

3-PHASEN SCHRITTMOTOR VRDM 39x

Dokument: 100000115 Ausgabe: d013, 2005.02

Gemeinsame Eigenschaften aller Motortypen

- Prüfspannung nach DIN EN 60034-1
- Isolierstoffklasse F
- Wellenschlag- und Planlaufgenauigkeit nach DIN 42955 N
- Farbe: schwarze RAL 9005

Sicherheit

Beachten Sie bitte vor Installation, Inbetriebnahme, Wartung und Instandsetzung der Motoren unsere Sicherheitshinweise.

Sollten sie Ihnen nicht vorliegen verlangen Sie bitte das Datenblatt "Sicherheitshinweise Motoren"

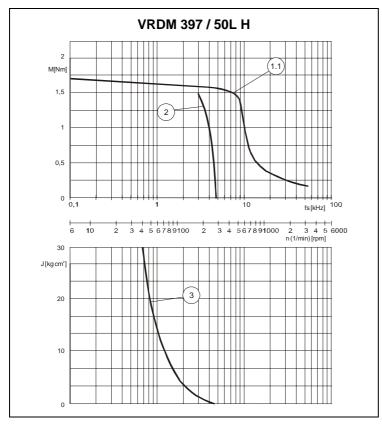
Motordaten

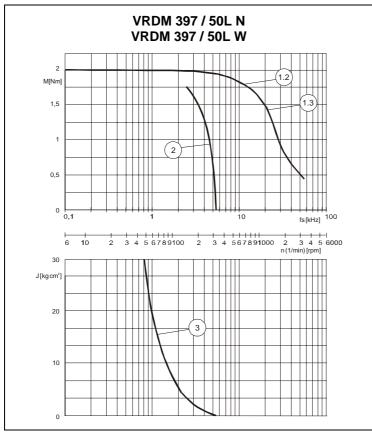
Die in der Tabelle aufgeführten Daten sind motorspezifische Daten.

Eine Aufschlüsselung der einzelnen Motoren entnehmen Sie bitte dem Typenschlüssel Seite 10.

Motortyp			VRDM 397			VRDM 3910			VRDM 3913		
Wicklung			Н	N	W	Н	N	W	Н	N	W
Max. Spannung		V _{AC} 4)	25	92	230	25	92	230	25	92	230
Max. Spailiding	U _{max}	V _{DC} 5)	35	130	325	35	130	325	35	130	325
Nennmoment	M_N	Nm	1,7	2	2	3,7	4	4	5	6	6
Haltemoment	M _H	Nm	1,92	2,26	2,26	4,18	4,52	4,52	5,65	6,78	6,78
Rotorträgheitsmoment	J_R	kgm ²	gm ² 0,11 • 10 ⁻³			0,22 • 10 ⁻³			0,33 • 10 ⁻³		
Schrittzahl 1)	z		200 / 400 / 500 / 1000 / 2000 / 4000 / 5000 / 10000				0				
Schrittwinkel 1)	α	0	° 1,8 / 0,9 / 0,72 / 0,36 / 0,18 / 0,09 / 0,072 / 0,036								
System. Winkeltoleranz je Schritt ²⁾	$\Delta lpha_{ extsf{s}}$	٤	±6								
Max. Startfrequenz 1)	f_{Aom}	kHz	5	5,3	5,3	4,8	5,3	5,3	4,5	5,3	5,3
Nennstrom	I _N	A _{rms}	5,8	4,4	1,75	5,8	5	2	5,8	5	2,25
Widerstand / Wicklung	R _W	Ω	0,35	1	6,5	0,55	1,2	5,8	0,63	1,3	6,5
Stromanstiegszeitkonstante	τ	ms	~7 ~9 ~10								
Masse 3)	m	kg	1,65 2,7 3,8								

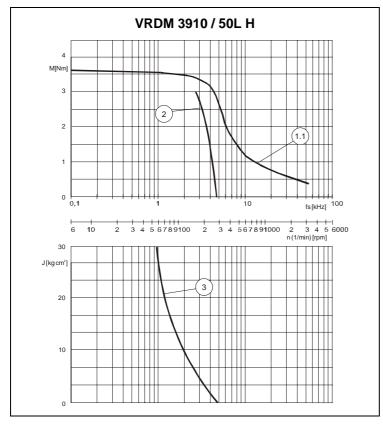
Begriffe und Formelzeichen nach DIN 42021 Teil 2

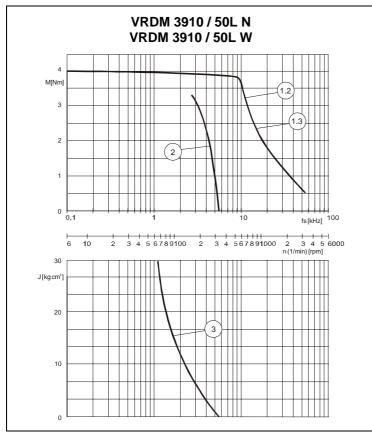

¹⁾ mit geeigneter Ansteuerung
2) gemessen bei 1000 Schritten pro Umdrehung; Einheiten in Minuten
3) Masse der Motorausführung mit Litzenanschluss


⁴⁾ maximal möglicher Effektivwert

⁵⁾ Zwischenkreisspannung

Kennlinien VRDM 397

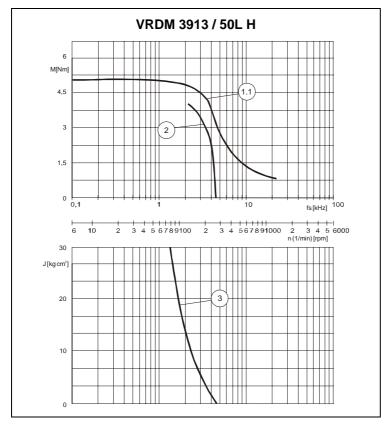


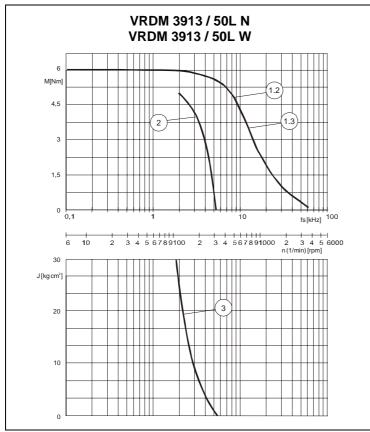

Messung der Kennlinien mit 1000 Schritte / Umdrehung

- $\begin{array}{ll} \textbf{1.1} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = D \ 920 \\ & \text{U}_{\text{N}} = 35 \ \text{V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 5,8 \ \text{A} \end{array}$
- $\begin{array}{ll} \textbf{1.2} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = D \ 900 \\ & \text{U}_{\text{N}} = 130 \ \text{V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 4,4 \ \text{A} \end{array}$
- $\begin{array}{ll} \textbf{1.3} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = \text{WDx3-xx4, TLxx11} \\ & \text{U}_{\text{N}} = 325 \,\, \text{V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 1,75 \,\, \text{A} \\ \end{array}$
- 2 Start-Grenzmoment
- 3 Grenz-Lastträgheitsmoment

BERGER LAHR

Kennlinien VRDM 3910



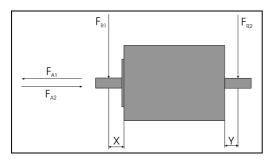

Messung der Kennlinien mit 1000 Schritte / Umdrehung

- $\begin{array}{ll} \textbf{1.1} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = D \ 920 \\ & \text{U}_{\text{N}} = 35 \ \text{V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 5,8 \ \text{A} \end{array}$
- $\begin{array}{ll} \textbf{1.2} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = D \ 900 \\ & \text{U}_{\text{N}} = 130 \ \text{V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 5 \ \text{A} \\ \end{array}$
- $\begin{array}{ll} \textbf{1.3} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = \text{WDx3-xx4, TLxx11} \\ & \text{U}_{\text{N}} = 325 \text{ V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 2 \text{ A} \\ \end{array}$
- 2 Start-Grenzmoment
- 3 Grenz-Lastträgheitsmoment

Kennlinien VRDM 3913

Messung der Kennlinien mit 1000 Schritte / Umdrehung

- $\begin{array}{ll} \textbf{1.1} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = D \ 920 \\ & \text{U}_{\text{N}} = 35 \ \text{V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 5,8 \ \text{A} \end{array}$
- $\begin{array}{ll} \textbf{1.2} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = D \ 900 \\ & \text{U}_{\text{N}} = 130 \ \text{V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 5 \ \text{A} \\ \end{array}$
- $\begin{array}{ll} \textbf{1.3} & \text{Betriebsgrenzmoment} \\ & \text{Steuerung} = \text{WDx3-xx4, TLxx11} \\ & \text{U}_{\text{N}} = 325 \,\, \text{V}_{\text{DC}} \\ & \text{I}_{\text{W}} = 2,25 \,\, \text{A} \\ \end{array}$
- 2 Start-Grenzmoment
- 3 Grenz-Lastträgheitsmoment



Wellenbelastung

Ein kundenseitiges öffnen des Motors, ist unzulässig, da der Motor bei diesem Vorgang teilweise entmagnetisiert wird und somit an Leistung verliert.

Bei Motoren mit Klemmkasten darf der Deckel zum anschließen der Klemmen geöffnet werden!

Bitte beachten Sie auch unsere Sicherheitshinweise!

Bedingungen:

Nominale Lagerlebensdauer¹⁾ $L_{10h} = 20.000 \text{ h}$ Drehzahl $n = 600 \text{ min}^{-1}$

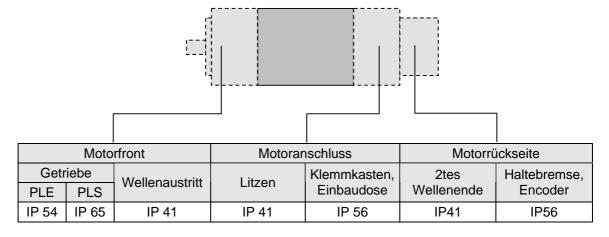
Umgebungstemperatur = 40°C (≈ 80°C Lagertemperatur) =

Nenndrehmoment = 100 % ED
Angriffspunkte der Kräfte X = 15 mm

ignispunkte der Kraite X = 15 mm Y = 15 mm

Motor		VRDM 397	VRDM 3910	VRDM 3913	
max. Radialkraft vorne F _{R1}	100 % ED	100	O N	110 N	
max. Radialkraft 2. Wellenende F _{R2}	100 % ED	50 N ²⁾ 75 N ³⁾			
max. Axialkraft ^{Zug} FA1	100 % ED	170 N			
max. Axialkraft Druck FA2	100 % ED	30 N			

¹⁾ in Betriebsstunden bei einer 10% Ausfallwahrscheinlichkeit


³⁾ bei Motoren mit Litzen

- Axiale und radiale Grenzlasten dürfen nicht gleichzeitig aufgebracht werden.
- Falls Bauteile auf die Wellenenden aufgepresst werden, muss die Welle abgestützt werden.

Schutzart

Die Schutzart Ihrer Motorvariante entnehmen sie bitte dem nachfolgenden Schema.

²⁾ bei Motoren mit Klemmkasten, Einbaudose oder Encoder

Umwelteinflüsse

Umgebungsklima:

(in Anlehnung an DIN 50019-R14)

Temperatur (t): -25°C bis +40°C

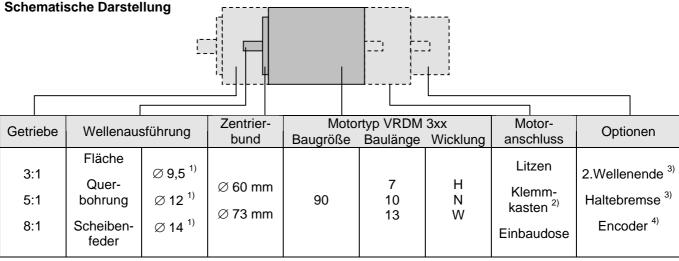
Luftfeuchtigkeit (U): ≤ 75 % rF Jahresmittel / 95 % rF an 30 Tagen / nicht betauend

Lager- und Transporttemperatur:

-25°C bis +70°C

Lebensdauer

Die Lebensdauer der Motoren ist bei technisch korrektem Einsatz im wesentlichen durch die Lagerlebensdauer begrenzt.


Folgende Betriebsbedingungen können die Lebensdauer zum Teil erheblich einschränken:

- Aufstellhöhen größer als 1000 m über NN
- Betriebstemperaturen dauernd größer als 80°C
- Schwenkwinkel kleiner als 100°
- Betrieb mit sehr hohen Dreh- Beschleunigungen
- Betrieb unter Schwingbelastungen größer 20 m/s²
- Hohe Zyklusfrequenzen
- Trockenlauf der Dichtringe
- Benetzung der Dichtungen mit aggressiven Medien

Motorvarianten

Das flexible Baukastensystem und ein modernes Variantenmanagement ermöglicht nachfolgende Varianten. Eine ausführliche Darstellung und die Abmaße entnehmen Sie bitte dem Variantenblatt Seite 11.

Bitte beachten sie auch den Typenschlüssel auf Seite 10.

 $^{^{1)}}$ arnothing 9,5 mm und arnothing 12 mm bei VRDM 397 und VRDM 3910; arnothing 14 mm bei VRDM 3913

Dokument: 100000115 Ausgabe: d013, 2005.02 www.berger-lahr.de Datenblatt Schrittmotor

Seite 6

²⁾ Klemmleiste innerhalb des Motors; gedichtet mit einer Kabel-Verschraubung; EMV geprüft

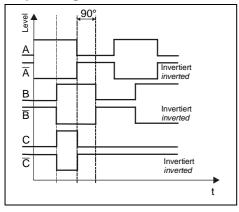
³⁾ nur ein Merkmal auswählbar; entweder 2. Wellenende oder Haltebremse

³⁾ nur bei Motoren mit Einbaudose (zusätzlich sind 2. Wellenende oder Haltebremse möglich)

Encoder

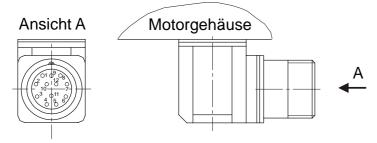
3-Phasen-Schrittmotoren können optional mit einem Encoder ausgestattet werden. Dieses Messsystem dient zur Rückmeldung der Lage-Istposition, falls die Leistungsansteuerung mit einer Drehüberwachungselektronik ausgestattet ist. Die Drehüberwachung vergleicht die Soll- und Istposition des Motors und meldet Fehler, falls die Differenz eine gewisse Grenze (Schleppfehlergrenze) überschreitet. Damit kann beispielsweise eine mechanische Überlastung des Motors erkannt werden.

Der Einsatz eines Encoders ist nur bei Motoren mit Einbaudose möglich, zudem kann ein zweites Wellenende oder eine Haltebremse verwendet werden.


Technische Daten

Auflösung 1000 Inkremente / Umdrehung Indexpuls 1 Inkrement / Umdrehung

 $\begin{array}{lll} \text{Ausgang} & \text{RS 422} \\ \text{Signale} & \text{A; B; I} \\ \text{Impulsform} & \text{Rechteck} \\ \text{Versorgungsspannung} & \text{5V} \pm 5\% \\ \text{Versorgungsstrom} & \text{max. 0,15 A} \\ \end{array}$


Impulsdiagramm

Hinweis:

- Ein Temperatursensor ist integriert.
- Der Schirm muss motor- und geräteseitig angeschlossen werden.

Anschlussbild

PIN Bezeichnung

- 1 A
- 2 A negiert
- 3 B
- 4 B negiert
- 5 C, I
- 6 C negiert, I negiert
- $7 5 V_{GND}$
- 8 + 5
- 9 SENSE
- 10 + SENSE
- 11 Temperatursensor
- 12 nicht belegt

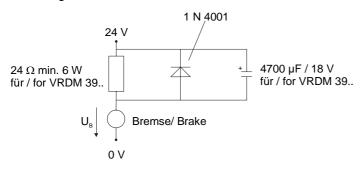
Nicht verwendete Litzen müssen einzeln isoliert werden. (Kurzschlussgefahr)

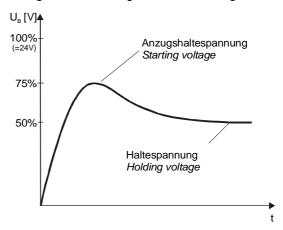
Haltebremse

Die Haltebremse ist eine elektromagnetische Federdruckbremse und dient zur Fixierung der Motorachse nach dem Abschalten des Motorstroms (z.B. bei Stromausfall oder NOT-AUS). Die Fixierung ist erforderlich bei Drehmomentbelastungen durch Gewichtskräfte, z.B. bei Z-Achsen in der Handhabungstechnik.

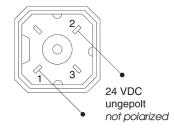
Technische Daten

Nennspannung 24 V
Haltemoment 6 Nm
Elektrische Anzugsleistung 24 W
Trägheitsmoment 0,2 kgcm²
Einschaltzeit (Bremse lösen) 40 ms
Ausschaltmoment (Bremse schließen) 20 ms
Masse ca. 1,5 kg


VRDM 397 mit Encoder und Bremse



Damit bei Z-Achsen mit Haltebremse eine sichere Funktion der Bremse gewährleistet ist, darf das statische Lastmoment maximal 25% des Haltemoments des Motors betragen.


Ansteuerschaltung

Zum Lösen der Bremse muss diese elektrisch erregt werden. Um eine zu starke Erwärmung zu vermeiden, sollte der Erregerstrom nach dem Lösen der Bremse reduziert werden. Folgendes Bild zeigt einen Schaltungsvorschlag.

Anschlussbild

Der Stecker ist Bestandteil des Lieferumfangs.

Steckerbezeichnung: Fa. Hirschmann Typ G4 A 5M

 \triangle

Bei einer Betriebstemperatur von 120°C reduziert sich das Haltemoment der Bremse um ca. 50%.

Getriebeoptionen

Die folgende Tabelle zeigt die verfügbare Kombinationen zwischen Motor und Getriebe.

Für weitere Informationen siehe Getriebedatenblatt.

Getriebetyp PLE

Wirtschaftliches Präzisionsplanetengetriebe (1-stufig)

Konfigurationsmöglichkeiten

grau hervorgehoben	Vorzugstypen
fett hervorgehoben	Begrenzung des Moments durch Getriebe oder Motor
х	Getriebe über- oder unterdimensioniert bzw. unwirtschaftlich

		3	:1	5:1		8:1		
M _{d0} [Nm]	Motor	Getriebe	M _{dG} ¹⁾	M _{maxG} ²⁾	M _{dG} 1)	M _{maxG} ²⁾	M _{dG} 1)	M _{maxG} ²⁾
[]			[Nm]	[Nm]	[Nm]	[Nm]	[Nm]	[Nm]
2	VRDM 397		40	6	50	10	50	16
4	VRDM 3910	mit PLE 80	40	12	50	20	50	32
6	VRDM 3913		40	18	50	30	50	48

Index \boldsymbol{G} (M_xxg) -> bezogen auf \boldsymbol{G} etriebeabgangswelle

1) M_{dG} Getriebeabtriebsmoment (Dauer)
2) M_{maxG} max. Abtriebsmoment mit diesem Motor

(theoretischer Wert errechnet aus: max. Motordrehmoment M_{max} x Übersetzungsverhältnis)

Das Dauergetriebeabtriebsmoment M_{dG} darf nicht dauerhaft überschritten werden. Kurzzeitig ist z. B. bei der NOT-AUS-Situation das 2-fache Moment möglich. Der Motor muss eventuell begrenzt werden, sonst besteht bei Spitzenmomenten die Gefahr der Zerstörung des Getriebes.

Getriebetyp PLS

Hochwertiges spielarmes Planetengetriebe (Getriebe 1-stufig)

Konfigurationsmöglichkeiten

grau hervorgehoben
fett hervorgehoben
X

Vorzugstypen

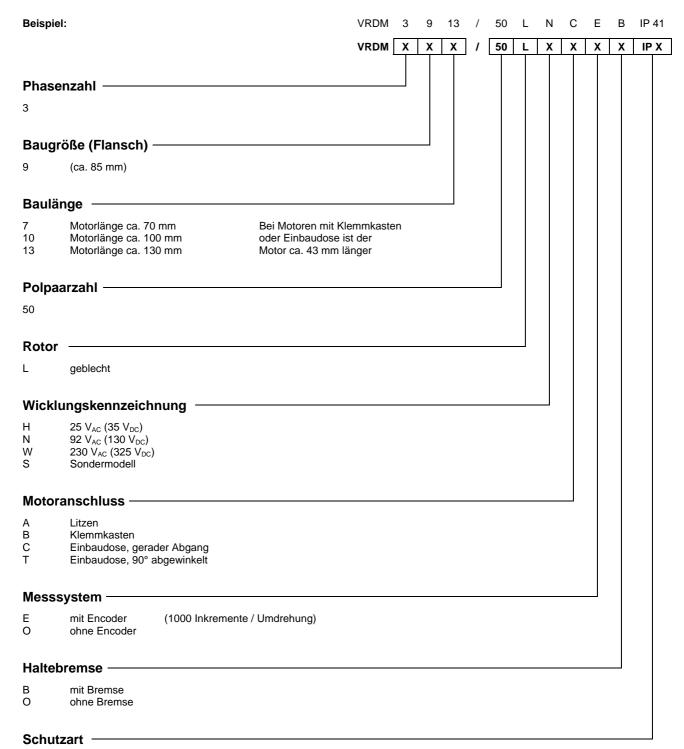
Begrenzung des Moments durch Getriebe oder Motor Getriebe über- oder unterdimensioniert bzw. unwirtschaftlich

			3	:1	5	:1	8:1	
M _{d0} [Nm]	Motor	Getriebe	M _{dG} ¹⁾	M _{maxG} ²⁾	M _{dG} 1)	M _{maxG} ²⁾	M _{dG} 1)	M _{maxG} ²⁾
[]			[Nm]	[Nm]	[Nm]	[Nm]	[Nm]	[Nm]
2	VRDM 397		75	6	110	10	62	16
4	VRDM 3910	mit PLS 90	75	12	110	20	62	32
6	VRDM 3913		75	18	110	30	62	48

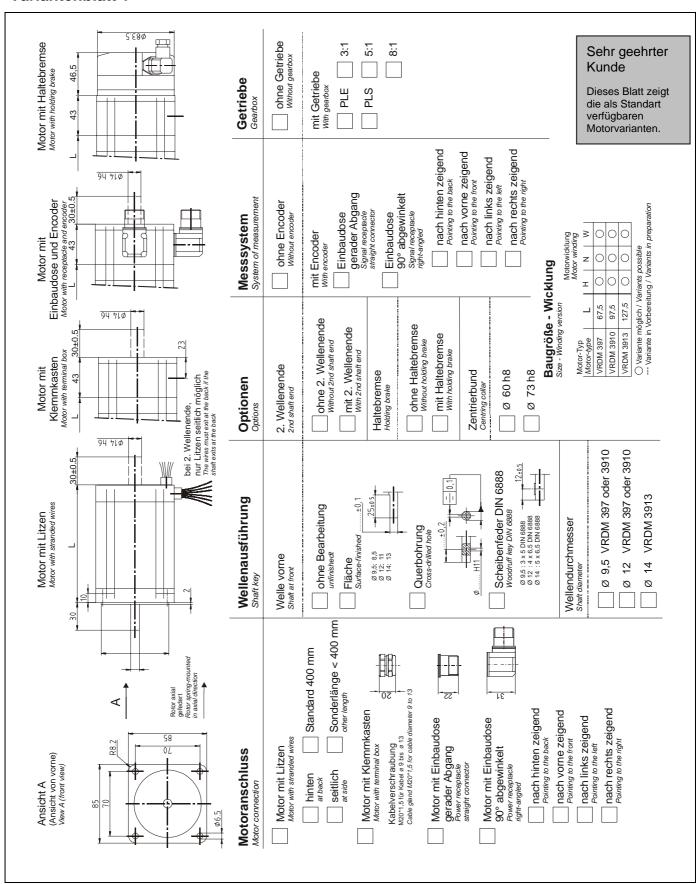
Index G (M_{xxG}) -> bezogen auf Getriebeabgangswelle

1) M_{dG} 2) M_{maxG}

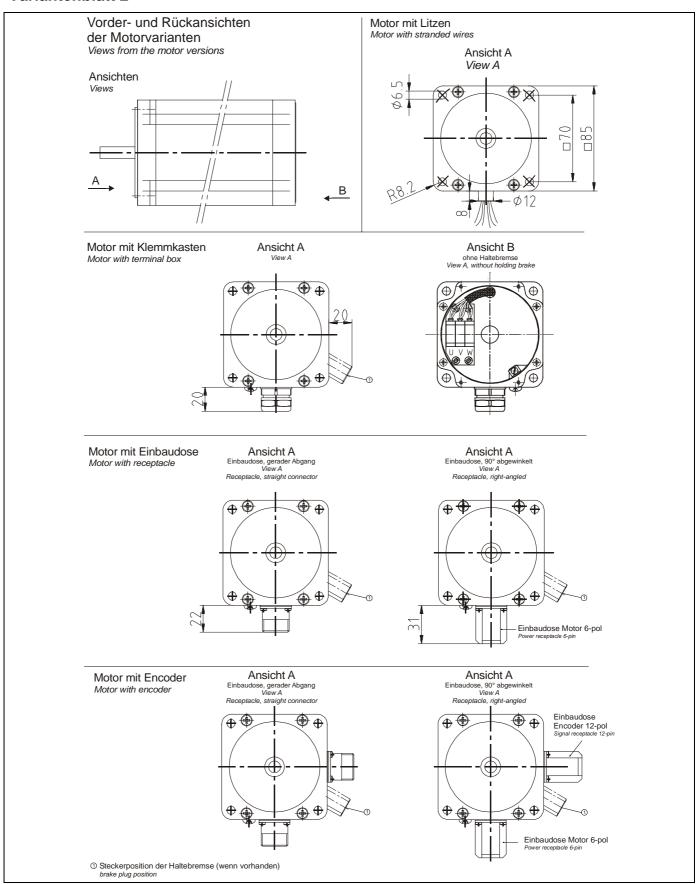
Getriebeabtriebsmoment (Dauer)


max. Abtriebsmoment mit diesem Motor (theoretischer Wert errechnet aus: max. Motordrehmoment M_{max} x Übersetzungsverhältnis)

Das Dauergetriebeabtriebsmoment M_{dG} darf nicht dauerhaft überschritten werden! Kurzzeitig ist z. B. bei der NOT-AUS-Situation das 2-fache Moment möglich. Der Motor muss eventuell begrenzt werden, sonst besteht bei Spitzenmomenten die Gefahr der Zerstörung des Getriebes.

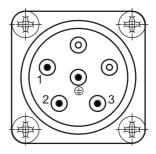


Typenschlüssel

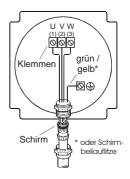


Variantenblatt 1

Variantenblatt 2

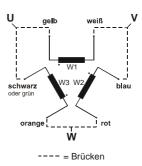


Motoranschluss


Motor mit Einbaudose

Pin	Bezeichnung
1	U
2	V
3	W
(<u>I</u>)	PE

Motor mit Klemmkasten (symbolisch)


Kabeltarbe	Bezeichnung
braun	U
blau	V
schwarz	W
grün/gelb	PE

Motor mit Litzen

Die jeweiligen Farben müssen gebrückt werden

Kabelfarben	Bezeichnung
schwarz und gelb	U
weiß und blau	V
orange und rot	W

Hinweis:

- Der Schutzleiter (oder die Schirmbeilauflitze) muss motor- und geräteseitig angeschlossen sein
- Für den Kabelanschluss im Klemmkasten, nur die vier Kreuzschlitzschrauben des Klemmkastens herausdrehen, nicht die Bremse demontieren!
- Außenklemme ist EMV Klemme
- Motoren in Litzenausführung sind über den vorderen Flansch mit PE-Potential zu verbinden

Durch Vertausch zweier Anschlüsse (z.B. U, V oder V, W) kann die Drehrichtung der Motorwelle invertiert werden.