B2 B3 B4 B5 B49 B1 B2 B3 B4B50 B51 B52 B53 B5

Cell X

Cell (X + 1)

Cell (X + 1)

BM = 1

LL

B7

Cell X

B6 B7

Note:
1. BM refers to the BM Bit in the System Control Register.
2. B1 = Byte 1 of Cell X.

B53

Cell (X-1)

B52B51

B2

Cell (X-1)

B52B51 B53

14-1

Chapter 14
Registers

This chapter describes all the ATMizer Architecture registers.

This chapter has three sections:

■ Section 14.1, “System Control Register”

■ Section 14.2, “APU Core Registers”

■ Section 14.3, “Other Registers Summary”

14.1
System Control
Register

Certain functions within the ATMizer Architecture are programmable and
must be configured at system reset time. All ATMizer Architecture config-
uration information is stored in the System Control Register that is written
by the APU as part of its initialization routine. The System Control Regis-
ter is programmed using a store word instruction to Effective Address
0xFFF04A00.

Figure 14.1
System Control Register

RO Receive Offset [31:30]
This field configures the receive cell size. The ATMizer Archi-
tecture supports receive cell sizes of 52 (53 if HEC is enabled on
transmit), 56 (57), 60 (61), and 64 (65). All cells are built into the
VCR so that the last byte of the SAR Payload is aligned to the
64th byte of the cell buffer. The transmit and receive cell sizes do

31 30 29 28 27 26 25 24 23 21 20 19 18 16 15 14 13 8 7 6 5 4 3 2 0

RO TO RI TI 0
B
M

HH CBS BUFSIZ CE S CHOLD 0 RE R A 0 TAF

14-2 Registers

not have to be the same. The following table shows how setting
RO sets the cell size:

TO Transmit Offset [29:28]
This field sets the transmit cell size. The ATMizer Architecture
supports transmit cell sizes of 52 (53 if HEC is enabled on trans-
mit), 56 (57), 60 (61,) and 64 (65). All cells are built into the
VCR so that the last byte of the SAR Payload is aligned to the
64th byte of the cell buffer. The transmit and receive cell sizes do
not have to be the same. The following table shows how setting
TO sets the cell size:

RI Receive Initialize 27
This bit has a direct impact in synchronizing the ACI Receiver.
Setting RI to one causes the ATMizer Architecture to deassert
RC_RST. Before setting RI, firmware must initialize the ACI
Receiver parameters, such as: the receiver offset, the buffer size,
and HEC handling. OnceRC_RST is deasserted, the ACI
Receiver can begin receiving cells. The receiver can be initial-
ized again at any time by clearing RI to zero. For more informa-
tion on how to initialize the receiver, refer toSection 9.5, “ACI
Receiver.”

TI Transmitter Initialize 26
Clearing TI to zero puts the ACI Transmitter in reset mode. Set-
ting TI to one puts the ACI Transmitter out of reset mode and
into normal mode. All other transmitter related parameters must
be defined before setting this bit to one. The ACI Transmitter can

RO
Cell Size
(Bytes)

002 64

012 60

102 56

112 52

TO
Cell Size
(Bytes)

002 64

012 60

102 56

112 52

System Control Register 14-3

be initialized again during normal operation by clearing TI to
zero.

BM BOC Mode 24
Setting BM to one puts the ACI Transmitter into SAI Mode.
Clearing BM to zero puts the ACI Transmitter into UTOPIA
Mode. For more information on the differences between SAI and
UTOPIA Modes, refer toSection 9.9, “Interfaces.”

HH HEC Handling [23:21]
The HEC transmission circuitry is separate from the HEC recep-
tion circuitry. Bit 21 controls HEC during cell transmission and
Bits [23:22] handle HEC during cell reception.

Setting Bit 23 to one causes the ATMizer Architecture to check
the validity of the HEC. If an error is encountered, the ATMizer
Architecture notifies the Physical Layer by asserting HEC_ERR.
Clearing Bit 23 to zero causes the ATMizer Architecture to
accept HEC, but ignore it.

Setting Bit 22 to one causes the ATMizer Architecture to expect
HEC in Byte 5 of the ATM Header during cell arrival. Clearing
Bit 22 to zero causes the ATMizer Architecture to not expect
HEC in Byte 5 of the ATM Header during cell arrival.

Setting Bit 21 to one causes the ACI Transmitter to generate and
insert HEC into Byte 5 of the ATM Header. Clearing Bit 21 to
zero causes the ACI Transmitter to not generate HEC.

When Bits 22 and 23 are both set to one, the ACI checks the
validity of the HEC in Byte 5 of the ATM Header. If the ACI
detects a HEC error, it discards the cell and asserts HEC_ERR.

CBS Cache Block Size [20:19]
The Cache Block Size determines the number of words that are
burst during a data cache read miss. Clearing CBS to 002 makes
the burst size two words. Setting CBS to 012 makes the burst size
four words. Other values are currently invalid and are reserved

HH HEC Mode1

1. If bit set to one.

Bit 23 Check for HEC errors on receive

Bit 22 Expect HEC on receive

Bit 21 Generate and insert HEC on transmit

14-4 Registers

for future use. Note that this value must be the same as Bits [5:4]
of the APU BIU/Cache Configuration Register.

BUFSIZ Buffer Size [18:16]
Buffer Size determines the size of the Received Cell Holder
Buffer. Received cells are written into the VCR, one cell per
64-byte block. Bit 18 is always zero for the current implementa-
tion and it is reserved for future use. The following table shows
how setting BUFSIZ sets the buffer size:

CE CRC10 Error 15
User firmware checks the CRC10 Error Bit when it starts to reas-
semble an AAL 3/4 cell. The ATMizer Architecture sets this bit
to one to indicate that the current cell has a CRC10 error. The
ATMizer Architecture clears this bit to zero to indicate that the
current cell is free of CRC10 errors, so the firmware can con-
tinue to process the cell. The APU must process cells in the order
they were stored in the VCR in order to match the cell with it’s
corresponding CRC10 Error Bit.

If the APU is processing an AAL 5 cell, it does not have to check
the CRC10 Error Bit. The CRC10 Error Bit can be checked by
executing two instructions. The first instruction is a Load Half-
word to load Bits [15:0] of the System Control Register into one
of the general purpose registers (such as R5). The load treats Bit
15, which is the CRC10 Error Bit, as the sign bit. The second
instruction is a Branch on R5 Less Than Zero. If the branch is
taken, then there is a CRC10 error, otherwise the cell is free of
CRC10 errors.

S Safety 14
User firmware must clear this bit to zero for normal operation.
During normal operation, the ATMizer Architecture resynchro-
nizes the ACI Receiver to the proper cell boundaries when erro-
neous RC_BOC signals are detected. Setting this bit to one
causes the ATMizer Architecture to ignore RC_BOC and
assume that the Physical Layer does not lose synchronization

BUFSIZ
Buffer Size

(Number of Cells)

0002 4

0012 8

0102 16

0112 32

System Control Register 14-5

once the ACI Receiver is not in reset mode (RC_RST
deasserted).

CHOLD Cell Holder [13:8]
The Cell Holder Field contains the number (from 0 to 32) of
receive cell holder buffers that still need to be processed by the
APU.

RE RC_BOC Error 6
The ACI Receiver sets this bit to one when it detects spurious
RC_BOC (sourced by the Physical Layer). The APU must write
to the System Control Register with Bit 6 set to one to clear the
RC_BOC Error. To perform this write so that the other fields will
not be affected, first read the System Control Register, OR this
value with 0x00000040, and then store the result back to the Sys-
tem Control Register.

R Regular Watchdog Timeout 5
When a slave does not reply with an acknowledgment after a cer-
tain time, the Host Bus Controller (external to the ATMizer
Architecture) may take away the ATMizer Architecture’s Bus
Grant. At this time, the ATMizer Architecture’s watchdog timer
starts it’s counter. If, after 64 clock cycles, the slave still does not
reply with any kind of acknowledgment, then the Host/DMA
Port asserts Interrupt0 and sets the Regular Watchdog Timeout
Bit to one.

The APU must set the System Control Register Bit 5 to one to
clear the Regular Watch Dog Timeout Interrupt. To perform this
write so that the other fields will not be affected, first read the
System Control Register, logically OR this value with
0x00000020, and then store this value back to the System Con-
trol Register.

Either the APU or the DMA can cause this timeout. When the
APU causes a timeout, the Host/DMA Port asserts a bus error
internal to the APU Core. This, in turn, creates an exception, and
control branches to the exception vector. The APU sets a bit in
the CP0 Cause Register (refer to theCW33300 Enhanced Self-
Embedding Processor Core User’s Manual). When the APU
causes a bus error, the Host/DMA Port does not set the Watch-
dog Timeout Bit in the System Control Register.

14-6 Registers

A Atomic Watchdog Timeout 4
The Watchdog Timer sets the Atomic Watchdog Timeout Bit to
one when it times out.

When the APU is performing an atomic transaction, the Host/
DMA Port does not deassert HBS_RQ until the transaction is
complete. If the last acknowledgment of the first transaction is
received, and the APU does not start the second transaction
within 64 clock cycles, then the Atomic Watchdog Timer times
out and the Host/DMA Port asserts the Interrupt0 signal to the
APU.

The APU must set the System Control Register Bit 4 to one to
clear the Atomic Watch Dog Timeout Interrupt caused by an
atomic transaction. To perform this write so that the other fields
will not be affected, first read the System Control Register, log-
ically OR this value with 0x00000010, and then store this value
back to the System Control Register.

TAF Transmit Address FIFO [2:0]
This field indicates the status of the Assigned Cell address FIFO.
It tells the number of valid cell pointers remaining to be trans-
mitted in the FIFO. For example, TAF = 0102 means that there
are two cells remaining to be transmitted by the ACI transmitter.

14.2
APU Core
Registers

The ATMizer Architecture APU core is based upon LSI Logic’s
CW33300. This section includes the LR33300 Family Control Registers
described in theCW33300 Enhanced Self-Embedding Processor Core
User’s Manual.

The following registers are used in exception handling and cache control:

■ BIU/Cache Configuration Register

■ Status Register

TAF Number of Addresses Left

0002 0

0012 1

0102 2

0112 3

1002 4

APU Core Registers 14-7

■ Cause Register

■ Bad Address Register

■ Target Address Register

■ Exception Program Counter Register

■ Processor Revision Identifier Register

■ Debug and Cache Invalidate Control Register

The following registers are used in program debugging:

■ Breakpoint Program Counter Register

■ Breakpoint Program Counter Mask Register

■ Breakpoint Data Address Register

■ Breakpoint Data Address Mask Register

BIU/Cache
Configuration
Register

The APU BIU/Cache Configuration (BCC) Register allows software to
configure both the APU Bus Interface Unit and the APU Cache Controller.
This read/write register is 32 bits wide and has the following field
definitions:

Location: Memory
Address: 0xFFFE0130 Reset Initial Value: 0x0

R Reserved [31:18]
These bits are reserved. Software should initialize these bits to
zero to ensure compatibility with future versions of hardware.

NOSTR No Streaming 17
NOT USED. This bit should always be cleared to zero.

LDSCH Enable Load Scheduling 16
Setting this bit to one enables load scheduling. When load sched-
uling is enabled, the BIU determines whether a load is imple-
mented immediately or, if the load data is not required yet, is
delayed. Clearing this bit to zero disables load scheduling.

31 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
NOST

R
LDSC

H
BGN

T
NOPA

D
RDP
RI

INT
P

IS
1

IS
0

IBLKS
Z

DS 0
DBLKS

Z
RAM

TA
G

IN
V

LOC
K

14-8 Registers

BGNT Enable Bus Grant 15
NOT USED. This bit should always be inactive.

NOPAD No Wait State 14
Clearing this bit to zero causes the APU to add a wait state at the
end of every APU transaction. Setting this bit to one causes the
APU to not add the wait state. Refer to Section 7.10, “Back-to-
Back Operations,” in theCW33300 Enhanced Self-Embedding
Processor Core User’s Manualfor some functional waveforms,
which show back-to-back operations with NOPAD enabled and
disabled.

RDPRI Enable Read Priority 13
Setting this bit to one makes APU load operations have priority
over APU store operations.

INTP Interrupt Polarity 12
NOT USED. This bit should always be inactive.

IS1 Enable I-Cache Set 1 11
Setting this bit to one enables the IRAM.

IS0 Enable I-Cache Set 0 10
This bit is cleared to zero.

IBLKSZ I-Cache Refill Size [9:8]
NOT USED. These bits should always be inactive.

DS Enable D-Cache 7
Setting this bit to one enables the D-Cache.

DBLKSZ D-Cache Refill Size [5:4]
The DBLKSZ Field specifies the block size for data cache fill
transactions as follows:

Note that the data cache in the ATMizer Architecture is only four
words deep, so the block size should be either two or four.

Block Size
DBLKSZ (Words)

0 0 2
0 1 4
1 0 Not used
1 1 Not used

APU Core Registers 14-9

The BIU always attempts to fill the cache with a block fetch
(internal signal BFREQ asserted). Devices that do not support
block transactions deassert internal signalBFTCH HIGH, and
the APU fetches only the missed word.

RAM Scratchpad RAM 3
Setting this bit and the DS Bit to one causes the D-Cache to be
used as a Scratchpad RAM. In Scratchpad RAM mode, the
Cache Controller ignores the valid bits. The D-Cache is not filled
when a load misses. Store operations that hit the D-Cache do not
write to external memory.

TAG Tag Test Mode 2
To enable tag test mode, both this bit and the Isolate Cache (IsC)
Bit in the Status Register must be set to one. Refer to Section 5.4,
“Cache Maintenance and Testing,” in theCW33300 Enhanced
Self-Embedding Processor Core User’s Manual for more
information.

INV Invalidate Mode 1
To enable invalidate mode, both this bit and the Isolate Cache
(IsC) Bit in the Status Register must be set to one. Refer to
Section 5.4, “Cache Maintenance and Testing,” in theCW33300
Enhanced Self-Embedding Processor Core User’s Manual for
more information.

LOCK Lock Mode 0
To enable lock mode, both this bit and the Isolate Cache (IsC) Bit
in the Status Register must be set to one. Refer to Section 5.4,
“Cache Maintenance and Testing,” in theCW33300 Enhanced
Self-Embedding Processor Core User’s Manual for more
information.

Status Register The APU Status Register contains all major status bits for exception con-
ditions. All bits in the Status Register, with the exception of the TS (TLB
Shutdown) Bit, are readable and writable; the TS Bit is read-only. The for-
mat of the 32-bit Status Register is shown below. Additional details on the
function of each Status Register Bit are provided in the paragraphs that
follow.

14-10 Registers

Location: CP0 Cold Reset Initial Value: 0x00400000
Address: 12 Warm Reset Initial Value: 0x00400000

Cu[3:0] Coprocessor Usability [3:0] [31:28]
Software sets Cu[3:0] to one to indicate that the associated
coprocessor is usable. Bit 31 corresponds to Coprocessor 3 and
Bit 28 corresponds to Coprocessor 0. Because the APU does not
support external coprocessors, Cu[3:1] should be cleared to zero,
unless you intend to use theBCzForBCzTinstructions to test the
internal CPC[3:0] signals. When Cu[3:1] are zero, a coprocessor
instruction causes a Coprocessor Unusable Exception (CpU).
Note that the system control coprocessor (CP0) is always consid-
ered usable when the APU is operating in kernel mode, regard-
less of the setting of the Cu0 Bit.

R Reserved [27: 23], 19, 17, [7:6]
These bits are reserved and read as zero. The APU ignores
attempts to set these bits; however, software should write these
bits as zero to ensure compatibility with future versions of
hardware.

BEV Bootstrap Exception Vectors 22
This bit controls the location of general exception vectors during
bootstrap (immediately following reset). When this bit is cleared
to zero, the normal exception vectors are used; when the bit is set
to one, bootstrap vector locations are used.

BEV Cleared to Zero– The debug exception vector is located
at 0x80000040, and the general exception vector is located at
0x80000080.

BEV Set to One– The debug exception vector is relocated to an
address of 0xBFC00140, and the general exception vector is
relocated to 0xBFC00180. This alternate set of vectors can be
used when diagnostic tests cause exceptions to occur prior to
verification of proper operation of the cache and main memory
system. The APU sets this bit to one upon deassertion ofRESET.
(Refer to Section 8.3, “Exception Description Details,” in the
CW33300 Enhanced Self-Embedding Processor Core User’s
Manual for a description of the exception vectors.)

31 28 27 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

Cu[3:0] R
BE
V

TS PE R PZ R IsC Intr[5:0] Sw[1:0] R
KU
o

IEo
KU
p

IEp
KU
c

IEc

APU Core Registers 14-11

TS TLB Shutdown 21
This bit is cleared to zero. This bit is read-only.

PE Parity Error 20
The APU sets this bit to one if it detects an external memory par-
ity error. Software may use PE to log external memory parity
errors. The parity error condition is reset by writing a one into
PE; writing a zero into this bit does not affect its value.

PZ Parity Zero 18
Setting this bit to one forces the APU to generate zeros on inter-
nal signals DP[3:0] during store transactions.

IsC Isolate Cache 16
When this bit is set to one, store operations do not propagate
through the APU to the external memory system. This bit must
be set to one for cache testing. Refer to Section 5.4, “Cache
Maintenance and Testing,” in theCW33300 Enhanced Self-
Embedding Processor Core User’s Manual for more
information.

Intr[5:0] Hardware Interrupt Mask [5:0] [15:10]
Software sets these six bits to one to enable the corresponding
hardware interrupts. Bit 15 corresponds to internal signal INT5,
and Bit 10 corresponds to internal signal INT0. All interrupts
can be disabled by clearing the Interrupt Enable Bits (IEo/IEp/
IEc) described below.

Sw[1:0] Software Interrupt Mask [1:0] [9:8]
Software sets these two bits to one to enable the corresponding
software interrupts. Bit 9 corresponds to Sw1, and Bit 8 corre-
sponds to Sw0. All interrupts can be disabled by clearing the
Interrupt Enable Bits (IEo/IEp/IEc) described below.

KUo, p, c Kernel-User Mode, Old/Previous/Current 5, 3, 1
The KUo, KUp, and KUc bits comprise a three-level stack show-
ing the old/previous/current mode (0 means kernel; 1 means
user). The occurrence of an exception automatically puts the
system in kernel mode. Manipulation and use of these bits dur-
ing exception processing is described in the following section.

IEo, p, c Interrupt Enable, Old/Previous/Current 4, 2, 0
The IEo, IEp, and IEc bits comprise a three-level stack showing
the old/ previous/current interrupt enable settings (0 means dis-
abled; 1 means enabled). Manipulation and use of these bits dur-
ing exception processing is described in the following section.

14-12 Registers

Status Register
Mode Bits and
Exception
Processing

When the APU responds to an exception, it saves thecurrentkernel/user
mode (KUc) andcurrent interrupt enable mode (IEc) bits of the Status
Register into thepreviousmode bits (KUp and IEp). Thepreviousmode
bits (KUp and IEp) are saved into the old mode bits (KUo and IEo). The
current mode bits (KUc and IEc) are cleared to cause the processor to enter
the kernel operating mode and to disable all interrupts.

This three-level set of mode bits lets the APU respond to two levels of
exceptions before software must save the contents of the Status Register.
Figure 14.2 shows how the APU manipulates the Status Register during
exception recognition.

Figure 14.2
The Status Register
and Exception
Recognition

After an exception handler has completed execution, the APU must return
to the system context that existed prior to the exception (if possible). The
Restore From Exception (RFE) instruction provides the mechanism for this
return.

TheRFEinstruction restores control to a process that was preempted by an
exception. When theRFE instruction is executed, it restores theprevious
Interrupt Mask (IEp) Bit and Kernel/user Mode (KUp) Bit in the Status
Register into the correspondingcurrent status bits (IEc and KUc). It also
restores theold status bits (IEo and KUo) into the corresponding previous
status bits (IEp and KUp). The old status bits (IEo and KUo) remain
unchanged. The actions of theRFEinstruction are illustrated inFigure 14.3.

6 5 4 3 2 1 0

IEo KUp IEp KUc IEcKUo

IEo KUp IEp KUc IEcKUo

0 0

Status

Exception
Recognition

Register

Status
Register

APU Core Registers 14-13

Figure 14.3
Restoring from
Exceptions

Cause Register The contents of the Cause Register describe the last occurring exception.
A four-bit exception code field (ExcCode) indicates the cause of the
exception. The remaining fields contain detailed information specific to
certain exceptions.

With the exception of the Sw Bits, all bits in the Cause Register are read-
only. Writes to the Sw Bits set or reset software interrupts. The format of
the 32-bit Cause Register is shown below.

Location: CP0 Cold Reset Initial Value: 0x00000000
Address: 13 Warm Reset Initial Value: 0x00000000

BD Branch Delay 31
The APU sets this bit to one to indicate that the last exception
was taken while executing in a branch delay slot.

BT Branch Taken 30
When the BD Bit is set, the BT Bit determines whether or not the
branch is taken. A value of one in BT indicates that the branch is
taken. The Target Address Register holds the return address.

CE Coprocessor Error [29:28]
When taking a Coprocessor Unusable exception, the APU writes
the references coprocessor number in this field. This field is oth-
erwise undefined.

Res Reserved [27:16], [7:6], [1:0]
These bits are reserved and read as zero. The APU ignores
attempts to set these bits; however, software should write these

31 30 29 28 27 16 15 10 9 8 7 6 5 2 1 0

B
D

BT CE Res IP[5:0]
Sw[1:0

]
Res ExcCode Res

6 5 4 3 2 1 0

IEo KUp IEp KUc IEcKUo

IEo KUp IEp KUc IEcKUo

Status

Return From
Exception

Register

Status
Register

14-14 Registers

bits as zero to ensure compatibility with future versions of
hardware.

IP[5:0] Interrupt Pending [5:0] [15:10]
The APU sets these bits to indicate that an external interrupt is
pending on INT[5:0]. Bit 15 corresponds to INT5 and Bit 10 cor-
responds to INT0.

Sw[1:0] Software Interrupts [1:0] [9:8]
By setting either of these bits to one, software causes the APU to
transfer control to the general exception routine. Bit 9 corre-
sponds to Sw1. The exception routine can tell which software
interrupt bit is set by reading this field. The exception routine
must reset the Sw Bits to zero before returning control to the
interrupting software.

ExcCode Exception Code [5:2]
The APU sets this field to indicate the type of event that caused
the last general exception. The four bits are encoded as described
in the table below.

Bad Address
Register

The Bad Address (BadA) Register is a read-only register that saves the
address associated with an illegal access. This register saves only address-
ing errors (AdELor AdES), not bus errors. The format of the 32-bit BadA
Register is shown below.

Value Mnemonic Description

0 Int External Interrupt

1 — Reserved

2 — Reserved

3 — Reserved

4 AdEL Address Error Exception (load or instruction)

5 AdES Address Error Exception (store)

6 IBE Bus Error Exception (for an instruction fetch)

7 DBE Bus Error Exception (for a data load or store)

8 Sys SYSCALL Exception

9 Bp Breakpoint Exception

A RI Reserved Instruction Exception

B CpU Coprocessor Unusable Exception

C Ovf Arithmetic Overflow Exception

D-F — Reserved

APU Core Registers 14-15

Location: CP0 Cold Reset Initial Value: Undefined
Address: 8 Warm Reset Initial Value: Unchanged

Target Address
Register

The Target Address (TAR) Register is a read-only register that holds the
return address for a branch. When the cause of an exception is in the
branch delay slot (the APU sets the BD Bit in the Cause Register to one),
execution resumes either at the target of the branch or at the Exception Pro-
gram Counter [EPC] + 8. If the branch was taken, the APU sets the BT Bit
in the Cause Register to one and loads the branch target address in the TAR
Register. The exception handler needs only to load this address into a reg-
ister and jump to that location. The format of the 32-bit TAR Register is
shown below.

Location: CP0 Cold Reset Initial Value: Undefined
Address: 6 Warm Reset Initial Value: Unchanged

Exception
Program Counter
Register

The 32-bit Exception Program Counter (EPC) Register contains the
address where processing resumes after an exception is serviced. In most
cases, the EPC Register contains the address of the instruction that caused
the exception. However, when the exception instruction resides in a branch
delay slot, the Cause Register’s BD Bit is set to one to indicate that the EPC
Register contains the address of the immediately preceding branch or jump
instruction. The format of the EPC Register is shown below.

Location: CP0 Cold Reset Initial Value: Undefined
Address: 14 Warm Reset Initial Value: Unchanged

31 0

Bad Address

31 0

Target Address

31 0

EPC

14-16 Registers

Processor
Revision
Identifier
Register

The Processor Revision Identifier (PRId) Register contains information
that identifies the implementation and revision level of the processor and
system control coprocessor.

The revision number can distinguish some chip revisions. However, LSI
Logic is free to change this field at any time and does not guarantee that
changes to its chips necessarily change the revision number or that changes
to the revision number necessarily reflect real chip changes. For this
reason, software should not rely on the revision number to characterize the
chip.

The format of this 32-bit, read-only register is shown below.

Location: CP0 APU Reset Initial Value: 0x00000AXX
Address: 15

Reserved Reserved [31:16]
These bits are reserved and read as zero. The APU ignores
attempts to set these bits; however, software should write these
bits as zero to ensure compatibility with future versions of
hardware.

Imp Implementation [15:8]
This eight-bit field contains the APU’s implementation number,
0x0A.

Rev Revision [7:0]
This eight-bit field contains the APU’s revision number, 0x0A.

Debug and Cache
Invalidate
Control Register

The Debug and Cache Invalidate Control (DCIC) Register contains the
enable and status bits for the APU’s breakpoint mechanism and the control
bits for the Cache Controller’s invalidate mechanism. All bits in the DCIC
Register are readable and writable. The format of the DCIC Register is
shown below. Additional details on the function of each DCIC Register Bit
are provided in the paragraphs that follow.

31 16 15 8 7 0

Reserved Imp Rev

APU Core Registers 14-17

Location: CP0 Cold Reset Initial Value: 0x00000000
Address: 7 Warm Reset Initial Value: 0x00000000

Breakpoint Control Bits – There are three types of breakpoint exceptions:
those caused by instruction fetches (break on program counter), those
caused by data accesses (break on data address), and those caused by non-
sequential instruction fetches (trace). To make the debug mechanism pre-
cise, it can be configured to detect breakpoints in user mode or kernel mode
or both. It can also be configured to discriminate between read and write
accesses. All breakpoint and trace conditions are posted as Breakpoint
Exceptions in the Cause Register.

TR Trap Enable 31
When software sets TR to one, the APU vectors to the Debug
Exception address when it encounters a debug condition. If this
bit is zero, the APU will not trap, but it will set the appropriate
debug status bits for any debug condition that software has
enabled.

UD User Debug Enable 30
When software sets UD to one, the APU detects debug condi-
tions when running in user mode.

KD Kernel Debug Enable 29
When software sets KD to one, the APU detects debug condi-
tions when running in kernel mode.

TE Trace Enable 28
When software sets TE to one and the APU fetches any non-
sequential instruction, the APU vectors to the Debug Exception
address.

Three bits control the APU’s Breakpoint Data Address feature. DAE
enables or disables the breakpoint function. DW and DR control whether
read and/or write accesses are trapped.

DW Data Write Enable 27
When software sets DW and DAE to one and the APU writes to
the address specified in the Breakpoint Data Address Register,
the APU vectors to the Debug Exception Address.

31 30 29 28 27 26 25 24 23 22 6 5 4 3 2 1 0

TR UD KD TE DW DR
DA
E

PCE DE Reserved T W R
D
A

PC
D
B

14-18 Registers

DR Data Read Enable 26
When software sets DR and DAE to one and the APU reads from
the address specified in the Breakpoint Data Address Register,
the APU vectors to the Debug Exception Address.

DAE Data Address Breakpoint Enable 25
When software sets DAE to one and the APU accesses the
address specified in the Breakpoint Data Address Register, the
APU vectors to the Debug Exception Address.

PCE Program Counter Breakpoint Enable 24
When software sets PCE to one and the APU fetches an instruc-
tion from the address specified in the Breakpoint Program
Counter Register, the APU vectors to the Debug Exception
Address.

DE Debug Enable 23
Software sets DE to one to enable the APU’s debug facility. If
this bit is zero, the APU will not detect the breakpoint or trace
conditions specified in the DCIC Register, Bits [31:24].

Reserved Reserved [22:6]
These bits are reserved and read as zero. The APU ignores
attempts to set these bits; however, software should write these
bits as zero to ensure compatibility with future versions of
hardware.

Breakpoint Status Bits – The breakpoint mechanism posts the cause of a
Debug Exception with these six status bits.

T Trace 5
The APU sets T to one when it detects a trace condition.

W Write Reference 4
The APU sets W to one when it detects a write reference to the
address specified in the Breakpoint Address Register.

R Read Reference 3
The APU sets R to one when it detects a read reference to the
address specified in the Breakpoint Data Address Register.

DA Data Address 2
The APU sets DA to one when it detects a data address debug
condition.

APU Core Registers 14-19

PC Program Counter 1
The APU sets PC to one when it detects a program counter
debug condition.

DB Debug 0
The APU sets DB to one when it detects any debug condition.

Breakpoint
Program Counter
Register

The Breakpoint Program Counter (BPC) Register is a read/write register
that software uses to specify a program counter breakpoint. The format of
the 32-bit BPC Register is shown below.

Location: CP0 Cold Reset Initial Value: Undefined
Address: 3 Warm Reset Initial Value: Unchanged

Breakpoint
Program Counter
Mask Register

The Breakpoint Program Counter Mask (BPCM) Register is a read/write
register that masks bits in the BPC Register. A one in any bit in the BPCM
Register indicates that the APU compares the corresponding bit in the BPC
Register for program counter exceptions. Values of zero in the mask indi-
cate that the APU does not check the corresponding bits in the BPC Reg-
ister for exceptions. The format of the 32-bit BPCM Register is shown
below.

Location: CP0 Cold Reset Initial Value: 0xFFFFFFFF
Address: 11 Warm Reset Initial Value: 0xFFFFFFFF

For example, if the BPCM Register is set to 0xFFFF0000, the APU com-
pares Bits [31:16] of the Program Counter with the corresponding bits in
the BPC Register for program counter exceptions.

31 0

Breakpoint Program Counter

31 0

Breakpoint Program Counter Mask

14-20 Registers

Breakpoint Data
Address Register

The Breakpoint Data Address (BDA) Register is a read/write register that
software uses to specify a data address breakpoint. The format of the 32-bit
BDA Register is shown below.

Location: CP0 Cold Reset Initial Value: Undefined
Address: 5 Warm Reset Initial Value: Unchanged

Breakpoint Data
Address Mask
Register

The Breakpoint Data Address Mask (BDAM) Register is a read/write reg-
ister that masks bits in the BDA Register. A one in any bit in the BDAM
Register indicates that the APU compares the corresponding bit in the
BDA Register for debug exceptions. Values of zero in the mask indicate
that the APU does not check the corresponding bits in the BDA Register
for exceptions. The format of the 32-bit BDAM Register is shown below.

Location: CP0 Cold Reset Initial Value: 0xFFFFFFFF
Address: 9 Warm Reset Initial Value: 0xFFFFFFFF

For example, if the BDAM Register is set to 0xFFFF0000, the APU com-
pares Bits [31:16] of the BDA Register for debug exceptions.

14.3
Other Registers
Summary

This section contains register summaries (and a cross reference) of all the
other registers contained in the ATMizer Architecture.

Host Interrupt
Register

The Host Interrupt Register is not really a register. It is an address decode
circuit with an Effective Address of 0xFFF04B00. (SeeSection 4.7,
“ATMizer Architecture-to-Host Messaging,” onpage 4-5.)

31 0

Breakpoint Data Address

31 0

Breakpoint Data Address Mask

Other Registers Summary 14-21

MSB
Substitution
Register

Figure 14.4 shows the MSB Substitution Register format (also shown on
page 4-7).

Figure 14.4
MSB Substitution
Register

Effective Address = 0xFFF04D00

PRU Channel
Group Credit
Register

Figure 14.5 shows the PRU Channel Group Credit Register (CGCR) for-
mat (also shown onpage 7-3).

Figure 14.5
Channel Group
Credit Register

Effective Address = 0xFFF040X0

PRU 12-Bit
Count
Initialization
Registers

Figure 14.6shows the PRU 12-bit Count Initialization Register (CIR) for-
mat used for PRPCs 0 - 7 (also shown onpage 7-3).

Figure 14.6
12-Bit Count
Initialization
Register

Effective Addresses = 0xFFF043XX (seeTable 11.8)

PRU 24-Bit
Count
Initialization
Registers

Figure 14.7 shows the PRU 24-bit Count Initialization Register format
used for PRPCs 8 - 9 (also shown onpage 7-4).

15 10 9 0

Reserved1

1. All reserved bits must be 0.

MSB Substitution Bits

15 10 9 0

Reserved1

1. All reserved bits must be 0.

Credit Bits (PRPCs 9 - 0)

15 12 11 0

Reserved1

1. All reserved bits must be zero.

Initialization Value

14-22 Registers

Figure 14.7
24-Bit Count
Initialization Register

Effective Addresses = 0xFFF043XX (seeTable 11.8)

PRU
Configuration
Register

Figure 14.8 shows the PRU Configuration Register (CR) format (also
shown onpage 7-5).

Figure 14.8
Configuration
Register

Effective Address = 0xFFF04100

Note Firmware mustnotwrite to the Configuration Register using a Store Half-
word instruction.

PRU Stall
Register

Figure 14.9shows the PRU Stall Register (SR) format (also shown onpage
7-6).

Figure 14.9
Stall Register

Effective Address = 0xFFF04200

31 24 23 0

Reserved1

1. All reserved bits must be 0.

Initialization Value

15 13 12 10 9 0

Reserved1

1. All reserved bits must be 0.

Timeout Clock Select (PRPCs 9 - 0)2

2. CLK, if bit cleared to zero. PRU_CLK, if bit set to one.

15 10 9 0

Reserved1

1. All reserved bits must be 0.

Stall Mask (PRPCs 9 - 0)

Other Registers Summary 14-23

DMAC Control
Register

Figure 14.10shows the format of the DMAC Control Register (also shown
onpage 8-4).

Figure 14.10
DMAC Control Register

Figure 14.11shows the format of the Effective Address of the DMAC Con-
trol Register (also shown onpage 8-2). For more information see alsoSec-
tion 11.1, “Memory Maps.”

Figure 14.11
DMAC Control Register’s
Effective Address

CRC32 Register Figure 14.12shows the format of the CRC32 Register (also shown onpage
8-5).

Figure 14.12
CRC32 Register

Effective Address = 0xFFF04CX0

ACI Current
Received Cell
Address Register

Figure 14.13shows the ACI Current Received Cell Address Register (also
shown onpage 9-10).

31 22 21 2 1 0

MAR MAC MOR

31 30 29 24 23 22 21 20 19 18 17 16 15 14 13 12 11 2 1 0

LO BC 0 1 0 0 0 0 0 0 0
R
D

G 0 LAC 0 0

31 0

CRC32 Partial Result

14-24 Registers

Figure 14.13
Current Received Cell
Address Register

Effective Address = 0xFFF04400

Received Cell
Indicator
Register

The Received Cell Indicator Register is not really a register. It is an address
decode circuit with an Effective Address of 0xFFF0460C. (Seesubsection
entitled “Received Cell Indication”onpage 9-9.)

ACI Global
Pacing Rate
Register

Figure 14.14 shows the ACI Global Pacing Rate Register (also shown on
page 9-13). The Store Halfword instruction should be used to write to this
register.

Figure 14.14
Global Pacing Rate
Register

Effective Address = 0xFFF047X0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 Current Received Cell Starting Address

15 10 9 0

Reserved1

1. All reserved bits must be 0.

Count

15-1

Chapter 15
Specifications

This chapter describes the electrical specifications for the LSI Logic
L64360 chip, based upon the ATMizer Architecture.

This chapter has four sections:

■ Section 15.1, “AC Timing”

■ Section 15.2, “Electrical Requirements”

■ Section 15.3, “Pin Summary”

■ Section 15.4, “Pinout, Pin List, and Package Information”

15.1
AC Timing

This section specifies the AC timing characteristics of the L64360. The
relationship between various signals is depicted in Figures15.3 through
15.9. The figures depict:

■ Secondary Port Timing

■ Host/DMA Port Timing 1

■ Host/DMA Port Timing 2

■ Transmitting Cell Timing

■ ACI Transmitter TX_IDLE Timing

■ Received Cell Timing

■ ACI Receiver RC_FULL Timing

Table 15.1shows AC timing values specified for 70 pF loading. The num-
bers in Figures15.3through15.9refer to the AC timing parameters listed
in Table 15.1.

The L64360 was designed using LSI Logic’s LEA300K process.

15-2 Specifications

During AC testing, HIGH inputs are driven at VDD, and LOW inputs are
driven at 0 V. For transitions between HIGH, LOW, and invalid states, tim-
ing measurements are made at 1.5 V, as shown inFigure 15.1.

For 3-state outputs, timing measurements are made from the point at which
the output turns ON or OFF. An output is ON when its voltage is greater
than 3.5 V or less than 1.5 V. An output is OFF when its voltage is less than
VDD – 1.5 V or greater than 1.5 V, as shown inFigure 15.2.

Figure 15.1
AC Test Load and
Waveform for
Standard Outputs

Figure 15.2
AC Test Load and
Waveform for
3-State Outputs

CL

Test

Output

Point

1.5 V

1.5 V

VDD – 1.5 V

1.5 V

3.5 V
Vref

Iref = -20 mA

Iref = 20 mA

Vref = 2.5 VOutput

Test
Point

55 pF

AC Timing 15-3

Table 15.1
AC Timing Values for
70-pF Loading (in ns)

50 MHz 40 MHz 33 MHz 25 MHz

Description Min Max Min Max Min Max Min Max

1 CLK High/Low Time 9.6 12 14 17

2 Output Delay from Rising CLK to SP_RQ High or Low 14 16 17 17

3 Output Delay from Rising CLK to SP_WR Valid 13 15 16 16

4 Output Delay from SP_GNT High to SP_AD[31:0]
Address Valid

11 13 14 14

5 Output Delay from SP_ASEL Low to SP_AD[31:0] Data
Valid for Write

11 13 14 14

6 Output Delay from SP_ASEL Low to SP_AD[31:0]
3-State for Read

11 13 14 14

7 Input Setup fromSP_ACK Low to Rising CLK 3 5 5 6

8 Input Setup fromSP_BWIDE Low to Rising CLK 3 5 5 6

9 Input Setup from SP_AD[31:0] Data Valid to Rising
CLK for Read

6 8 8 9

10 Input Hold from Rising CLK to SP_AD[31:0] Data
Invalid for Read

2 3 3 4

11 Output Delay from Rising CLK to HBS_RQ High 11 13 14 14

12 Output Delay from Rising CLK to HBS_WR Valid 15 17 18 18

13 Output Delay from Rising CLK toHBS_AS Low 15 17 18 18

14 Output Delay from Rising CLK toHBS_END Low 15 17 18 18

15 Output Delay from Rising CLK to HBS_A[31:2] Valid 15 17 18 18

16 Output Delay from Rising CLK to HBS_D[31:0] Valid
for Write

15 17 18 18

17 Output Delay from Rising CLK toHBS_BE[3:0] Valid 15 17 18 18

18 Output Delay from Rising CLK to HBS_S[2:0] Valid 15 17 18 18

19 Output Delay from Rising CLK to HBS_WR 3-State 13 15 16 16

20 Output Delay from Rising CLK toHBS_AS 3-State 13 15 16 16

21 Output Delay from Rising CLK toHBS_END 3-State 13 15 16 16

22 Output Delay from Rising CLK to HBS_A[31:2]
3-State

14 16 17 17

23 Output Delay from Rising CLK to HBS_D[31:0]
3-State for Write

14 16 17 17

(Sheet 1 of 3)

15-4 Specifications

24 Output Delay from Rising CLK toHBS_BE[3:0]
3-State

14 16 17 17

25 Output Delay from Rising CLK to HBS_S[2:0] 3-State 14 16 17 17

26 Input Setup from HBS_GNT High to Rising CLK 3 5 5 6

27 Input Setup fromHBS_ACK Low to Rising CLK 7 9 9 10

28 Input Setup from HBS_D[31:0] Valid to Rising CLK 4 6 6 7

29 Input Hold from Rising CLK to HBS_GNT Low 2 3 3 4

30 Input Hold from Rising CLK toHBS_ACK Low 2 3 3 4

31 Input Hold from Rising CLK to HBS_D[31:0] Invalid for
Read

2 3 3 4

32 Output Delay from HBS_AOE High to HBS_A[31:2]
Valid

14 16 17 17

33 Output Delay from HBS_AOE Low to HBS_A[31:2]
3-State

14 16 17 17

34 Output Delay from HBS_DOE High to HBS_D[31:0]
Valid for Write

14 16 17 17

35 Output Delay from HBS_DOE Low to HBS_D[31:0]
3-State for Write

14 16 17 17

36 Output Delay from Rising CLK to HBS_INT High 12 14 15 15

37 TX_CLK Cycle Time 40 50 60 80

38 Output Delay from Rising TX_CLK toTX_RST High 12 14 15 15

39 Output Delay from Rising TX_CLK toTX_DRDY Low
or High

9 11 12 12

40 Output Delay from Rising TX_CLK to TX_BOC High 13 15 16 16

41 Output Delay from Rising TX_CLK to TX_D[7:0] Valid 15 17 18 18

42 Input Setup from TX_ACK Valid to Rising TX_CLK 7 9 9 9

43 Input Hold from Rising TX_CLK to TX_ACK Valid 1 2 2 3

44 Input Setup fromTX_FULL Low to Rising TX_CLK 7 9 9 9

45 Input Hold from Rising TX_CLK toTX_FULL High 1 2 2 3

46 Output Delay from Rising TX_CLK to TX_IDLE Valid 9 11 12 12

47 RC_CLK Cycle Time 40 50 60 80

48 Output Delay from Rising RC_CLK toRC_RST High 10 12 13 13

Table 15.1 (Cont.)
AC Timing Values for
70-pF Loading (in ns)

50 MHz 40 MHz 33 MHz 25 MHz

Description Min Max Min Max Min Max Min Max

(Sheet 2 of 3)

AC Timing 15-5

49 Input Setup from RC_BOC High to Rising RC_CLK 7 9 9 10

50 Input Setup from RC_ACK High or Low to Rising
RC_CLK

7 9 9 10

51 Input Setup from RC_D[7:0] Valid to Rising RC_CLK 7 9 9 10

52 Input Hold from Rising RC_CLK to RC_D[7:0] Invalid 1 2 2 3

53 Input Hold from Rising RC_CLK to RC_ACK Low or
High

1 2 2 3

54 Input Hold from Rising RC_CLK to RC_BOC Low 1 2 2 3

55 Output Delay from Rising RC_CLK to HEC_ERR High 10 12 13 13

56 Output Delay from Rising RC_CLK to RC_FULL High
or Low

10 12 13 13

Table 15.1 (Cont.)
AC Timing Values for
70-pF Loading (in ns)

50 MHz 40 MHz 33 MHz 25 MHz

Description Min Max Min Max Min Max Min Max

(Sheet 3 of 3)

15-6 Specifications

Figure 15.3
Secondary Port
Timing

2

5

CLK

SP_RQ

SP_GNT

SP_ASEL

SP_AD[31:0]

SP_WR

Address

3

4

Write Data

SP_AD[31:0] Address
Read

9

SP_ACK

7

6
10

8

SP_BWIDE

Data

1
1

2

AC Timing 15-7

Figure 15.4
Host/DMA Port Timing 1

11

CLK

HBS_RQ

HBS_GNT

HBS_AS

HBS_A[31:2]

HBS_BE[3:0]

Address

HBS_WR

12

Address+4

13

0

17

HBS_ACK

HBS_END

HBS_D[31:0] Write Data Write Data

27

15

16

HBS_S[2:0] 7

18

14

19

20

21

24

Adr+8

22

23

25

26

HBS_D[31:0]
Read Read

Data

28

29

30

31

Data

15-8 Specifications

Figure 15.5
Host/DMA Port Timing 2

CLK

HBS_RQ

HBS_GNT

HBS_A[31:2] Address Address

HBS_D[31:0] Write Data Write Data

HBS_AOE

HBS_DOE

3435

3233

HBS_INT

36

AC Timing 15-9

Figure 15.6
Transmitting Cell Timing

Figure 15.7
ACI Transmitter
TX_IDLE Timing

38

40

TX_CLK

TX_RST

TX_DRDY

TX_BOC

TX_D[7:0] Byte1

41

39

TX_ACK

42

44

37

TX_FULL

Byte3Byte2 Byte4 Byte5 Byte6

4342

45

39

43

TX_CLK

TX_IDLE

46 46

15-10 Specifications

Figure 15.8
Received Cell Timing

Figure 15.9
ACI Receiver RC_FULL
Timing

15.2
Electrical
Requirements

This section specifies the electrical requirements for the L64360. Five
tables list electrical data in the following categories:

■ Absolute Maximum Ratings

■ Recommended Operating Conditions

■ Worst Case Thermal Operating Conditions

■ Capacitance

■ DC Characteristics

48

49

RC_CLK

RC_RST

HEC_ERR

RC_BOC

RC_D[7:0]
Byte 1

51

RC_ACK

47

Byte 2 Byte 4 Byte 5 Byte 6Byte 3

52

54

55

53

50

53

50

RC_CLK

RC_FULL

56 56

Electrical Requirements 15-11

Table 15.2
Absolute Maximum
Ratings

Table 15.3
Recommended
Operating
Conditions

Table 15.4
Worst Case Thermal
Operating
Conditions

Table 15.5
Capacitance

Symbol Parameter Limits1

1. Referenced to VSS.

Unit

VDD DC Supply -0.3 to +7.0 V

VIN Input Voltage -0.3 to VDD + 0.3 V

IIN DC Input Current 10 mA

TSTG Storage Temperature Range, metal 0 to +125 °C

Symbol Parameter Limits Unit

VDD DC Supply + 4.75 to +5.25 V

TA Ambient Temperature (50 MHz) 0 to 50 °C

TA Ambient Temperature (40 MHz and Below) 0 to 70 °C

Operating Speed Case Temperature Unit

50 MHz 0 to 85 °C

40 MHz and Below 0 to 100 °C

Symbol Parameter1

1. Measurement conditions are VIN = 5.0 V, TA = 25° C, and clock frequency = 1 MHz.

Min Typ Max Unit

CIN Input Capacitance 5 pF

COUT Output Capacitance 10 pF

CIO I/O Bus Capacitance 15 pF

Table 15.6
DC Characteristics

Symbol Parameter Condition1 Min Typ Max Units

VIL Voltage Input Low – – 0.8 V

VIH Voltage Input High 2.0 – – V

VOH Voltage Output High IOH = -4.0 mA
IOH = -8.0 mA

2.4
2.4

4.5
4.5

–
–

V
V

VOL Voltage Output Low IOL = 4.0 mA
IOL = 8.0 mA

–
–

0.2
0.2

0.4
0.4

V
V

IIL Current Input Leakage VDD = Max, VIN = VDD
or VSS

-10 ±1 10 µA

15-12 Specifications

15.3
Pin Summary

Table 15.7 summarizes the L64360 pins. The table provides the drive
capacity of the outputs and the signal types for both output and input pins.

IOZ Current 3-State Output Leakage VDD = Max, VOUT = VSS
or VDD

-10 ±1 10 µA

IIPU Current Input Pull-up VIN = VSS -35 -115 -350 µA

IOZU Current 3-State Output w/Pull-up VIN = VSS -2 – -175 µA

IDD Quiescent Supply Current VIN = VDD or VSS – – 100 µA

ICC Dynamic Supply Current VDD = Max, 25 MHz
VDD = Max, 33 MHz
VDD = Max, 40 MHz
VDD = Max, 50 MHz

–
–
–
–

–
–
–
–

480
550
650
750

mA
mA
mA
mA

1. Specified at VDD = 5 ± 5% at ambient temperature over the ranges specified inTable 15.3.

Table 15.7
L64360 Pin
Description
Summary

Mnemonic Description Type
Drive
(mA) Active

CLK System Clock Input 4 –
GPINT_AUTO General Purpose APU Interrupt Input 4 High
GPINT_TST L64360 Interrupt Input 4 High
HBS_A[31:2] Host/DMA Port Address Bus Output 4 –
HBS_ACK Host/DMA Port Data Acknowledgment Input 4 Low
HBS_AOE Host/DMA Port Address Output Enable Input 4 High
HBS_AS Host/DMA Port Address Strobe Output 4 Low
HBS_BE[3:0] Host/DMA Port Byte Enables Output 4 Low
HBS_BOOT Host/DMA Port Boot Select Input 4 High
HBS_D[31:0] Host/DMA Port Data Bus Bidirectional 4 –
HBS_DOE Host/DMA Port Output Enable Input 4 High

HBS_END Host/DMA Port Operation Ending Output 4 Low
HBS_GNT Host/DMA Port Grant Operation Input 4 High
HBS_INT Host Interrupt Output 4 High
HBS_RQ Host/DMA Port Operation Request Output 4 High
HBS_S[2:0] Host/DMA Port DMA Transfer Size Output 4 –
HBS_WR Host/DMA Port Operation Type Output 4 –
HEC_ERR HEC Error Output 4 High
PRU_CLK Pacing Rate Unit Clock Input 4 –
RC_ACK ACI Receiver Data Acknowledge Input 4 High

(Sheet 1 of 2)

Table 15.6 (Cont.)
DC Characteristics

Symbol Parameter Condition1 Min Typ Max Units

Pinout, Pin List, and Package Information 15-13

15.4
Pinout, Pin List,
and Package
Information

The LSI Logic L64360 ASSP is available in a 208-pin, cavity down, metal
quad flat package (MQUAD).Figure 15.10 illustrates the pinout of the
208-pin package, andFigure 15.11is the mechanical drawing.Table 15.8
shows the L64360 pin list.

RC_BOC ACI Receiver Beginning of Cell Input 4 High
RC_CLK ACI Receiver Clock Input 4 –
RC_D[7:0] ACI Receiver Data Bus Input 4 –
RC_FULL ACI Receiver Cell Holder Buffer Full Output 4 High
RC_RST ACI Receiver Reset Output 4 Low
RST System Reset Input 4 Low
SP_ACK Secondary Port Data Acknowledge Input 4 High
SP_AD[31:0] Secondary Port Address/Data Bus Bidirectional 4 –
SP_ASEL Secondary Port Address/Data Select Input 4 High
SP_BWIDE Secondary Port Byte-wide Device Input 4 Low
SP_GNT Secondary Port Bus Grant Input 4 High
SP_RQ Secondary Port Access Request Output 4 High
SP_WR Secondary Port Operation Type Output 4 High
STALL APU Pipeline Stall Output 4 Low
SRL_ACK Serial Acknowledge Input 4 High
SRL_BOOT Serial Boot Select Input 4 Low
SRL_CLK16 Serial Clock Output 4 –
SRL_DIN Serial Data Input Input 4 –
TEST Test Mode Input 4 Low
TX_ACK ACI Transmitter Data Acknowledge Input 4 High
TX_BOC ACI Transmitter Beginning of Cell Output 4 High
TX_CLK ACI Transmitter Clock Input 4 –
TX_D[7:0] ACI Transmitter Data Bus Output 4 –
TX_DRDY ACI Transmitter Data Ready Output 4 Low
TX_FULL ACI Transmitter Buffer Full Input 4 Low
TX_IDLE ACI Transmitter Idle Cell Output 4 High
TX_RST ACI Transmitter Reset Output 4 Low

Table 15.7 (Cont.)
L64360 Pin
Description
Summary

Mnemonic Description Type
Drive
(mA) Active

(Sheet 2 of 2)

15-14 Specifications

Figure 15.10
208-Pin MQUAD Pinout
– Cavity Down

V
S

S
H

B
S

_A
O

E
H

B
S

_D
15

H
B

S
_D

14
H

B
S

_D
13

H
B

S
_D

12
H

B
S

_D
11

H
B

S
_D

10
V

D
D

V
S

S
H

B
S

_D
9

H
B

S
_D

8
H

B
S

_D
7

H
B

S
_D

6
H

B
S

_D
5

H
B

S
_D

4
V

D
D

V
S

S
H

B
S

_D
3

H
B

S
_D

2
H

B
S

_D
1

H
B

S
_D

0
S

R
L_

B
O

OT
S

R
L_

C
LK

16
N

C
V

D
D

V
S

S
T

E
S

T
H

B
S

_B
O

O
T

G
P

IN
T

_A
U

TO
S

P
_A

D
31

S
P

_A
D

30
S

P
_A

D
29

S
P

_A
D

28
S

P
_A

D
27

S
P

_A
D

26
V

D
D

V
S

S
G

P
IN

T
_T

S
T

S
P

_R
Q

S
P

_A
D

25
S

P
_A

D
24

S
P

_A
D

23
S

P
_A

D
22

S
P

_A
D

21
S

P
_A

D
20

V
D

D
V

S
S

N
C

N
C

N
C

N
C

Top View

Note:
1. NC pins are not connected.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105

NC
STALL
HBS_S2
HBS_S1
HBS_S0
VSS
VDD
SP_ASEL
SP_BWIDE
SP_AD19
SP_AD18
SP_AD17
SP_AD16
SP_AD15
SP_AD14
VSS
VDD
SP_GNT
SP_ACK
SP_AD13
SP_AD12
SP_AD11
SP_AD10
SP_AD9
SP_AD8
VDD
VSS
CLK
RST
SP_WR
PRU_CLK
VSS
VSS
SP_AD7
SP_AD6
SP_AD5
SP_AD4
SP_AD3
SP_AD2
VDD
VSS
SP_AD1
SP_AD0
RC_ACK
HEC_ERR
RC_RST
RC_FULL
RC_D7
RC_D6
RC_D5
RC_D4
VDD

20
8

20
7

20
6

20
5

29
4

20
3

20
2

20
1

20
0

19
9

19
8

19
7

19
6

19
5

19
4

19
3

19
2

19
1

19
0

18
9

18
8

18
7

18
6

18
5

18
4

18
3

18
2

18
1

18
0

17
9

17
8

17
7

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

VDD
HBS_D16
HBS_D17
HBS_D18
HBS_D19
HBS_D20
HBS_D21
SRL_DIN

VSS
VDD

HBS_D22
HBS_D23
HBS_D24
HBS_D25
HBS_D26
HBS_D27

VDD
VSS

HBS_D28
HBS_D29
HBS_D30
HBS_D31
SRL_ACK
HBS_GNT

HBS_RQ
VDD
VSS

HBS_END
HBS_ACK
HBS_BE0
HBS_BE1
HBS_BE2
HBS_BE3
HBS_AS

VDD
VSS

HBS_A2
HBS_A3
HBS_A4
HBS_A5
HBS_A6
HBS_A7

VDD
VSS

HBS_A8
HBS_A9

HBS_A10
HBS_A11
HBS_A12
HBS_A13
HBS_WR

VDD

V
S

S
H

B
S

_D
O

E
H

B
S

_A
14

H
B

S
_A

15
H

B
S

_A
16

H
B

S
_A

17
H

B
S

_A
18

H
B

S
_A

19
V

D
D

V
S

S
H

B
S

_A
20

H
B

S
_A

21
H

B
S

_A
22

H
B

S
_A

23
H

B
S

_A
24

H
B

S
_A

25
V

D
D

V
S

S
H

B
S

_A
26

H
B

S
_A

27
H

B
S

_A
28

H
B

S
_A

29
H

B
S

_A
30

H
B

S
_A

31
H

B
S

_I
N

T
V

D
D

V
S

S
N

C
T

X
_C

LK
T

X
_F

U
LL

T
X

_A
C

K
T

X
_D

0
T

X
_D

1
T

X
_D

2
T

X
_D

3
T

X
_D

4
T

X
_D

5
R

C
_B

O
C

V
D

D
V

S
S

T
X

_D
6

T
X

_D
7

T
X

_I
D

LE
T

X
_B

O
C

T
X

_D
R

D
Y

T
X

_R
S

T
R

C
_C

LK
R

C
_D

0
R

C
_D

1
R

C
_D

2
R

C
_D

3
V

S
S

Pinout, Pin List, and Package Information 15-15

Table 15.8
L64360 Pin List

1. NC pins are not connected.

Signal Pin

CLK 129
GPINT_AUTO 179
GPINT_TST 170
HBS_A31 76
HBS_A30 75
HBS_A29 74
HBS_A28 73
HBS_A27 72
HBS_A26 71
HBS_A25 68
HBS_A24 67
HBS_A23 66
HBS_A22 65
HBS_A21 64
HBS_A20 63
HBS_A19 60
HBS_A18 59
HBS_A17 58
HBS_A16 57
HBS_A15 56
HBS_A14 55
HBS_A13 50
HBS_A12 49
HBS_A11 48
HBS_A10 47
HBS_A9 46
HBS_A8 45
HBS_A7 42
HBS_A6 41
HBS_A5 40
HBS_A4 39
HBS_A3 38
HBS_A2 37
HBS_ACK 29
HBS_AOE 207
HBS_AS 34
HBS_BE3 33
HBS_BE2 32
HBS_BE1 31
HBS_BE0 30
HBS_BOOT 180
HBS_D31 22

HBS_D30 21
HBS_D29 20
HBS_D28 19
HBS_D27 16
HBS_D26 15
HBS_D25 14
HBS_D24 13
HBS_D23 12
HBS_D22 11
HBS_D21 7
HBS_D20 6
HBS_D19 5
HBS_D18 4
HBS_D17 3
HBS_D16 2
HBS_D15 206
HBS_D14 205
HBS_D13 204
HBS_D12 203
HBS_D11 202
HBS_D10 201
HBS_D9 198
HBS_D8 197
HBS_D7 196
HBS_D6 195
HBS_D5 194
HBS_D4 193
HBS_D3 190
HBS_D2 189
HBS_D1 188
HBS_D0 187
HBS_DOE 54
HBS_END 28
HBS_GNT 24
HBS_INT 77
HBS_RQ 25
HBS_S2 154
HBS_S1 153
HBS_S0 152
HBS_WR 51
HEC_ERR 112
NC1 80

NC 156
NC 157
NC 158
NC 159
NC 160
NC 184
PRU_CLK 126
RC_ACK 113
RC_BOC 90
RC_CLK 99
RC_D7 109
RC_D6 108
RC_D5 107
RC_D4 106
RC_D3 103
RC_D2 102
RC_D1 101
RC_D0 100
RC_FULL 110
RC_RST 111
RST 128
SP_ACK 138
SP_AD31 178
SP_AD30 177
SP_AD29 176
SP_AD28 175
SP_AD27 174
SP_AD26 173
SP_AD25 168
SP_AD24 167
SP_AD23 166
SP_AD22 165
SP_AD21 164
SP_AD20 163
SP_AD19 147
SP_AD18 146
SP_AD17 145
SP_AD16 144
SP_AD15 143
SP_AD14 142
SP_AD13 137
SP_AD12 136

SP_AD11 135
SP_AD10 134
SP_AD9 133
SP_AD8 132
SP_AD7 123
SP_AD6 122
SP_AD5 121
SP_AD4 120
SP_AD3 119
SP_AD2 118
SP_AD1 115
SP_AD0 114
SP_ASEL 149
SP_BWIDE 148
SP_GNT 139
SP_RQ 169
SP_WR 127
SRL_ACK 23
SRL_BOOT 186
SRL_CLK16 185
SRL_DIN 8
STALL 155
TEST 181
TX_ACK 83
TX_BOC 96
TX_CLK 81
TX_D7 94
TX_D6 93
TX_D5 89
TX_D4 88
TX_D3 87
TX_D2 86
TX_D1 85
TX_D0 84
TX_DRDY 97
TX_FULL 82
TX_IDLE 95
TX_RST 98
VDD 1
VDD 10
VDD 17
VDD 26

Signal Pin Signal Pin Signal Pin

VDD 35
VDD 43
VDD 52
VDD 61
VDD 69
VDD 78
VDD 91
VDD 105
VDD 117
VDD 131
VDD 140
VDD 150
VDD 162
VDD 172
VDD 183
VDD 192
VDD 200
VSS 9
VSS 18
VSS 27
VSS 36
VSS 44
VSS 53
VSS 62
VSS 70
VSS 79
VSS 92
VSS 104
VSS 116
VSS 124
VSS 125
VSS 130
VSS 141
VSS 151
VSS 161
VSS 171
VSS 182
VSS 191
VSS 199
VSS 208

Signal Pin

15-16 Specifications

Figure 15.11
208-Pin MQUAD
Mechanical Drawing

D
D1

Index
Mark

Top View Side View

D3

Detail W

W

X

E E
1

E
3

1

L

θ

– C –
(Note 3)

A1

B
e (Note 4)

(Note 4)
– H –

A2

G (Note 3)

A

Detail X

156

53

Note:
1. Total number of pins is 208.
2. Drawing is not to scale.
3. Coplanarity of all leads shall be within 0.10 mm

(difference between the highest and lowest lead
with seating plane – C – as reference).

4. Lead pitch determined at – H –.
5. Leadframe to package offset tolerance is

± 0 .10 mm Max.
6. For board layout and manufacturing, you may

obtain engineering drawings from your LSI
Logic Products marketing representative by
requesting the outline drawing for package code

Dimension mm

A Max 3.86

A1
Min 0.25

Max 0.51

A
2

Min 3.17

Max 3.43

B Typ 0.23

D
Min 30.4

Max 30.8

D
1

Min 27.5

Max 27.7

D BSC 25.5

E
Min 30.4

Max 30.8

E
1

Min 27.5

Max 27.7

E BSC 25.5

θ
Min 0°
Max 7°

e BSC 0.50

G Max 0.10

L
Min 0.40

Max 0.60

MD92.WVa

No. of Pins = 52

157

104

208

10552

A-1

Appendix A
Glossary of Abbreviations

Table A.1 defines some of the abbreviations used in this manual.

Table A.1
Abbreviation
Glossary

Abbreviation Meaning

ASSP Application Specific Standard Product

ATM Asynchronous Transfer Mode

APU ATMizer Processing Unit

AAL ATM Adaptation Layer

ACI ATMizer Cell Interface

BIU Bus Interface Unit

BOC Beginning of Cell

BOM Beginning of Message

COM Continuation of Message

CGCR Channel Group Credit Register

CLP Cell Loss Priority

CRC Cycle (or Cyclic) Redundancy Check

CPE Channel Parameter Entry

CSIC Customer Specific Integrated Circuit

CS-PDU Convergence Sublayer-Protocol Data Unit

CS-SDU Convergence Sublayer-Service Data Unit

DRDY Data Ready

DMA Direct Memory Access

DMAC DMA Controller

EOM End of Message

FIFO First In-First Out

GPRR Global Pacing Rate Register

HEC Header Error Check

IRAM Instruction RAM

(Sheet 1 of 2)

A-2 Glossary of Abbreviations

LO Local Offset (VCR Offset)

LAR Local Address Register

NIC Network Interface Card

OAM Operation and Management

PDU Protocol Data Unit

PRU Pacing Rate Unit

PRPC Peak Rate Pacing Counter

PTI Payload Type Indicator

RTS Real Time Stamp

SAR Segmentation and Reassembly

SAR-PDU SAR-Protocol Data Units

SAR-SDU SAR-Service Data Unit

TCS Transmission Convergence Sublayer

Table A.1 (Cont.)
Abbreviation
Glossary

Abbreviation Meaning

(Sheet 2 of 2)

B-1

Appendix B
Customer Feedback

We would appreciate your feedback on this document. Please copy the fol-
lowing page, add your comments, and fax it to us at:

LSI Logic Corporation
Microprocessor Publications
M/S G-712
Fax 408.433.8989

If appropriate, please also fax copies of any marked-up pages from this
document.

IMPORTANT: Please include your name, phone number, fax number, and
company address so that we may contact you directly for clarification or
additional information. Thank you for your help in improving the quality
of our documents.

B-2 Customer Feedback Part No. MN71-000101-99 A

Reader’s
Comments

Please fax your comments to:

LSI Logic Corporation
Microprocessor Publications
M/S G-712
Fax 408.433.8989

Does the publication meet your needs? Yes__ No__

Is the material:

■ Complete? Yes__ No__

■ Easy to use? Yes__ No__

■ Written for the appropriate technical level? Yes__ No__

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below.

Your feedback is important to us. Thank you for your comments.

Name Date
Telephone
Title

Company Name
Street
City

State Zip

Department Mail Stop

Fax

U.S. Distributors
by State

Alabama
Huntsville
Hamilton Hallmark
Tel: 205.837.8700

Wyle Laboratories
Tel: 205.830.1119

Arizona
Phoenix
Hamilton Hallmark
Tel: 602.437.1200

Wyle Laboratories
Tel: 602.437.2088

California
Calabassas

♦ Wyle Laboratories
Tel: 818.880.9000

Costa Mesa
♦ Hamilton Hallmark

Tel: 714.641.4100

Irvine
♦ Wyle Laboratories

Tel: 714.863.9953

Sacramento
Hamilton Hallmark
Tel: 916.624.9781

Wyle Laboratories
Tel: 916.638.5282

San Diego
Hamilton Hallmark
Tel: 619.571.7540

Woodland Hills
Hamilton Hallmark
Tel: 818.594.0404

Wyle Laboratories
Tel: 619.565.9171

Santa Clara
♦ Wyle Laboratories

Tel: 408.727.2500

Sunnyvale
♦ Hamilton Hallmark

Tel: 408.435.3500

Colorado
Denver
Hamilton Hallmark
Tel: 303.790.1662

♦ Wyle Laboratories
Tel: 303.457.9953

Connecticut
Danbury
Hamilton Hallmark
Tel: 203.271.2844

Florida
Deerfield Beach
Wyle Laboratories
Tel: 305.420.0500

Miami/Ft Lauderdale
Hamilton Hallmark
Tel: 305.484.5482

St Petersburg
Hamilton Hallmark
Tel: 813.541.7440

Georgia
Atlanta
Hamilton Hallmark
Tel: 404.623.5475

Norcross
Wyle Laboratories
Tel: 404.441.9043

Illinois
Chicago

♦ Hamilton Hallmark
Tel: 708.860.7780

Addison
Wyle Laboratories
Tel: 708.303.1040

Indiana
Indianapolis
Hamilton Hallmark
Tel: 317.872.8875

Kansas
Kansas City
Hamilton Hallmark
Tel: 913.888.4747

Maryland
Baltimore

♦ Hamilton Hallmark
Tel: 401.988.9800

Columbia
Wyle Laboratories
Tel: 301.490.2170

Massachusetts
Boston

♦ Hamilton Hallmark
Tel: 508.532.9893

♦ Wyle Laboratories
Tel: 617.272.7300

Michigan
Detroit
Hamilton Hallmark
Tel: 313.347.4271

Minnesota
Minneapolis
Hamilton Hallmark
Tel: 612.881.2600

Bloomington
Wyle Laboratories
Tel: 612.853.2280

Missouri
St. Louis
Hamilton Hallmark
Tel: 314.291.5350

New Jersey
North Jersey
Hamilton Hallmark
Tel: 201.515.1641

Pine Brook
Wyle Laboratories
Tel: 201.882.8358

South Jersey
Hamilton Hallmark
Tel: 609.424.0110

New Mexico
Alburquerque
Hamilton Hallmark
Tel: 505.828.1058

New York
Long Island
Hamilton Hallmark
Tel: 516.737.0600

Rochester
Hamilton Hallmark
Tel: 716.475.9130

North Carolina
Raleigh
Hamilton Hallmark
Tel: 919.872.0712

Ohio
Cleveland
Hamilton Hallmark
Tel: 216.498.1100

Dayton
Hamilton Hallmark
Tel: 614.888.3313

Oklahoma
Tulsa
Hamilton Hallmark
Tel: 216.498.1100

Oregon
Portland
Hamilton Hallmark
Tel: 503.526.6200

Wyle Laboratories
Tel: 503.643.7900

Texas
Austin
Hamilton Hallmark
Tel: 512.258.8848

Wyle Laboratories
Tel: 512.345.8853

Dallas
Hamilton Hallmark
Tel: 214.553.4300

Wyle Laboratories
Tel: 214.235.9953

Houston
Hamilton Hallmark
Tel: 713.781.6100

Wyle Laboratories
Tel: 713.879.9953

Utah
Salt Lake City
Hamilton Hallmark
Tel: 801.266.2022

Wyle Laboratories
Tel: 801.974.9953

Washington
Seattle
Hamilton Hallmark
Tel: 206.881.6697

Wyle Laboratories
Tel: 206.881.1150

Wisconsin
Milwaukee
Hamilton Hallmark
Tel: 414.780.7200

Waukesha
Wyle Laboratories
Tel: 414.521.9333

♦ Distributors with
Design Resource
Centers

Sales Offices
and Design
Resource Centers

Printed in USA
295.5K.TP.RRD

LSI Logic Corporation
U.S. Headquarters
Milpitas CA

♦ Tel: 408.433.8000
Fax: 408.433.8989

California
♦ Tel: 714.553.5600

Fax: 714.474.8101

San Diego
♦ Tel: 619.635.1300

Fax: 619.635.1350

Florida
Tel: 407.728.9481
Fax: 407.728.9587

Boca Raton
♦ Tel: 407.395.6200

Fax: 407.394.2865

Georgia
Tel: 404.395.3800
Fax: 404.395.3811

Illinois
♦ Tel: 708.995.1600

Fax: 708.995.1622

Maryland
♦ Tel: 301.897.5800

Fax: 301.897.8389

Columbia
Tel: 410.740.9191
Fax: 410.740.5587

Massachusetts
♦ Tel: 617.890.0180

Fax: 617.890.6158

Minnesota
♦ Tel: 612.921.8300

Fax: 612.921.8399

New Jersey
♦ Tel: 908.549.4500

Fax: 908.549.4802

New York
Tel: 914.226.1620
Fax: 914.226.1315

Victor
Tel: 716.223.8820
Fax: 716.223.8822

North Carolina
♦ Tel: 919.783.8833

Fax: 919.783.8909

Oregon
♦ Tel: 503.645.9882

Fax: 503.645.6612

Texas
Tel: 512.388.7294
Fax: 512.388.4171

Dallas
♦ Tel: 214.788.2966

Fax: 214.233.9234

Washington
♦ Tel: 206.822.4384

Fax: 206.827.2884

Australia
Reptechnic Ltd
Tel: 61.2.953.9844
Fax: 61.2.953.9683

LSI Logic Corporation
of Canada Inc
Headquarters
Calgary

♦ Tel: 403.262.9292
Fax: 403.262.9494

Etobicoke
♦ Tel: 416.620.7400

Fax: 416.620.5005

Kanata
♦ Tel: 613.592.1263

Fax: 613.592.3253

Pointe Claire
♦ Tel: 514.694.2417

Fax: 514.694.2699

Denmark
EV Johanssen
Electronic AS

♦ Tel: 45.31.839022
Fax: 45.31.839222

Finland
Komdell-Bexab
Finland OY
Tel: 358.0.5023200
Fax: 358.0.5023294

France
Immeuble Europa
Paris

♦ Tel: 33.1.34631313
Fax: 33.1.34631319

Microel SA
Tel: 33.1.69070824
Fax: 33.1.69071723

Germany
LSI Logic GmbH
Munich
Tel: 49.89.45836.0
Fax: 49.89.45836.109

Munich
♦ Tel: 49.89.45833.0

Fax: 49.89.45833.108

Stuttgart
♦ Tel: 49.711.139690

Fax: 49.711.8661428

India
DCM Microelectronics
Ltd
Tel: 91.11.642.9486
Fax: 91.11.644.1572

Israel
LSI Logic Limited

♦ Tel: 972.3.5403741
Fax: 972.3.5403747

Italy
LSI Logic SPA

♦ Tel: 39.39.6056881
Fax: 39.39.6057867

Esco Italiana SPA
Tel: 39.2.2409241
Fax: 39.2.2409255

Japan
LSI Logic KK
Headquarters
Tokyo

♦ Tel: 81.3.5463.7811
Fax: 81.3.5463.7825

Osaka
♦ Tel: 81.6.947.5281

Fax: 81.6.947.5287

LSI Logic Corporation
of Korea Limited

♦ Tel: 82.2.561.2921
Fax: 82.2.554.9327

Norway
Bexab Norge AS
Tel: 47.63.833800
Fax: 47.63.832007

Singapore
Desner Electronics
Pte Ltd
Tel: 65.285.1566
Fax: 65.284.9466

Eltee Electronics
Pte Ltd
Tel: 65.283.0888
Fax: 65.289.5327

Spain
LSI Logic SA
Tel: 34.1.3672200
Fax: 34.1.3673151

Sweden
LSI Logic AB
Tel: 46.8.7034680
Fax: 46.8.7506647

Bexab Sweden AB
♦ Tel: 46.8.6308800

Fax: 46.8.7327058

Switzerland
LSI Logic Sulzer AG

♦ Tel: 41.32.536363
Fax: 41.32.536367

Taiwan
LSI Logic Asia-Pacific
Regional Office
Taipei

♦ Tel: 886.2.755.3433
Fax: 886.2.755.5176

Jeilin Technology
Corp
Tel: 886.2.248.4828
Fax: 886.2.248.9765

United Kingdom
LSI Logic Europe plc
European
Headquarters
England

♦ Tel: 44.1344.426544
Fax: 44.1344.481039

Amega Electronics
Tel: 44.256.843166
Fax: 44.256.842956

LSI Logic Europe plc
Tel: 44.1753.680009
Fax: 44.1753.680179

Manhattan Skyline Ltd
Tel: 44.628.778686
Fax: 44.628.782812

♦ Sales Offices with
Design Resource
Centers

Printed on
Recycled Paper

