
32-bit
EmbeddedASIC
Core Peripheral

Advanced
Interrupt
Controller 2
(AIC2)

Rev. 1796B–CASIC–03/02
Features
• Compatible with an Embedded ARM7TDMI™ Processor
• 8-level Priority
• From 2 to 32 Interrupt Sources
• Individually Maskable and Vectored
• Substantially Reduces the Software and Real-time Overhead in Handling Internal and

External Interrupts
• Fast Forcing Feature Available
• Includes Protect Mode Feature Via a Configuration Register
• Can be Directly Connected to the Atmel Implementation of the AMBA™ Peripheral Bus

(APB)
• Fully Scan Testable (up to 99%)

Description
The Advanced Interrupt Controller 2 (AIC2) is an 8-level priority, individually maskable,
vectored interrupt controller. It can substantially reduce the software and real-time
overhead in handling internal and external interrupts.

This peripheral can be used with any 32-bit microcontroller core if the timing diagram
shown on page 4 is respected. The interrupt handling must be performed as
described on page 7, using the corresponding assembler instructions for the 32-bit
core used.

When using an ARM7TDMI® as the core, the Atmel bridge must be used to provide
the correct bus interface to the AIC2.

The interrupt controller can be directly connected to the nFIQ (fast interrupt request)
and the nIRQ (standard interrupt request) inputs of an ARM7TDMI processor, or the
equivalent inputs of another 32-bit microcontroller core. The fast forcing feature avail-
able in the AIC2 allows redirection of any internal or external interrupt source to
provide a fast interrupt rather than a normal interrupt. The processor’s nFIQ line can
be asserted either by the external fast interrupt request input FIQ, or by the other inter-
rupt sources via the fast forcing feature. The nIRQ line is asserted by all other interrupt
sources except those that assert FIQ.

An 8-level priority encoder allows the customer to define the priority between the dif-
ferent nIRQ interrupt sources. Internal interrupt sources are programmed to be level
sensitive or edge triggered. External interrupt sources can be programmed to be posi-
tive-edge or negative-edge triggered or high-level or low-level sensitive.

This document describes the AIC2 in a specific configuration as specified below:

• One FIQ is connected on the interrupt line[0].

• Eight internal interrupt sources are connected on interrupt lines[8:1].

• Three external interrupt sources are connected on interrupt lines[11:9] but are
mapped on interrupts[18:16].

The interrupt sources are listed in Table 2 and the AIC2 programmable registers in
Table 3. The register interaction is shown in Figure 5.
1

Figure 1. AIC2 Pin Configuration

Notes: 1. N = Number of interrupt sources
2. Nchain = Number of scan chains

periph_data_in[31:0]

nreset_r

periph_address[13:0]

periph_write

periph_strobe

clock

periph_select

interrupt_lines[(N-1):0](1)

scan_test_mode

nfiq

nirq

nint

test_so[Nchain:1](2)

periph_data_out[31:0]

AIC2

Functional Functional

test_se

test_si[Nchain:1](2)

Test ScanTest Scan

pstb_rising

nreset_f

Table 1. Pin Description List

Name Definition Type
Active
Level Comments

Functional

nreset_r System Reset Input Low Resets all counters and signals clocked on rising edge of
clock

nreset_f System Reset Input Low Resets all counters and signals clocked on falling edge of
clock

clock System Clock Input – –

periph_address[13:0] Peripheral
Address Bus

Input – From host (bridge). Software user interface address bus

periph_data_in[31:0] Peripheral
Data Bus Input

Input – From host (bridge). Software user interface data bus

periph_data_out[31:0] Peripheral
Data Bus Input

Output – To host (bridge). Software user interface data bus

periph_write Peripheral Write
Enable

Input – From host (bridge). Transfer enable. When high, indicates
that the host processor is writing to a register or executing
a command.

pstb_rising – Input – From host (bridge). Clock for all DFFs controlling
configuration registers

periph_strobe Peripheral Strobe Input High When high, indicates that data and address buses are
stable

periph_select Peripheral Selection Input High When high, in03/02dicates that the host is accessing the
AIC2
2 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
Notes: 1. N = Number of interrupt sources
2. Nint = Number of internal interrupt sources
3. Next = Number of external interrupt sources
4. Nchain = Number of scan chains

Scan Test Configuration
The fault coverage is maximum if all non-scan inputs can be controlled and all non-scan outputs can be observed. In order
to achieve this, the ATPG vectors must be generated on the entire circuit (top-level) which includes the AIC2 or all AIC2 I/Os
must have a top level access and ATPG vectors must be applied to these pins.

interrupt_lines[(N-1):0](1) Interrupt Input Lines
(Sources)

Input – Polarities can be defined in the configuration registers for
inputs corresponding to external interrupt sources.
Generally, they are connected as follows:

- FIQ source on interrupt_lines[0]

- Nint internal sources on interrupt_lines[Nint:1](2)

- Next external sources on interrupt_lines[(N-1):(N-Next)]
(1, 3)

Note: N = Next + Nint + 1(FIQ)

nfiq Fast Interrupt Request Output Low Destination: Input nFIQ of ARM core
Source: Fast Interrupt Request; usually connected to
interrupt_iines[0]

nirq Interrupt Request Output Low Destination: Input nIRQ of ARM core
Source: All interrupt requests (except Fast Interrupt
Request) usually connected to interrupt_lines[(N-1):1](1)

nint – Output Low Low if either nfiq or nirq is active. If nfiq and nirq are
disabled by bit DEBUG_MASK in register AIC2_DEBUG,
nint generates an interrupt depending on the interrupt
sources

Test Scan

scan_test_mode Scan Test Mode Input – Must be tied to 1 during scan test. Must be tied to 0 in
functional mode.

test_se Test Scan Shift Enable Input – Scan shift enabled when tied to 1

test_si[Nchain:1](4) Test Scan Input Input – Input to scan chains

test_so[Nchain:1](4) Test Scan Output Output – Output from scan chains

Table 1. Pin Description List (Continued)

Name Definition Type
Active
Level Comments
3
1796B–CASIC–03/02

Timing Diagram

Figure 2. AIC2 Timing Diagram

clock

Valid

tSU_A tHOLD_A

periph_strobe

periph_address[13:0]

periph_data_in[31:0]

periph_write

periph_data_out[31:0]

tPD1 tPD2

pstb_rising

nfiq, nirq, nint

tPD_IRQ, tPD_FIQ, tPD_INT

tSU_WRITE tHOLD_WRITE

tHOLD_DINtSU_DIN
4 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
Functional Description

Figure 3. Connecting the AIC2 to an ARM®-based Microcontroller

Notes: 1. data_to_periph = signal name from Atmel Bridge, periph_data_in[31:0] = signal name from AIC2 peripheral,
PWDATA[31:0] = signal name from Atmel AMBA System Architecture specification.

2. data_from_periph = signal name from Atmel Bridge, periph_data_out[31:0] = signal name from AIC2 peripheral,
PRDATA[31:0] = signal name from Atmel AMBA System Architecture specification.

Figure 4. Interrupt Controller Block Diagram

FIQ Source

Internal Interrupt Sources
(from peripheral interrupt outputs)

External Interrupt Sources IRQ0 to IRQ2
(from ASIC pads, PIO peripherals, ...) 32-bit

Core
(ARM)

nFIQ

nIRQ

interrupt_lines[0]

interrupt_lines[8:1]

interrupt_lines[11:9]

Atmel Bridge

P
W

R
IT

E

P
W

D
A

T
A

[3
1:

0]
(1

)

P
R

D
A

T
A

[3
1:

0]
(2

)

P
S

T
B

P
A

[1
3:

0]

P
S

E
LA

IC

Atmel Bus Interface

ASB

AIC2

P
S

T
B

_R
IS

IN
G

CLOCK NRESET

nint

3

8

Control
Logic

Memorization

Memorization Prioritization
Controller

nIRQ
Manager

nFIQ
Manager

FIQ(IRQ0) Source

Bus Interface

Internal Interrupt Sources
(IRQ1 - IRQ8)

External Interrupt Sources
(IRQ9 - IRQ11)

32-bit
Core

nFIQ

nIRQ
5
1796B–CASIC–03/02

Note: 1. Reserved interrupt sources are not available. Corresponding registers must not be used and read 0.

Table 2. AIC2 Interrupt Sources

Interrupt
Source Interrupt Name

Interrupt
Description(1) Comment AT91x40 Series Interrupt Assignment(1)

0 FIQ Fast Interrupt
Edge/Level

Negative/Positive
Fast Interrupt

1 IRQ1 Interrupt 1

Edge/Level
Positive Only

Software Interrupt

2 IRQ2 Interrupt 2 USART Channel 0 Interrupt

3 IRQ3 Interrupt 3 USART Channel 1 Interrupt

4 IRQ4 Interrupt 4 Timer Channel 0 Interrupt

5 IRQ5 Interrupt 5 Timer Channel 1 Interrupt

6 IRQ6 Interrupt 6 Timer Channel 2 Interrupt

7 IRQ7 Interrupt 7 Watchdog Interrupt

8 IRQ8 Interrupt 8 Parallel I/O interrupt

9 – Reserved – Reserved

10 – Reserved – Reserved

11 – Reserved – Reserved

12 – Reserved – Reserved

13 – Reserved – Reserved

14 – Reserved – Reserved

15 – Reserved – Reserved

16 IRQ9 Interrupt 9
Edge/Level

Negative/Positive

External Interrupt 0

17 IRQ10 Interrupt 10 External Interrupt 1

18 IRQ11 Interrupt 11 External Interrupt 2

19 – Reserved – Reserved

20 – Reserved – Reserved

21 – Reserved – Reserved

22 – Reserved – Reserved

23 – Reserved – Reserved

24 – Reserved – Reserved

25 – Reserved – Reserved

26 – Reserved – Reserved

27 – Reserved – Reserved

28 – Reserved – Reserved

29 – Reserved – Reserved

30 – Reserved – Reserved

31 – Reserved – Reserved
6 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
Interrupt Handling

Hardware Interrupt
Vectoring

The hardware interrupt vectoring reduces the number of instructions required to manage the
interrupt handlers to only one. By storing the following instruction at address 0x00000018 (if
an ARM7TDMI is used as the host processor), the processor loads the program counter with
the interrupt handler address stored in the AIC2_IVR register. Execution is then vectored to
the interrupt handler corresponding to the current interrupt.

LDR PC,[PC,# -&F20]

The current interrupt is the interrupt with the highest priority when the Interrupt Vector Register
(AIC2_IVR) is read. The value read in the AIC2_IVR corresponds to the address stored in the
Source Vector Register (AIC2_SVR) of the current interrupt. Each interrupt source has its cor-
responding AIC2_SVR. In order to take advantage of the hardware interrupt vectoring, it is
necessary to store the address of each interrupt handler in the corresponding AIC2_SVR, at
system initialization.

Priority Controller The nIRQ line is controlled by an 8-level priority encoder. Each source has a programmable
priority level of 7 to 0. Level 7 is the highest priority and level 0 the lowest.

When the AIC2 receives more than one unmasked interrupt at a time, the interrupt with the
highest priority is serviced first. If both interrupts have equal priority, the interrupt with the low-
est interrupt source number (see Table 2) is serviced first.

The current priority level is defined as the priority level of the current interrupt at the time the
register AIC2_IVR is read (the interrupt which will be serviced).

In the case when a higher priority unmasked interrupt occurs while an interrupt already exists,
there are two possible outcomes depending on whether the AIC2_IVR has been read.

1. If the nIRQ line has been asserted but the AIC2_IVR has not been read, then the pro-
cessor will read the new higher priority interrupt handler address in the AIC2_IVR
register and the current interrupt level is updated.

2. If the processor has already read the AIC2_IVR then the nIRQ line is reasserted.
When the processor has authorized nested interrupts to occur and reads the AIC2_IVR
again, it reads the new, higher priority interrupt handler address. At the same time the
current priority value is pushed onto a first-in last-out stack and the current priority is
updated to the higher priority.

When the end of interrupt command register (AIC2_EOICR) is written the current interrupt
level is updated with the last stored interrupt level from the stack (if any). Hence at the end of
a higher priority interrupt, the AIC2 returns to the previous state corresponding to the preced-
ing lower priority interrupt which had been interrupted.

Software Interrupt
Handling

The interrupt handler must read the AIC2_IVR as soon as possible. This de-asserts the nIRQ
request to the processor and clears the interrupt in case it is programmed to be edge trig-
gered. This permits the AIC2 to assert the nIRQ line again when a higher priority unmasked
interrupt occurs.

At the end of the interrupt service routine, the end of interrupt command register
(AIC2_EOICR) must be written. This allows pending interrupts to be serviced.

Interrupt Masking Each interrupt source, including FIQ, can be enabled or disabled using the command registers
AIC2_IECR and AIC2_IDCR. The interrupt mask can be read in the read only register
AIC2_IMR. A disabled interrupt does not affect the servicing of other interrupts.
7
1796B–CASIC–03/02

Interrupt Clearing
and Setting

All interrupt sources which are programmed to be edge triggered (including FIQ) can be indi-
vidually set or cleared by respectively writing to the registers AIC2_ISCR and AIC2_ICCR.
This function of the interrupt controller is available for auto-test or software debug purposes.

Fast Interrupt
Request

The external FIQ line is the only source which can raise a fast interrupt request to the proces-
sor. Therefore, it has no priority controller. It can be programmed to be positive or negative
edge triggered or high- or low-level sensitive in the related AIC2_SMR register (SMR[0]).

The fast interrupt handler address can be stored in the related AIC2_SVR register (SVR[0]).
The value written into this register is available by reading the AIC2_FVR register when an FIQ
interrupt is raised. By storing the following instruction at address 0x0000001C (if an
ARM7TDMI is used as the host processor), the processor will load the program counter with
the interrupt handler address stored in the AIC2_FVR register.

LDR PC,[PC,# -&F20]

Alternatively, the interrupt handler can be stored starting from address 0x0000001C as
described in the ARM7TDMI datasheet.

Software Interrupt Any interrupt source of the AIC2 can be a software interrupt. It must be programmed to be
edge triggered in order to set or clear it by writing to the AIC2_ISCR and AIC2_ICCR. This is
totally independent of the SWI instruction of the ARM7TDMI processor.

Spurious Interrupt A spurious interrupt is a signal of very short duration on one of the interrupt input lines. See
“Spurious Interrupt Sequence” on page 23 for the sequence of actions necessary to handle
this situation.

Figure 5. Register Interaction

Edge/Polarity
Detector

Interrupt
Sources

N

AIC2_ICCR

clear

AIC2_ISCR

set

clear

set

Mask

Memorization

AIC2_IDCR

AIC2_IECR

AIC2_IMR

Priority Encoder
AIC2_SMRXX

AIC2_IPR

AIC2_ISR
AIC2_CISR

AIC2_SVR0
-
-
-

AIC2_SVR31

AIC2_IVR

Level/Polarity
Detector
8 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
Fast Forcing The Fast Forcing feature is enabled or disabled by using the Fast Forcing Enable Register
(AIC2_FFER) or the Fast Forcing Disable Register (AIC2_FFDR). Writing to these registers
results in an update of the Fast Forcing Status Register (AIC2_FFSR) that controls the feature
for each internal or external interrupt source. When the feature is disabled, the interrupt source
is handled as is typical for the current operating mode.

When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detec-
tion of the interrupt source are both still active, but the source cannot trigger a normal interrupt
to the core and is not seen by the priority handler.

If the interrupt source is programmed in level mode and an active level is sampled, the Fast
Forcing results in the assertion of the nFIQ line to the core.

If the interrupt source is programmed in edge mode and an active edge is detected, the Fast
Forcing results in the assertion of the nFIQ line to the core.

The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending
Register.

The Fast Interrupt Vector Register (AIC2_FVR) reads the contents of the Source Vector Reg-
ister 0, whatever the source of the Fast Interrupt may be. The read of the FVR does not clear
the Source 0 when the Fast Forcing feature is used; the interrupt is cleared by writing to the
Interrupt Clear Command Register.

All enabled and pending interrupt sources that have the Fast Forcing feature enabled and that
are programmed in edge mode must be cleared by writing to the Interrupt Clear Command
Register. In doing so, they are cleared independently and thus lost interrupts are prevented.

The read of the IVR does not clear the source that has the Fast Forcing feature enabled.

The FIQ pin continues to operate normally and becomes one of the Fast Interrupt sources.

Figure 6. Fast Forcing Interaction

Edge/Level

Edge
Detector

Source 0 - FIQ

Edge/Level

Edge
Detector

Source n - IRQ

FVR Reading and
not Σ(FFSR[i])

ICCR[0]

IVR Reading and
not FFSR[n]

ICCR[n]

IPR[n]

IPR[0]

Priority
Manager

FFSR[n]

nFIQ

nIRQ
9
1796B–CASIC–03/02

AIC2 User Interface

Notes: 1. The reset value of this register depends on the level of the external interrupt sources (IRQ9 - IRQ11). All other sources are
cleared at reset.

2. The address takes into account the 2 LSBs [1:0], but the macrocell does not implement these bits.
3. To use relative offset from interrupt exception vector addresses (see “Standard Interrupt Sequence” on page 21), the base

address for the AIC2 into an ARM7TDMI-based system must be 0xFFFFF000. As the 14 LSBs of the address system bus
are used to address the AIC2 registers, the minimum offset is 0x3000.

In the following register descriptions, all undefined bits (“–”) read “0’”.

If the user selects an address which is not defined in Table 3, the value of periph_data_out[31:0] is 0x00000000.

Table 3. AIC2 Memory Map

Address(2,3) Register Name Access Reset State

0x3000 Source Mode Register 0 AIC2_SMR0 Read/write 0

0x3004 Source Mode Register 1 AIC2_SMR1 Read/write 0

– – – Read/write 0

0x307C Source Mode Register 31 AIC2_SMR31 Read/write 0

0x3080 Source Vector Register 0 AIC2_SVR0 Read/write 0

0x3084 Source Vector Register 1 AIC2_SVR1 Read/write 0

– – – Read/write 0

0x30FC Source Vector Register 31 AIC2_SVR31 Read/write 0

0x3100 IRQ Vector Register AIC2_IVR Read-only 0

0x3104 FIQ Vector Register AIC2_FVR Read-only 0

0x3108 Interrupt Status Register AIC2_ISR Read-only 0

0x310C Interrupt Pending Register AIC2_IPR Read-only (see Note 1)

0x3110 Interrupt Mask Register AIC2_IMR Read-only 0

0x3114 Core Interrupt Status Register AIC2_CISR Read-only 0

0x3118 Reserved – – –

0x311C Reserved – – –

0x3120 Interrupt Enable Command Register AIC2_IECR Write-only –

0x3124 Interrupt Disable Command Register AIC2_IDCR Write-only –

0x3128 Interrupt Clear Command Register AIC2_ICCR Write-only –

0x312C Interrupt Set Command Register AIC2_ISCR Write-only –

0x3130 End of Interrupt Command Register AIC2_EOICR Write-only –

0x3134 Spurious Interrupt Vector Register AIC2_SPU Read/write 0

0x3138 Debug Control Register (Protect) AIC2_DEBUG Read/write 0

0x3140 Fast Forcing Enable Register AIC2_FFER Write-only –

0x3144 Fast Forcing Disable Register AIC2_FFDR Write-only –

0x3148 Fast Forcing Status Register AIC2_FFSR Read-only 0
10 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
AIC2 Source Mode Register
Register Name: AIC2_SMR0..AIC2_SMR31

Access Type: Read/write

Reset Value: 0

• PRIOR: Priority Level

Program the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 (lowest) and 7 (highest).

The priority level is not used for the FIQ, in the related SMR register (SMR[0]).

• SRCTYPE: Interrupt Source Type

Program the input to be positive- or negative-edge triggered or positive- or negative-level sensitive.

The active level or edge is not programmable for the internal interrupt sources (IRQ1 - IRQ8).

AIC2 Source Vector Register
Register Name: AIC2_SVR0..AIC2_SVR31

Access Type: Read/write

Reset Value: 0

• VECTOR: Interrupt Handler Address

The user may store in these registers the addresses of the corresponding handler for each interrupt source.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– SRCTYPE – – PRIOR

SRCTYPE Internal Interrupt Sources (IRQ1 - IRQ8) External Interrupt Sources (IRQ9 - IRQ11)

0 0 High-level Sensitive Low-level Sensitive

0 1 Positive-edge Triggered Negative-edge Triggered

1 0 High-level Sensitive High-level Sensitive

1 1 Positive-edge Triggered Positive-edge Triggered

31 30 29 28 27 26 25 24

VECTOR

23 22 21 20 19 18 17 16

VECTOR

15 14 13 12 11 10 9 8

VECTOR

7 6 5 4 3 2 1 0

VECTOR
11
1796B–CASIC–03/02

AIC2 Interrupt Vector Register
Register Name: AIC2_IVR

Access Type: Read-only

Reset Value: 0

• IRQV: Interrupt Vector Register

The IRQ Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to the
current interrupt.

The Source Vector Register (1 to 31 in the case of FIQ mapped on interrupt[0]) is indexed using the current interrupt num-
ber when the Interrupt Vector Register is read.

When there is no current interrupt, the IRQ Vector Register reads 0.

AIC2 FIQ Vector Register
Register Name: AIC2_FVR

Access Type: Read-only

Reset Value: 0

• FIQV: FIQ Vector Register

The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register (0 in case of FIQ
mapped on interrupt[0]) that corresponds to FIQ.

31 30 29 28 27 26 25 24

IRQV

23 22 21 20 19 18 17 16

IRQV

15 14 13 12 11 10 9 8

IRQV

7 6 5 4 3 2 1 0

IRQV

31 30 29 28 27 26 25 24

FIQV

23 22 21 20 19 18 17 16

FIQV

15 14 13 12 11 10 9 8

FIQV

7 6 5 4 3 2 1 0

FIQV
12 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
AIC2 Interrupt Status Register
Register Name: AIC2_ISR

Access Type: Read-only

Reset Value: 0

• IRQID: Current IRQ Identifier

The Interrupt Status Register returns the current interrupt source number.

31 30 29 28 27 26 25 24

0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 IRQID
13
1796B–CASIC–03/02

AIC2 Interrupt Pending Register
Register Name: AIC2_IPR

Access Type: Read-only

Reset Value: 0

• Interrupt Pending

0 = Corresponding interrupt is inactive.

1 = Corresponding interrupt is pending.

AIC2 Interrupt Mask Register
Register Name: AIC2_IMR

Access Type: Read-only

Reset Value: 0

• Interrupt Mask

0 = Corresponding interrupt is disabled.

1 = Corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ
14 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
AIC2 Core Interrupt Status Register
Register Name: AIC2_CISR

Access Type: Read-only

Reset Value: 0

• NFIQ: NFIQ Status

0 = NFIQ line inactive.

1 = NFIQ line active.

• NIRQ: NIRQ Status

0 = NIRQ line inactive.

1 = NIRQ line active.

31 30 29 28 27 26 25 24

0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 NIRQ NFIQ
15
1796B–CASIC–03/02

AIC2 Interrupt Enable Command Register
Register Name: AIC2_IECR

Access Type: Write-only

• Interrupt Enable

0 = No effect.

1 = Enables corresponding interrupt.

AIC2 Interrupt Disable Command Register
Register Name: AIC2_IDCR

Access Type: Write-only

• Interrupt Disable

0 = No effect.

1 = Disables corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ
16 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
AIC2 Interrupt Clear Command Register
Register Name: AIC2_ICCR

Access Type: Write-only

• Interrupt Clear

0 = No effect.

1 = Clears corresponding interrupt.

AIC2 Interrupt Set Command Register
Register Name: AIC2_ISCR

Access Type: Write-only

• Interrupt Set

0 = No effect.

1 = Sets corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ
17
1796B–CASIC–03/02

AIC2 End of Interrupt Command Register
Register Name: AIC2_EOICR

Access Type: Write-only

The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.

AIC2 Spurious Interrupt Vector Register
Register Name: AIC2_SPU

Access Type: Read/write

Reset Value: 0

• SIQV: Spurious Interrupt Vector Register (see “Spurious Interrupt Sequence” on page 23 for more details)

This register contains the 32-bit address of an interrupt routine which is used to treat cases of spurious interrupts.

The programmed address is read in the AIC2_IVR if it is read when the nIRQ line is not asserted.

The programmed address is read in the AIC2_FVR if it is read when the nFIQ line is not asserted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

31 30 29 28 27 26 25 24

SIQV

23 22 21 20 19 18 17 16

SIQV

15 14 13 12 11 10 9 8

SIQV

7 6 5 4 3 2 1 0

SIQV
18 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
AIC2 Debug Control Register (Protect Control Register)
Register Name: AIC2_DEBUG

Access Type: Read/write

Reset Value: 0

• DBG_MASK

When high, nfiq and nirq outputs are disabled (set to high). Note that nint output is not affected.

• DBG_MODE

Activates Protect Mode when set to high. See “Protect Mode” on page 23 for more information.

AIC2 Fast Forcing Enable Register
Register Name: AIC2_FFER

Access Type: Write-only

• Fast Forcing Enable

0 = No effect.

1 = Enables fast forcing feature on corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – DBG_MASK DBG_MODE

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ
19
1796B–CASIC–03/02

AIC2 Fast Forcing Disable Register
Register Name: AIC2_FFDR

Access Type: Write-only

• Fast Forcing Disable

0 = No effect.

1 = Disables fast forcing feature on corresponding interrupt.

AIC2 Fast Forcing Status Register
Register Name: AIC2_FFSR

Access Type: Read-only

• Fast Forcing Status

0 = Disabled.

1 = Fast forcing feature enabled on corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – IRQ11 IRQ10 IRQ9

15 14 13 12 11 10 9 8

– – – – – – – IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 FIQ
20 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
Application
Examples

Standard Interrupt
Sequence

For details on the registers mentioned in the steps below, refer to the ARM7TDMI Embedded
Core datasheet.

It is assumed that:

1. The Advanced Interrupt Controller 2 has been programmed, AIC2_SVR is loaded with
corresponding interrupt service routine addresses and interrupts are enabled.

2. The instruction at address 0x18 (IRQ exception vector address) is
LDR PC, [PC, #-&F20]

When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is:

1. The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in
the IRQ link register (R14_IRQ) and the Program Counter (R15) is loaded with 0x18. In
the following cycle during fetch at address 0x1C, the ARM core adjusts R14_IRQ, dec-
rementing it by four.

2. The ARM core enters IRQ mode, if it is not already.

3. When the instruction loaded at address 0x18 is executed, the Program Counter is
loaded with the value read in AIC2_IVR. Reading the AIC2_IVR has the following
effects:

- Sets the current interrupt to be the pending one with the highest priority. The current
level is the priority level of the current interrupt.

- De-asserts the nIRQ line on the processor. (Even if vectoring is not used, AIC2_IVR
must be read in order to de-assert nIRQ.)

- Automatically clears the interrupt, if it has been programmed to be edge-triggered.

- Pushes the current level on to the stack

- Returns the value written in the AIC2_SVR corresponding to the current interrupt

4. The previous step has effect to branch to the corresponding interrupt service routine.
This should start by saving the Link Register(R14_IRQ) and the SPSR(SPSR_IRQ).
Note that the Link Register must be decremented by four when it is saved if it is to be
restored directly into the Program Counter at the end of the interrupt. For example, the
instruction SUB PC, LR, #4 may be used.

5. Further interrupts can then be unmasked by clearing the “I” bit in the CPSR, allowing
re-assertion of the nIRQ to be taken into account by the core. This can occur if an inter-
rupt with a higher priority than the current one occurs.

6. The Interrupt Handler can then proceed as required, saving the registers which will be
used and restoring them at the end. During this phase, an interrupt of priority higher
than the current level will restart the sequence from step 1. Note that if the interrupt is
programmed to be level sensitive, the source of the interrupt must be cleared during
this phase.

7. The “I” bit in the CPSR must be set in order to mask interrupts before exiting, to ensure
that the interrupt is completed in an orderly manner.

8. The End of Interrupt Command Register (AIC2_EOICR) must be written in order to
indicate to the AIC2 that the current interrupt is finished. This causes the current level
to be popped from the stack, restoring the previous current level if one exists on the
stack. If another interrupt is pending, with lower or equal priority than old current level
but with higher priority than the new current level, the nIRQ line is re-asserted, but the
interrupt sequence does not immediately start because the “I” bit is set in the core.
21
1796B–CASIC–03/02

9. The SPSR (SPSR_IRQ) is restored. Finally, the saved value of the Link Register is
restored directly into the PC. This has effect of returning from the interrupt to whatever
was being executed before, and of loading the CPSR with the stored SPSR, masking
or unmasking the interrupts depending on the state saved in the SPSR (the previous
state of the ARM core).

Note: The “I” bit in the SPSR is significant. If it is set, it indicates that the ARM core was just about to
mask IRQ interrupts when the mask instruction was interrupted. Hence, when the SPSR is
restored, the mask instruction is completed (IRQ is masked).

Fast Interrupt
Sequence

For details on the registers mentioned in the steps below, refer to the ARM7TDMI Embedded
Core datasheet.

It is assumed that:

1. The Advanced Interrupt Controller 2 has been programmed, the AIC2_SVR register
corresponding to FIQ interrupt (AIC2_SVR[0] in this example) is loaded with fast inter-
rupt service routine address, and the fast interrupt is enabled.

2. The Instruction at address 0x1C(FIQ exception vector address) is:
LDR PC, [PC, #-&F20].

3. Nested Fast Interrupts are not needed by the user.

When nFIQ is asserted, if the bit “F” of CPSR is 0, the sequence is:

1. The CPSR is stored in SPSR_fiq, the current value of the Program Counter is loaded in
the FIQ link register (R14_FIQ) and the Program Counter (R15) is loaded with 0x1C. In
the following cycle, during fetch at address 0x20, the ARM core adjusts R14_FIQ, dec-
rementing it by four.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is executed, the Program Counter is
loaded with the value read in AIC2_FVR. Reading the AIC2_FVR has effect of auto-
matically clearing the fast interrupt (source 0 connected to the FIQ line), if it has been
programmed to be edge triggered. In this case only, it de-asserts the nFIQ line on the
processor.

4. The previous step has effect to branch to the corresponding interrupt service routine. It
is not necessary to save the Link Register(R14_FIQ) and the SPSR(SPSR_FIQ) if
nested fast interrupts are not needed.

5. The Interrupt Handler can then proceed as required. It is not necessary to save regis-
ters R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, R0 to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the nFIQ line.

6. Finally, the Link Register (R14_FIQ) is restored into the PC after decrementing it by
four (with instruction SUB PC, LR, #4 for example). This has effect of returning from the
interrupt to whatever was being executed before, and of loading the CPSR with the
SPSR, masking or unmasking the fast interrupt depending on the state saved in the
SPSR.

Note: The “F” bit in the SPSR is significant. If it is set, it indicates that the ARM core was just about to
mask FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is
restored, the interrupted instruction is completed (FIQ is masked).
22 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

Advanced Interrupt Controller 2 (AIC2)
Spurious Interrupt
Sequence

A spurious interrupt is a signal of very short duration on one of the interrupt input lines. It is
handled by the following sequence of actions.

1. When an interrupt is active, the AIC2 asserts the nIRQ (or nFIQ) line and the
ARM7TDMI enters IRQ (or FIQ) mode.
At this moment, if the interrupt source disappears, the nIRQ (or nFIQ) line is de-
asserted but the ARM7TDMI continues with the interrupt handler.

2. If the IRQ Vector Register (AIC2_IVR) is read when the nIRQ is not asserted, the
AIC2_IVR is read with the contents of the Spurious Interrupt Vector Register.

3. If the register FIQ Vector Register (AIC2_FVR) is read when the nFIQ is not asserted,
the AIC2_FVR is read with the contents of the Spurious Interrupt Vector Register.

4. The Spurious Interrupt Routine must as a minimum write an end of interrupt command.
It is sufficient to write to the end of interrupt command register AIC2_EOICR.
Until the AIC2_EOICR write is received by the interrupt controller, the nIRQ (or nFIQ)
line is not re-asserted.

5. This causes the ARM7TDMI to jump into the Spurious Interrupt Routine.

6. During a Spurious Interrupt Routine, the Interrupt Status Register AIC2_ISR reads 0.

Protect Mode Protect Mode permits reading of the Interrupt Vector Register without performing the associ-
ated automatic operations. This is necessary when working with a debug system. When a
debug monitor or an ICE reads the AIC2 User Interface, the IVR could be read. This has the
following consequences in normal mode:

• If an enabled interrupt with a higher priority than the current one is pending, it is stacked.

• If there is no enabled pending interrupt, the spurious vector is returned.

In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC2. This operation is generally not performed by the debug system. Hence
the debug system would become strongly intrusive, and could cause the application to enter
an undesired state.

This is avoided by using Protect Mode. Protect Mode is enabled by setting the bit DBG_MODE
in the AIC2 Debug Control Register. When Protect Mode is enabled, the AIC2 performs inter-
rupt stacking only when a write access is performed on the AIC2_IVR. Therefore, the Interrupt
Service Routines must write (arbitrary data) to the AIC2_IVR just after reading it. The new
context of the AIC2, including the value of the Interrupt Status Register (AIC2_ISR), is updated
with the current interrupt only when IVR is written. An AIC2_IVR read on its own (e.g., by a
debugger), modifies neither the AIC2 context nor the AIC2_ISR. Extra AIC2_IVR reads per-
formed between the read and the write can cause unpredictable results. Therefore, it is
strongly recommended not to set a breakpoint between these two actions, nor to stop the soft-
ware.The debug system must not write to the AIC2_IVR as this would cause undesirable
effects. Table 4 shows the main steps of an interrupt and the order in which they are per-
formed according to the mode.
23
1796B–CASIC–03/02

Notes: 1. NIRQ de-assertion and automatic interrupt clearing if the source is programmed as level-sensitive.
2. Software that has been written and debugged using Protect Mode runs correctly in Normal Mode without modification. How-

ever, in Normal Mode the AIC2_IVR write has no effect and can be removed to optimize the code.

Table 4. Interrupt Steps

Action Normal Mode Protect Mode

Calculate active interrupt (higher that current or spurious) Read AIC2_IVR Read AIC2_IVR

Determine and return the vector of the active interrupt Read AIC2_IVR Read AIC2_IVR

Memorize interrupt Read AIC2_IVR Read AIC2_IVR

Push on internal stack the current priority level Read AIC2_IVR Write AIC2_IVR

Acknowledge the interrupt(1) Read AIC2_IVR Write AIC2_IVR

No effect(2) Write AIC2_IVR
24 Advanced Interrupt Controller 2 (AIC2)
1796B–CASIC–03/02

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

Printed on recycled paper.

1796B–CASIC–03/02 0M

ATMEL® is the registered trademark of Atmel.

ARM®, Thumb® and ARM Powered® are registered trademarks of ARM Ltd.; ARM7TDMI™ and AMBA™ are
trademarks of ARM Ltd. Other terms and product names may be the trademarks of others.

