4

CS-2706 CS-3706

DUAL OUTPUT DRIVER

DESCRIPTION

The CS-2706/CS-3706 series of integrated circuits provide an interface between low-level TTL inputs and high-power switching devices such as power MOSFETs. A typical application is singleended PWM control to push-pull power control conversion.

The primary function of these devices is to convert a bipolar singleended low current digital input to a pair of totem pole outputs which can source or sink up to 1.5A each. An internal flip-flop, driven by double-pulse suppression logic, can be enabled to provide single-ended to push-pull conversion. With the flip-flop disabled, the outputs work in parallel for 3.0A capability.

Protection functions are also included for pulse-by-pulse current limiting, automatic deadband control and thermal shutdown.

FEATURES:

- Dual 1.5A Totem Pole Outputs
- 40nsec Rise and Fall into 1000pF
- Parallel or Push-Pull Operation
- Single-Ended to Push-Pull Conversion
- High-Speed Power MOSFET Compatible
- Low Cross-Conduction Current Spike
- Analog Latched Shutdown
- Internal Deadband Inhibit Circuit
- Low Quiesent Current
- 5V to 40V Operation
- Thermal Shutdown Protection

TRUTH TABLE

INV.	N.i.	OUT
н	н	L
L L	H	н
H	L	L
L	L	L

OUT = INV and N.I. $\overline{OUT} = INV \text{ or } \overline{N.l.}$

ABSOLUTE MAXIMUM RATINGS PIN CONNECTIONS PACKAGE UNITS (Plastic) Logic Supply Voltage (Vin, Pin 14) 40.0 Output Supply Voltage (Vc, Pin 8) 40.0 Output Current (each output, source, or sink) (pins 6 & 11) Steady State ±500 mΑ Peak Transient for Less Than B INHIBIT INPUT 16 A INHIBIT INPUT 100us ± 1.5 capacitive discharge energy DIGITAL INVERTING INPUT INHIBIT REFERENCE INPUT 20.0 uĴ Digital Inputs (pins 2 & 3) 5.5 ٧ DIGITAL NON-INVERTING INPUT 3 LOGIC SUPPLY VOLTAGE, +Vik Analog Inputs (pins 9 & 10) Vin ٧ Inhibit Inputs (pins 1, 15, & 16) 5.5 ٧ Power Dissipation at TA=25°C GROUND 13 GROUND 2.0 w Derate Above 50°C 20.0 mW/°C GROUND 12 GROUND Power Dissipation at T (leads and case)=25°C 5.0 W OUTPUT B Derate for Ground Lead Temperature Above 25°C 40.0 mW/°C FLIP-FLOP ACTIVATE ANALOG STOP NON-INVERTING INPUT Derate for Case Temperature above 25°C OUPUT SUPPLY VOLTAGE, +Vc mW/°C ANALOG STOP INVERTING INPUT Operating Temperature Range NOTE: ALL FOUR GROUND PINS MUST BE CONNECTED TO A COMMON GROUND. CS-2706 -25 to 85°C CS-3706 0 to 70°C Storage Temperature Range -65 to 150°C Lead Temperature (soldering, 10 sec) 300 °C NOTES: All voltages are with respect to the four ground pins which must be connected together. All currents are positive into, negative out of the specified terminal.

ELECTRICAL CHARACTERISTICS These specifications apply over the operating temperature range of the IC. ($V_{IN} = V_C = 20V$, $V_4 = V_5 = V_{12} = V_{13} = 0V$ unless otherwise stated)

TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN} = 40V, V _C = 20V, V ₂ = 0V, Unused pins = open.	T	В	12	mA
V _{IN} = 20V, V _C = 40V, Outputs low	†	3		mA
V _{IN} = 0V, V _C = 40V	 	05	<u> </u>	mA
	 			V
	22			V
V ₁ = 0V	 	-0.6	-10	mA
V ₁ = 5V	 			mA
Io = -50mA	+	.00	-	V
Io = -500mA	+-			V
lo ≈ 50mA	 			V
lo ≈ 500mA	 			V
V _{REF} = 0.5V	0.4			
	_			V
	3.3			
	100			<u>μ</u> Α
	100			mV_
	 		-20	μA
Turn off (TA)		155		°C
	$V_{\text{IN}} = 40\text{V}, \ V_{\text{C}} = 20\text{V}, \ V_{\text{2}} = 0\text{V}, \ \text{Unused pins} = \text{open}.$ $V_{\text{IN}} = 20\text{V}, \ V_{\text{C}} = 40\text{V}, \ \text{Outputs low}$ $V_{\text{IN}} = 0\text{V}, \ V_{\text{C}} = 40\text{V}$ $V_{\text{I}} = 0\text{V}, \ V_{\text{C}} = 40\text{V}$ $V_{\text{I}} = 5\text{V}$ $I_{\text{D}} = -50\text{mA}$ $I_{\text{D}} = -50\text{mA}$ $I_{\text{D}} = 50\text{mA}$ $I_{\text{D}} = 50\text{mA}$ $I_{\text{D}} \approx 50\text{mA}$ $V_{\text{REF}} = 0.5\text{V}$ $V_{\text{REF}} = 3.5\text{V}$ $V_{\text{REF}} = 0\text{V}$ $V_{\text{CM}} = 0\text{V to 15V}$ $V_{\text{I}} = 0\text{V}, \ V_{\text{CM}} = 15\text{V}$ Turn on (TA)	$\begin{array}{c} V_{\text{IN}} = 40V, V_{\text{C}} = 20V, V_{\text{Z}} = 0V, \text{Unused pins = open.} \\ V_{\text{IN}} = 20V, V_{\text{C}} = 40V, \text{Outputs low} \\ V_{\text{IN}} = 0V, V_{\text{C}} = 40V \\ \\ \hline \\ V_{\text{I}} = 0V, V_{\text{C}} = 40V \\ \\ \hline \\ V_{\text{I}} = 5V \\ \hline \\ I_{\text{O}} = -50\text{mA} \\ \hline \\ I_{\text{O}} = -50\text{mA} \\ \hline \\ I_{\text{O}} = 50\text{mA} \\ \hline \\ I_{\text{O}} = 50\text{mA} \\ \hline \\ V_{\text{REF}} = 0.5V \\ \hline \\ V_{\text{REF}} = 3.5V \\ \hline \\ V_{\text{REF}} = 0V \\ \hline \\ V_{\text{CM}} = 0V \text{ to 15V} \\ \hline \\ V_{\text{I}} = 0V, V_{\text{CM}} = 15V \\ \hline \\ Turn \text{ on (TA)} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TYPICAL SWITCHING CHARACTERISTICS (VIN = VC = 20V, TA = 25°C. Delays measured 50% in to 50% out.)

PARAMETER	TEST CONDITIONS	OL	OUTPUT CL =		
From Inv. Input to Output:		open	1.0	2.2	nF
Rise Time Delay		110	130	140	ns
10% to 90% Rise		20	40	60	ns
Fall Time Delay		80	90	110	ns
90% to 10% Fall		25	30	50	ns
From N.I. Input to Output:					
Rise Time Delay		120	130	140	пѕ
10% to 90% Rise		20	40	60	ns
Fall Time Delay		100	120	130	ns
90% to 10% Fall		25	30	50	ns
V _c Cross-Conduction Current Spike Duration	Output Rise	25			ns
	Output Fall	0			ns
Inhibit Delay	Inhibit Ref. = 1V Inhibit = 0.5 to 1.5V	250			ns
Analog Shutdown Delay	Stop (+) Ref. = 0 Stop (-) Input = 0 to 0.5V	180			ns

CIRCUIT DESCRIPTION

Outputs

The totem-pole outputs have been designed to minimize cross-conduction current spikes while maximizing fast. high-current rise and fall times. Current limiting can be done externally either at the outputs or at the common $V_{\mathbb{C}}$ pin. The output diodes included have slow recovery and should be shunted with high-speed external diodes when driving high-frequency inductive loads.

Flip/Flop

Grounding pin 7 activates the internal flip-flop to alternate the two outputs. With pin 7 open, the two outputs operate simultaneously and can be paralleled for higher current operation. Since the flip-flop is triggered by the digital input, an off-time of at least 200nsec. must be provided to allow the flip/flop to change states. Note that the circuit logic is configured such that the "OFF" state is defined as the outputs low.

Digital Inputs

With both an inverting and non-inverting input available, either active-high or active-low signals may be accepted. These are true TTL compatible inputs—the threshold is approximately 1.2V with no hysteresis; and external pullup resistors are not required.

Inhibit Circuit

Although it may have other uses, this circuit is included to eliminate the need for deadband control when driving relatively slow bipolar power transistors. A diode from each inhibit input to the opposite power switch collector will keep one output from turning on until the other has turned-

off. The threshold is determined by the voltage on pin 15 which can be set from 0.5 to 3.5V. When this circuit is not used, ground pin 15 and leave 1 and 16 open.

Analog Shutdown

This circuit is included to get a latched shutdown as close to the outputs as possible, from a time standpoint. With an internal 130mV threshold, this comparator has a common-mode range from ground to (V_{IN} - 3V). When not used, both inputs should be grounded. The time required for this circuit to latch is inversely proportional to the amount of overdrive but reaches a minimum of 180nsec. As with the flip-flop, an input off-time of at least 200nsec is required to reset the latch between pulses.

Supply Voltage

With an internal 5V regulator, this circuit is optimized for use with a 7 to 40V supply, however, with some slight response time degradation, it can also be driven from 5V. When V_{IN} is low, the entire circuit is disabled and no current is drawn from V_c. When combined with a CS-384X PWM, the Driver Bias switch can be used to supply V_{IN} to the CS-3706. V_{IN} switching should be fast as undefined operation of the outputs may occur with V_{IN} less than 5V.

Thermal Considerations

Should the chip temperature reach approximately 155°C, a parallel, non-inverting input is activated driving both outputs to the low state.

PACKAGE/TEMPERATURE RANGE OPTIONS

Part Number	Package	Temperature Range	Power @ 25°C	
CS-3706N	16 Pin Plastic Batwing DIP	0°C to 70°C	2W	
CS-2706N	16 Pin Plastic Batwing DIP	-25°C to +85°C	2W	