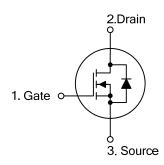


UNISONIC TECHNOLOGIES CO., LTD

13N50 **Power MOSFET Preliminary**

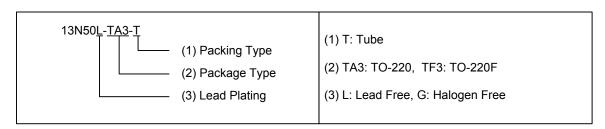
500V N-CHANNEL MOSFET

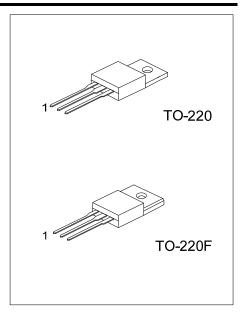
DESCRIPTION


The UTC 13N50 is an N-Channel enhancement mode power MOSFET. The device adopts planar stripe and uses DMOS technology to minimize and provide lower on-state resistance and faster switching speed. It can also withstand high energy pulse under the avalanche and commutation mode conditions.

The UTC 13N50 is ideally suitable for high efficiency switch mode power supply, power factor correction, electronic lamp ballast based on half bridge topology.

FEATURES


- * $R_{DS(ON)}$ =0.48 Ω @ V_{GS} = 10 V
- * Ultra low gate charge (typical 43 nC)
- * Low reverse transfer Capacitance (C_{RSS} = typical 20pF)
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness


SYMBOL

Ordering Number		Dackago	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
13N50L-TA3-T	13N50G-TA3-T	TO-220	G	D	S	Tube	
13N50L-TF3-T	13N50G-TF3-T	TO-220F	G	D	S	Tube	

■ ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V_{DSS}	500	٧
Gate-Source Voltage	V_{GSS}	±30	V
Continuous Drain Current	I _D	13	Α
Pulsed Drain Current (Note 2)	I _{DM}	52	Α
Avalanche Current (Note 2)	I _{AR}	13	Α
Single Pulsed Avalanche Energy (Note 3)	E _{AS}	860	mJ
Repetitive Avalanche Energy (Note 2)	E _{AR}	19.5	mJ
Peak Diode Recovery dv/dt (Note 4)	dv/dt	4.5	V/ns
Dower Dissipation (T. –35°C)		195	W
Power Dissipation (T _C =25°C) TO-220F	P _D	48	W
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-55~+150	٥°

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Repetitive Rating: Pulse width limited by maximum junction temperature
 - 3. L = 6.0, I_{AS} = 13A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
 - 4. $I_{SD} \le 13.A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220	0	62.5	°C/W
	TO-220F	θ_{JA}	62.5	°C/W
Junction to Case	TO-220	0	0.64	°C/W
	TO-220F	θ _{JC}	2.58	°C/W

■ ELECTRICAL CHARACTERISTICS (T_C =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	500			V			
Drain-Source Leakage Current	I _{DSS}	$V_{DS} = 500V, V_{GS} = 0V$			1	μΑ			
Gate-Source Leakage Current	I _{GSS}	$V_{GS} = 30V, V_{DS} = 0V$			100	nA			
		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA			
Breakdown Voltage Temperature	$\triangle BV_{DSS}/\triangle T_{J}$	$I_D = 250 \mu A$		0.5		V/°C			
Coefficient	ZDVDSS/ZIJ	Referenced to 25°C		0.5		V/ C			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.0		4.0	V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 6.5A$		0.39	0.48	Ω			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C _{ISS}			1580	2055	pF			
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		180	235	pF			
Reverse Transfer Capacitance	C_{RSS}			20	25	pF			
SWITCHING CHARACTERISTICS									
Turn-On Delay Time	t _{D(ON)}			25	60	nS			
Turn-On Rise Time	t_R	V _{DD} =250V, I _D =13A		100	210	nS			
Turn-Off Delay Time	t _{D(OFF)}	R _G =25Ω (Note 1,2)		130	270	nS			
Turn-Off Fall Time	t _F			100	210	nS			
Total Gate Charge	Q_G	\\ -400\\ I -13A \\ -40\\		43	56	nC			
Gate-Source Charge	Q_GS	V _{DS} =400V, I _D =13A, V _{GS} =10 V		7.5		nC			
Gate-Drain Charge	Q_{GD}	(Note 1, 2)		18.5	_	nC			

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
FARAIVIETER	STIVIDOL	TEST CONDITIONS	IVIIIN	LIF	IVIAA	UNIT		
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
Drain-Source Diode Forward Voltage	V_{SD}	$V_{GS} = 0V, I_{S} = 13 A$			1.4	V		
Maximum Continuous Drain-Source	,				40			
Diode Forward Current	I _S				13	Α		
Maximum Pulsed Drain-Source Diode								
Forward Current	I _{SM}				52	Α		
Reverse Recovery Time	t _{RR}	V _{GS} = 0V, I _S = 13A,		410		nS		
Reverse Recovery Charge	Q _{RR}	dI _F / dt = 100A/µs (Note 1)		4.5		μC		

Notes: 1. Pulse Test : Pulse width≤300µs, Duty cycle≤2%

2. Essentially independent of operating ambient temperature

■ TEST CIRCUITS AND WAVEFORMS

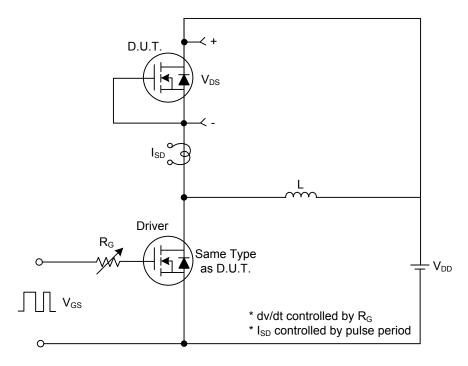


Fig. 1A Peak Diode Recovery dv/dt Test Circuit

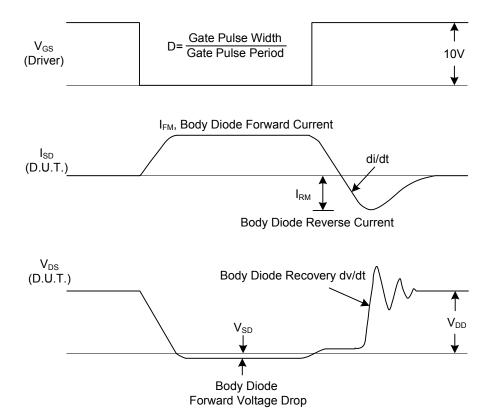
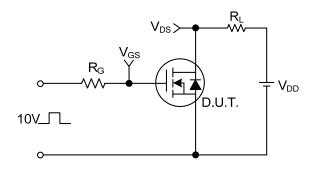



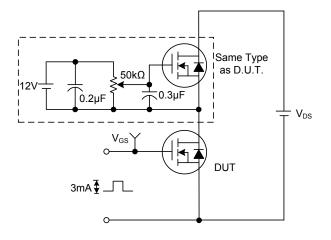
Fig. 1B Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

V_{DS} 90%

V_{GS} 10%

t_{D(ON)}


t_{D(OFF)}

t_F

t_{OFF)}

Fig. 2A Switching Test Circuit

Fig.2B Switching Waveforms

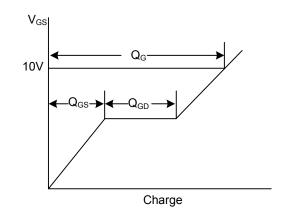
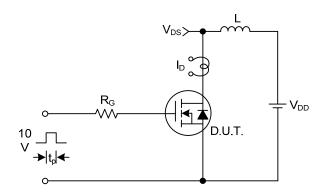



Fig. 3A Gate Charge Test Circuit

Fig. 3B Gate Charge Waveform

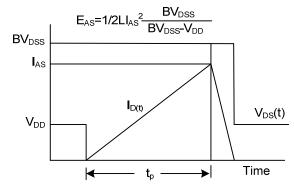


Fig. 4A Unclamped Inductive Switching Test Circuit

Fig. 4B Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.