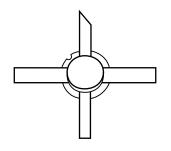


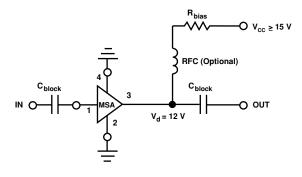
Agilent MSA-0520 Cascadable Silicon Bipolar MMIC Amplifier


Data Sheet

Description

The MSA-0520 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, BeO disk package for good thermal characteristics. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Agilent's 10 GHz f_T, 25 GHz f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


200 mil BeO Package

Features

- Cascadable 50 Ω Gain Block
- High Output Power: +23 dBm Typical $P_{1 \text{ dB}}$ at 1.0 GHz
- Low Distortion: 33 dBm Typical IP₃ at 1.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- Hermetic Metal/Beryllia Microstrip Package

Typical Biasing Configuration

MSA-0520 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]
Device Current	225 mA
Power Dissipation ^[2,3]	3.0 W
RF Input Power	+25 dBm
Junction Temperature	200°C
Storage Temperature	−65 to 200°C

Thermal Resistance ^[2,4] :					
$\theta_{\rm jc} = 25^{\circ}{ m C/W}$					

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 40 mW/°C for $T_{\rm C} > 125 ^{\circ}{\rm C}.$
- 4. The small spot size of this technique results in a higher, though more accurate determination of $\theta_{\rm jc}$ than do alternate methods.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: 1	. = 165 mA. Z _o = 50 O.	Units	Min.	Тур.	Max.
-		, ,				max.
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm	21.0	23.0	
$G_{\mathbf{P}}$	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	7.5	8.5	9.5
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 2.0 GHz	dB		± 0.75	
f _{3 dB}	3 dB Bandwidth ^[2]		GHz		2.8	
VSWR	Input VSWR	f = 0.1 to 2.0 GHz			2.0:1	
VSWIL	Output VSWR	f = 0.1 to 2.0 GHz			2.5:1	
IP3	Third Order Intercept Point	f = 1.0 GHz	dBm		33.0	
$\mathrm{NF}_{50\Omega}$	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		6.5	
t_{D}	Group Delay	f = 1.0 GHz	psec		170	
V_{d}	Device Voltage		V	10.5	12.0	13.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-16.0	

Notes:

- 1. The recommended operating current range for this device is 80 to 200 mA. Typical performance as a function of current is on the following page.
- 2. Referenced from $0.1~\mathrm{GHz}~\mathrm{Gain}~(G_P)$.

Freq.	\mathbf{S}_1	11		S_{21}			S_{12}			S_{22}	
MHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
5	.57	-38	14.4	5.25	165	-19.4	.107	38	.67	-35	0.57
25	.25	-90	10.7	3.42	160	-14.9	.180	17	.29	-81	0.93
50	.15	-111	9.5	2.97	163	-14.4	.190	9	.18	-97	1.10
100	.11	-138	8.9	2.80	166	-14.2	.195	3	.11	-113	1.16
200	.10	-152	8.8	2.75	163	-14.1	.197	1	.10	-125	1.17
400	.10	-152	8.7	2.72	152	-14.1	.198	-2	.14	-123	1.16
600	.11	-147	8.6	2.70	140	-14.0	.199	-4	.18	-123	1.14
800	.13	-142	8.5	2.67	128	-14.1	.199	-6	.22	-127	1.12
1000	.15	-140	8.4	2.64	115	-14.1	.198	-8	.27	-131	1.09
1500	.22	-142	8.0	2.52	85	-13.7	.206	-12	.34	-143	0.98
2000	.30	-156	7.4	2.36	55	-13.3	.216	-16	.43	-158	0.85
2500	.37	-170	6.7	2.16	33	-12.9	.227	-18	.48	-166	0.75
3000	.41	170	5.6	1.91	8	-12.7	.232	-23	.51	-177	0.70
3500	.45	149	4.5	1.68	-16	-12.1	.249	-31	.55	173	0.63
4000	.46	124	3.3	1.45	-40	-11.7	.259	-39	.56	162	0.66

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

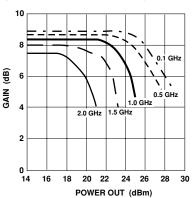


Figure 1. Typical Gain vs. Power Out, $T_A = 25^{\circ}C$, $I_d = 165$ mA.

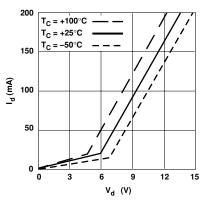


Figure 2. Device Current vs. Voltage.

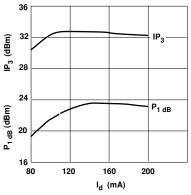


Figure 3. Output Power at 1 dB Gain Compression, Third Order Intercept vs. Current, f = 1.0 GHz.

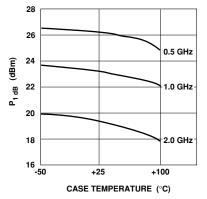


Figure 4. Output Power @ 1 dB Gain Compression vs. Temperature, $I_{\rm d}$ = 165 mA.

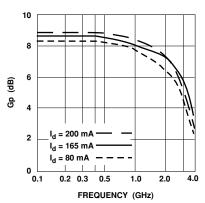


Figure 5. Gain vs. Frequency.

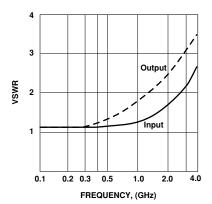
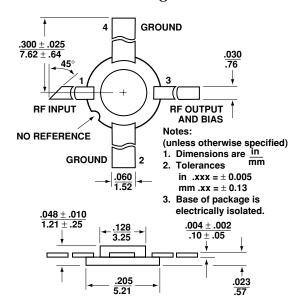



Figure 6. VSWR vs. Frequency, $\rm I_d=165~mA.$

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0520	10	Bulk		

200 mil BeO Package Dimensions

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or

(916) 788-6763

Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (65) 6756 2394

India, Australia, New Zealand: (65) 6755 1939

Japan: (+81 3) 3335-8152(Domestic/International), or

0120-61-1280(Domestic Only)

Korea: (65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines,

Indonesia: (65) 6755 2044 Taiwan: (65) 6755 1843

Data subject to change.

Copyright © 2005 Agilent Technologies, Inc.

Obsoletes 5965-9582E

April 4, 2005 5989-2755EN

Agilent Technologies