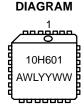
9-Bit ECL to TTL Translator

The MC10H/100H601 is a 9-bit, dual supply ECL to TTL translator. Devices in the Motorola 9-bit translator series utilize the 28-lead PLCC for optimal power pinning, signal flow-through and electrical performance.

The devices feature a 48 mA TTL output stage, and AC performance is specified into both a 50 pF and 200 pF load capacitance. For the 3-state output disable, both ECL and TTL control inputs are provided, allowing maximum design flexibility.

The 10H version is compatible with MECL 10H ECL logic levels. The 100H version is compatible with 100K levels.

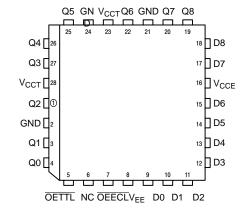
- 9-Bit Ideal for Byte-Parity Applications
- 3-State TTL Outputs
- Flow-Through Configuration
- Extra TTL and ECL Power Pins to Minimize Switching Noise
- ECL and TTL 3-State Control Inputs
- Dual Supply
- 4.8 ns Max Delay into 50 pF, 9.6 ns into 200 pF (all Outputs Switching)
- PNP TTL Inputs for Low Loading



ON Semiconductor®

http://onsemi.com

PLCC-28 FN SUFFIX CASE 776


MARKING

A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

PIN NAMES

PIN	FUNCTION
GND VCCE VCCT VEE D0-D8 Q0-Q8 OEECL OETTL	TTL Ground (0 V) ECL V _{CC} (0 V) TTL Supply (+5.0 V) ECL Supply (-5.2/-4.5 V) Data Inputs (ECL) Data Outputs (TTL) 3-State Control (ECL) 3-State Control (TTL)

Pinout: 28-Lead PLCC (Top View)

ORDERING INFORMATION

Device	Package	Shipping
MC10H601FN	PLCC-28	37 Units/Rail
MC100H601FN	PLCC-28	37 Units/Rail

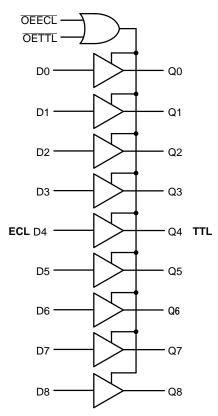


Figure 1. Logic Diagram

TRUTH TABLE

OEECL	OETTL	D	ø
L	L	L	L
L	L	Н	Н
Н	Х	Х	Z
Х	Н	Х	Z

10H ECL DC CHARACTERISTICS: V_{CCT} = 5.0 V \pm 10%; V_{EE} = -5.2 V \pm 5%

		0°C		25°C		85		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
I _{EE}	Power Supply Current		-51		-51		-51	mA
I _{INH} I _{INL}	Input HIGH Current Input LOW Current	0.5	255	0.5	175	0.5	175	μ Α μ Α
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	-1170 -1950	-840 -1480	-1130 -1950	-810 -1480	-1060 -1950	-720 -1445	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

100H ECL DC CHARACTERISTICS: $V_{CCT} = 5.0 \text{ V} \pm 10\%$; $V_{EE} = -4.2 \text{ V}$ to -5.5 V

		0°C		25°C		85°C		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
I _{EE}	Power Supply Current		-51		-51		-53	mA
I _{INH} I _{INL}	Input HIGH Current Input LOW Current	0.5	255	0.5	175	0.5	175	μ Α μ Α
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	mV

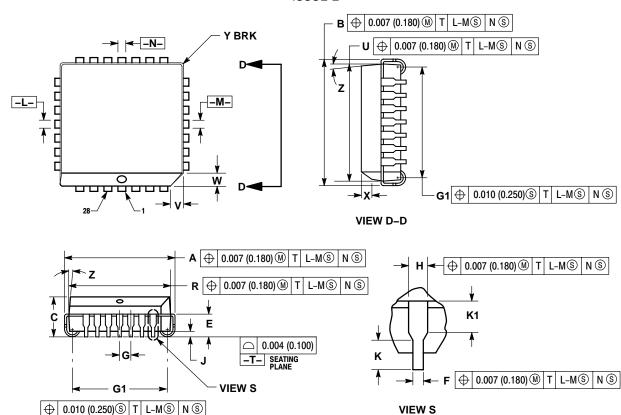
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

TTL DC CHARACTERISTICS: $V_{CCT} = 5.0 \text{ V} \pm 10\%$; $V_{EE} = -5.2 \text{ V} \pm 5\%$ (10H version); $V_{EE} = -4.2 \text{ V}$ to -5.5 V (100H version)

			0°C		25	°C	85°C		
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{CCH}	Power Supply Current			110		110		110	mA
I _{CCL}	1			110		110		110	
I _{CCZ}	Power Supply Current			105		105		105	
I _{IH}	Input HIGH Current	V _{IN} = 2.7 V V _{IN} = 7.0 V		20 100		20 100		20 100	μΑ
I _{IL}	Input LOW Current	V _{IN} = 0.5 V		-0.6		-0.6		-0.6	mA
Ios	Output Short Circuit Current	V _{OUT} = 0 V	-100	-225	-100	-225	-100	-225	mA
I _{OZH} I _{OZL}	Output Disable Current HIGH Output Disable Current LOW	V _{OUT} = 2.7 V V _{OUT} = 0.5 V	-50	50	-50	50	-50	50	μΑ
V _{IHT} V _{ILT}	Input HIGH Voltage Input LOW Voltage		2.0	0.8	2.0	0.8	2.0	0.8	V
V _{OHT}	Output HIGH Voltage	$I_{OH} = -3.0 \text{ mA}$ $I_{OH} = -15 \text{ mA}$	2.5 2.0		2.5 2.0		2.5 2.0		V
V _{OLT}	Output LOW Voltage	I _{OL} = 48 mA		0.55		0.55		0.55	V
V _{IK}	Input Clamp Voltage	I _{IN} = -18 mA		-1.2		-1.2		-1.2	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

AC CHARACTERISTICS: $V_{CCT} = 5.0 \text{ V} \pm 10\%$; $V_{EE} = -5.2 \text{ V} \pm 5\%$ (10H version); $V_{EE} = -4.2 \text{ V}$ to -5.5 V (100H version)


				0°C		25	°C	85	°C	
Symbol	Parameter		Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} t _{PHL}	Propagation Delay to Output		$C_L = 50 \text{ pF}$ $C_L = 200 \text{ pF}$	1.7 3.4	4.8 9.6	1.7 3.4	4.8 9.6	1.7 3.4	4.8 9.6	ns ns
t _{PLZ} t _{PHZ}	Output Disable Time	OEECL	$C_L = 50 \text{ pF}$ $C_L = 200 \text{ pF}$	3.7 5.4	6.5 13	3.7 5.4	6.5 13	3.7 5.4	6.5 13	ns ns
t _{PLZ} t _{PHZ}		OETTL	$C_L = 50 \text{ pF}$ $C_L = 200 \text{ pF}$	4.3 7.0	7.5 15	4.3 7.0	7.5 15	4.3 7.0	7.5 15	ns ns
t _{PZL} t _{PZH}	Output Enable Time	OEECL	$C_L = 50 \text{ pF}$ $C_L = 200 \text{ pF}$	3.5 5.0	6.0 12	3.5 5.0	6.0 12	3.5 5.0	6.0 12	ns ns
t _{PZL} t _{PZH}		OETTL	$C_L = 50 \text{ pF}$ $C_L = 200 \text{ pF}$	4.2 6.0	7.0 14	4.2 6.0	7.0 14	4.2 6.0	7.0 14	ns ns
t _R t _F	Output Rise/Fall Time 1.0 V – 2.0 V		$C_L = 50 \text{ pF}$ $C_L = 200 \text{ pF}$		1.2 3.0		1.2 3.0		1.2 3.0	ns ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

PACKAGE DIMENSIONS

PLCC-28 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 776-02 ISSUE E

NOTES:

- DATUMS -L-, -M-, AND -N- DETERMINED
 WHERE TOP OF LEAD SHOULDER EXITS
 PLASTIC BODY AT MOLD PARTING LINE.
- DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -1-, SEATING PLANE.
 DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS
- 0.010 (0.250) PER SIDE.
 4. DIMENSIONING AND TOLERANCING PER

- 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 5. CONTROLLING DIMENSION: INCH.
 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY STANDING OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

 7. DIMENSION H DOES NOT INCLUDE DAMBAR
- PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
С	0.165	0.180	4.20	4.57
Е	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
7	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2 °	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

N. American Technical Support: 800-282-9855 Toll Free

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.