·WYUNDAI

HY638100AS/HY638100AL

128 x 8 Bit FAST SRAM

PRELIMINARY

DESCRIPTION

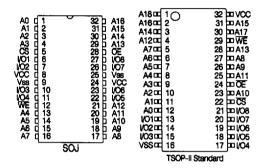
The HY638100 is a 1,048,576 -bit high-speed Static Random Access Memory organized as 131,072 words by 8 bits. The HY638100 uses eight common input and output liness and has an output enable pin which operates faster than address access time at read cycle. The device is fabricated using HYUNDAI's advanced CMOS process and designed for high-speed circuit technology. It is particulary well suited for use in high-density high-speed system applications.

FEATURES

- High speed 15/17/20/25ns
- Low power consumption
- HY638100AS

Active : 150mA (max.) Standby (TTL) : 50mA (max.)

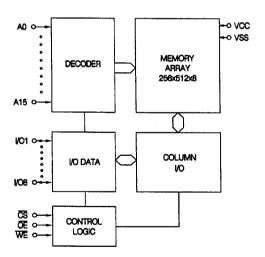
(CMOS): 2mA (max.)


- HY638100AL

Active : 150mA (max.) Standby (TTL) : 50mA (max.) (CMOS): 100µA (max.)

- Single 5V±10% power supply
- TTL compatible inputs and outputs
- 32 pin 400 mil SOJ(Revolutionary)

• 32 pin 400 mil TSOP-II


PIN CONNECTION

BLOCK DIAGRAM

PIN DESCRIPTION

Pin Name	Pin Function
CS	Chip Select
WE	Write Enable
ŌĒ	Output Enable
A0-A15	Address Inputs
1/01-1/08	Data Input/Output
Vcc	Power(+5V)
Vss	Ground

This document is a general product description and is subject to change without notice. Hyundai Electronics does not assume any responsibility for use of circuits described. No patent licences are implied. 1DG02-22-MAY95

4675088 0006186 747 **=**

173

ABSOLUTE MAXIMUM RATINGS®

SYMBOL	PARAMETER	RATING	UNIT
VCC, VIN, VOUT	Power Supply, Input/Output Voltage	-0.5 to 7.0	V
TA	Operating Temperature	0 to 70	•c
TBIAS	Temperature Under Bias	-10 to 125	°C
Тѕтс	Storage Temperature	-65 to 150	°C
PD	Power Dissipation	1.0	w
lout	Data Output Current	50	mA
TSOLDER	Lead Soldering Temperature & Time	260 • 10	°C • sec

Note:

RECOMMENDED DC OPERATING CONDITIONS

(TA= 0°C to 70°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Vcc	Power Supply Voltage	4.5	5.0	5.5	V
ViH	Input High Voltage	2.2	-	Vcc + 0.5	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	-	0.8	V

Note

TRUTH TABLE

MODE	VO OPERATION	CS	WE	ŌĒ
Standby	High-Z	Н	Х	Х
Output Disabled	High-Z	L	Н	Н
Read	Data out	L	н	L
Write	Data in	L	L	×

Note:

1. X= Don't Care

4675088 0006187 683

1DG02-22-MAY95

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage
to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational of this specification is not implied. Exposure to absolute
maximum rating conditions for extended period may affect reliability.

^{1.} Vil = -3.0V for pulse width less than 10ns

DC CHARACTERISTICS

(TA = 0°C to 70°C, VCC = $5V \pm 10\%$, unless otherwise specified.)

SYMBOL	PARAMETER	TEST CONDITIONS	SPEED	MIN.	TYP.	MAX.	UNIT	
<u>lu</u>	Input Leakage Current	Vss ≤ Vin ≤ VCC		-2	-	2	μA	
lLO	Output Leakage Current	Vss ≤ Vout ≤ Vcc CS = Viн or OE=Viн or WE	E = VIL	-2	-	2	μA	
			15ns	_	-	150	mΑ	
ICC1	Average Operating	CS = VIL, II/O = 0mA	17ns		_	150	mA	
100,	Current	Min. Duty Cycle = 100%	Min. Duty Cycle = 100% 20	Min. Duty Cycle = 100% 20ns	_		140	mA.
			25ns		<u> </u>	130	mΑ	
ISB	TTL Standby Current (TTL Inputs)	CS=ViH,ViN=ViH or ViL, Mir	n. Cycle	-	-	50	mA	
	CMOS Standby	CS ≥ VCC -0.2V. VIN ≥				2	mΑ	
ISB1	Current(CMOS Inputs)	Vcc-0.2V or Vin ≤ 0.2V	L	-	20	100	μΑ	
VOL	Output Low Voltage	lot= 8.0mA		-	-	0.4	V	
Voн	Output High Voltage	Iон= - 4.0mA		2.4		-	V	

Note:

^{1.} Typical values are at Vcc=3.3V, T=25°C

AC CHARACTERISTICS

(TA=0°C to 70°C, Vcc=5V ±10%, unless otherwise noted.)

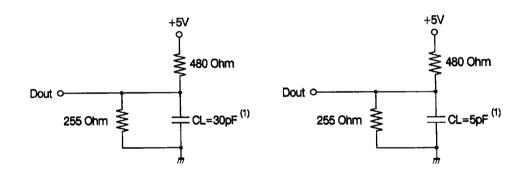
				15	1	17	20		7	25	
#	SYMBOL			MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
	READ (CYCLE					·				
1	tRC	Read Cycle Time	15		17.		20	-	25	_	ns
2	taa	Address Access Time	<u> </u>	15		17		20	-	25	ns
	tacs	Chip Select Access Time	-	15	-	17	_	20	-	25	ns
4	toE	Output Enable to Output Valid		8	-	9	-	10	-	12	ns
5	tcLz	Chip Select to Low -Z Output	3		3		3	_	3		ns
6	toLZ	Output Enable to Low-Z Output	3		3		3	-	3	-	ns
7	tcHZ	Chip Disable to High -Z Output	0	8	0	8	0	8	0	8	ns
8_	tonz	Output Disable to High -Z Output	0	8	0	8	0	10	0	10	ns
9	ton_	Output Hold from Address Change	3	_	3	-	3	-	3	•	ns
	WRITE	CYCLE									
10	twc	Write Cycle Time	15	_	17	_	20	-	25	-	ns
11_	tcw	Chip Select to End of Write	11	-	12	-	13	-	15	-	ns
12	taw	Address Valid to End of Write	11	_	12	-	13	-	15	-	ns
13	tas	Address Set-up Time	0	•	0	_	0	-	0	-	ns
14	twp	Write Plus Width	11	-	11	ı	13	•	15	-	ns
15	twr	Write Recovery Time	0	-	0	-	0	_	0	-	ns
16	twnz	Write to High-Z Output	0	8	0	8	0	9	0	10	ns
17	tow	Data to Write Time Overlap	8	-	10	-	10	_	15	_	ns
18	tDH	Data Hold from Write Time	0	_	0	-	0	-	0	-	ns
19	tow	Output Active from End of Write	3	_	3	-	3	-	3	-	ns

4675088 0006189 456

176

1DG02-22-MAY95

AC TEST CONDITIONS


(TA=0°C to 70°C, V_{CC}=5V ±10%, unless otherwise specified.)

PARAMETER	VALUE
nput Pulse Level	0V to 3V
Input Rise and Fall Time	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	See below

AC TEST LOADS

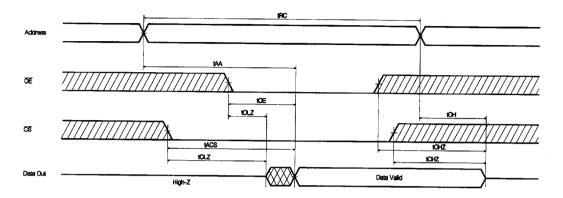
Output Load (B) (for tCHz,tCLz,tOLz,tOHz,tWHZ & tOW)

Note:

1. Including jig and scope capacitance.

CAPACITANCE

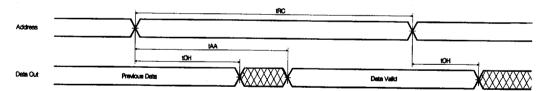
(TA=25°C, f= 1MHz)


SYMBOL	PARAMETER	CONDITION	MAX.	UNIT
Cin	Input Capacitance	Vin=QV	6	pF
Ci/O	Input/Output Capacitance	Vvo=0V	10	pF

Note:

1. This parameter is sampled and not 100% tested.

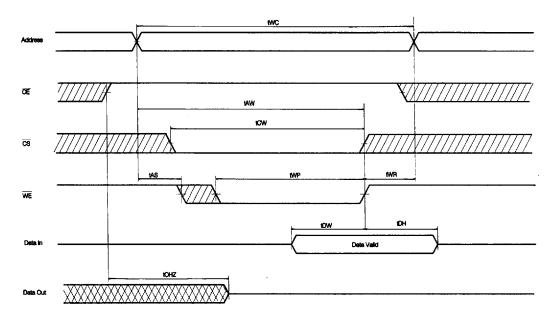
TIMING DIAGRAM


READ CYCLE1

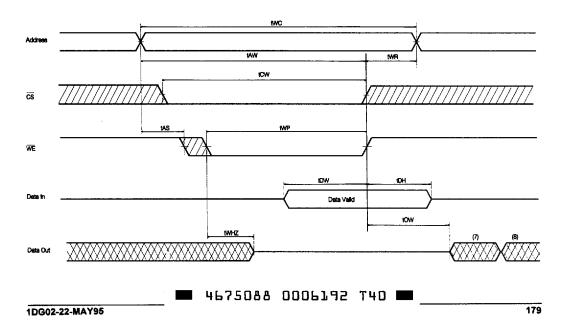
Note (READ CYCLE):

- tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, t_{CHZ} max. is less than t_{CLZ} min. both for a given device and from device to device.
- 3. WE is high for read cycle.

READ CYCLE2



Note (READ CYCLE):


- 1. WE is high for read cycle.
- 2. Device is continuously selected CS=Vil.
- 3. ŌE=VIL.

-	4675088	0006747	004		
178					1DG02-22-MAY95

WRITE CYCLE 1(OE Clocked)

WRITE CYCLE 2(OE Low Fixed)

Note (WRITE CYCLE):

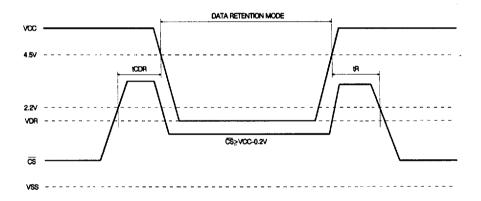
- 1. A write occurs during the overlap of a low \(\overlap{\overlap}\)S and a low \(\overlap{\overlap}\)E. A write begins at the latest transition among \(\overlap{\overlap}\)S going low, and \(\overlap{\overlap}\)E going low. A write ends at the earlist transition among \(\overlap{\overlap}\)S going high and \(\overlap{\overlap}\)E going high. two is measured from the beginning of write to the end of write.
- 2. tcw is measured from the later of CS going low to end of write.
- 3. tas is measured from the address valid to the beginning of write.
- twn is measured from the end of write to the address change. twn applied in case a write ends as CS or WE going high.
- 5. If OE and WE are in the read mode during this period, the I/O pins are in the output low-Z state, inputs of opposite phase of the output must not be applied because bus contention can occur.
- If CS goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state.
- 7. Dout is the same phase of lastest written data in this write cycle.
- 8. Dout is the read data of the new address.

4675088 0006193 987

180

1DG02-22-MAY95

DATA RETENTION CHARACTERISTICS (L Version)


(Ta=0°C to 70°C)

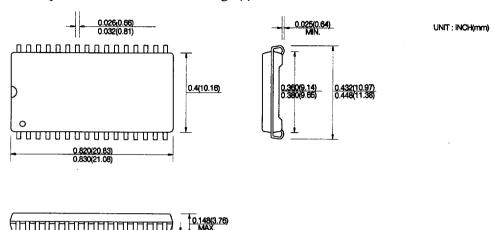
SYMBOL	PARAMETER	TEST CONDITION	POWER	MIN.	TYP.	MAX.	UNIT
VDR	VCC for Data Retention	CS ≥ Vcc-0.2V Vss ≤ Vin ≤ Vcc		2.0	-	-	٧
ICCDR	Data Retention Current	Vcc=3.0V CS ≥ Vcc-0.2V Vss ≤ Vin ≤ Vcc	L	_	10	50	μΑ
tcor	Chip Disable to Data Retention Time	See Data Retention Timing Diagram		0	-	-	ns
tr	Operating Recovery Time			trc(2)	-	_	ns

Notes:

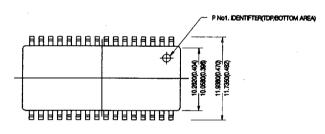
2. tRC is read cycle time.

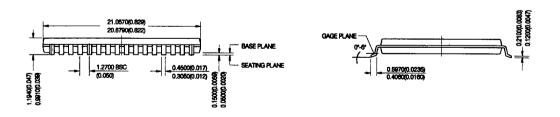
DATA RETENTION TIMING DIAGRAM

| 4675088 0006194 813 |


1DG02-22-MAY95

181


^{1.} Typical values are at the condition of TA=25°C.


PACKAGE INFORMATION

400mil 32 pin Small Outline J-Form Package (J)

400 mil 32 pin Plastic Thin Small Outline Package (T2)

4675088 0006195 75T ■ 1DG02-22-MAY95

ORDERING INFORMATION

PART NO.	SPEED	POWER	PACKAGE
HY638100AJ	15/17/20/25		SOJ
HY638100ALJ	15/17/20/25	L-part	SOJ
HY638100AT2	15/17/20/25		TSOP-II
HY638100ALT2	15/17/20/25	L-part	TSOP-II
HY638100AR2	15/17/20/25		TSOP-II(R)
HY638100ALR2	15/17/20/25	L-part	TSOP-II(R)

■ 4675088 0006196 696 **■**