SPECIAL ENVIRONMENT 80960CA-25,-16 32-BIT HIGH-PERFORMANCE EMBEDDED PROCESSOR

\author{

- Two Instructions/Clock Sustained Execution
 - Four 59 Mbytes/s DMA Channels with Data Chaining
 - Demultiplexed 32-bit Burst Bus with Pipelining
}
- 32-bit Parallel Architecture
- Two Instructions/clock Execution
— Load/Store Architecture
- Sixteen 32-bit Global Registers
- Sixteen 32-bit Local Registers
- Manipulates 64-bit Bit Fields
- 11 Addressing Modes
- Full Parallel Fault Model
- Supervisor Protection Model

Fast Procedure Call/Return Model

- Full Procedure Call in 4 Clocks

On-Chip Register Cache

- Caches Registers on Call/Ret
- Minimum of 6 Frames Provided
- Up to 15 Programmable Frames

On-Chip instruction Cache

- 1 Kbyte Two-Way Set Associative
- 128-bit Path to instruction Sequencer
- Cache-Lock Modes
- Cache-Off Mode

High Bandwidth On-Chip Data RAM

- 1 Kbyte On-Chip Data RAM
- Sustains 128 bits per Clock Access
- Four On-Chip DMA Channels - 59 Mbytes/s Fly-by Transfers - 32 Mbytes/s Two-Cycle Transfers
- Data Chaining
— Data Packing/Unpacking
- Programmable Priority Method

32-Bit Demultiplexed Burst Bus - 128-bit internal Data Paths to and from Registers

- Burst Bus for DRAM Interfacing
- Address Pipelining Option
- Fully Programmable Wait States
- Supports 8-, 16- or 32-bit Bus Widths
- Supports Unaligned Accesses
- Supervisor Protection Pin
- Selectable Big or Little Endian Byte Ordering
- High-Speed Interrupt Controller
- Up to 248 External interrupts
- 32 Fully Programmable Priorities
— Multi-mode 8-bit Interrupt Port
- Four internal DMA Interrupts
- Separate, Non-maskable interrupt Pin
- Context Switch in 750 ns Typical

Product Grades Available
-SE3: $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
SPECIAL ENVIRONMENT 80960CA-25, -1632-BIT HIGH-PERFORMANCE EMBEDDED PROCESSOR
CONTENTS PAGE
1.0 PURPOSE 5
2.0 80960CA OVERVIEW 5
2.1 The C-Series Core 6
2.2 Pipelined, Burst Bus 6
2.3 Flexible DMA Controller 6
2.4 Priority Interrupt Controller 6
2.5 Instruction Set Summary 7
3.0 PACKAGE INFORMATION 8
3.1 Package Introduction 8
3.2 Pin Descriptions 8
3.3 80960CA Mechanical Data 15
3.3.1 80960CA PGA Pinout 15
3.4 Package Thermal Specifications 19
3.5 Stepping Register Information 21
3.6 Suggested Sources for 80960CA Accessories 21
4.0 ELECTRICAL SPECIFICATIONS 22
4.1 Absolute Maximum Ratings 22
4.2 Operating Conditions 22
4.3 Recommended Connections 22
4.4 DC Specifications 23
4.5 AC Specifications 24
4.5.1 AC Test Conditions 28
4.5.2 AC Timing Waveforms 28
4.5.3 Derating Curves 32
5.0 RESET, BACKOFF AND HOLD ACKNOWLEDGE 34
6.0 BUS WAVEFORMS 35
7.0 REVISION HISTORY 62

CONTENTS

PAGE

LIST OF FIGURES

Figure 1 80960CA Block Diagram 5
Figure 2 80960CA PGA Pinout—View from Top (Pins Facing Down) 17
Figure 3 80960CA PGA Pinout—View from Bottom (Pins Facing Up) 18
Figure 4 Measuring 80960CA PGA Case Temperature 19
Figure 5 Register g0 21
Figure 6 AC Test Load 28
Figure 7 Input and Output Clocks Waveform 28
Figure 8 CLKIN Waveform 28
Figure 9 Output Delay and Float Waveform 29
Figure 10 Input Setup and Hold Waveform 29
Figure $11 \overline{\mathrm{NMI}}, \overline{\mathrm{XINT7:O}}$ Input Setup and Hold Waveform 30
Figure 12 Hold Acknowledge Timings 30
Figure 13 Bus Backoff ($\overline{\text { BOFF }}$) Timings 31
Figure 14 Relative Timings Waveforms 32
Figure 15 Output Delay or Hold vs Load Capacitance 32
Figure 16 Rise and Fall Time Derating at Highest Operating Temperature and Minimum $V_{C C}$ 33
Figure 17 ICC vs Frequency and Temperature 33
Figure 18 Cold Reset Waveform 35
Figure 19 Warm Reset Waveform 36
Figure 20 Entering the ONCE State 37
Figure 21 Clock Synchronization in the 2-x Clock Mode 38
Figure 22 Clock Synchronization in the 1-x Clock Mode 38
Figure 23 Non-Burst, Non-Pipelined Requests without Wait States 39
Figure 24 Non-Burst, Non-Pipelined Read Request with Wait States 40
Figure 25 Non-Burst, Non-Pipelined Write Request with Wait States 41
Figure 26 Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus 42
Figure 27 Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus 43
Figure 28 Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus 44
Figure 29 Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus 45
Figure 30 Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus 46
Figure 31 Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus 47
Figure 32 Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus 48
Figure 33 Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus 49
Figure 34 Burst, Pipelined Read Request without Wait States, 32-Bit Bus 50
Figure 35 Burst, Pipelined Read Request with Wait States, 32-Bit Bus 51
Figure 36 Burst, Pipelined Read Request with Wait States, 16-Bit Bus 52
Figure 37 Burst, Pipelined Read Request with Wait States, 8-Bit Bus 53
CONTENTS PAGE
LIST OF FIGURES (Continued)
Figure 38 Using External $\overline{\text { READY }}$ 54
Figure 39 Terminating a Burst with BTERM 55
Figure 40 BOFF Functional Timing 56
Figure 41 HOLD Functional Timing 57
Figure $42 \overline{\mathrm{DREQ}}$ and $\overline{\mathrm{DACK}}$ Functional Timing 58
Figure 43 EOP Functional Timing 58
Figure 44 Terminal Count Functional Timing 59
Figure $45 \overline{\text { FAIL }}$ Functional Timing 59
Figure 46 A Summary of Aligned and Unaligned Transfers for Little Endian Regions 60
Figure 47 A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued) 61
Figure 48 Idle Bus Operation 62
LIST OF TABLES
Table 1 80960CA Instruction Set 7
Table 2 Pin Description Nomenclature 8
Table 3 80960CA Pin Description—External Bus Signals 9
Table 4 80960CA Pin Description—Processor Control Signals 12
Table 5 80960CA Pin Description—DMA and Interrupt Unit Control Signals 14
Table 6 80960CA PGA Pinout-In Signal Order 15
Table 7 80960CA PGA Pinout-In Pin Order 16
Table 8 Maximum T_{A} at Various Airflows in ${ }^{\circ} \mathrm{C}$ 19
Table 9 80960CA PGA Package Thermal Characteristics 20
Table 10 Die Stepping Cross Reference 21
Table 11 Operating Conditions (80960CA-25, -16) 22
Table 12 DC Characteristics 23
Table 13 80960CA AC Characteristics (25 MHz) 24
Table 14 80960CA AC Characteristics (16 MHz) 26
Table 15 Reset Conditions 34
Table 16 Hold Acknowledge and Backoff Conditions 34

1.0 PURPOSE

This document provides electrical characteristics for the 25 and 16 MHz versions of the 80960CA. For a detailed description of any 80960CA functional topic-other than parametric performance-consult the 80960CA Product Overview (Order No. 270669) or the i960® CA Microprocessor User's Manual (Order No. 270710). To obtain data sheet updates and errata, please call Intel's FaxBACK ${ }^{\circledR}$ data-on-demand system (1-800-628-2283 or 916-356-3105). Other information can be obtained from Intel's technical BBS (916-356-3600).

2.0 80960CA OVERVIEW

The 80960CA is the second-generation member of the 80960 family of embedded processors. The 80960CA is object code compatible with the 32-bit 80960 Core Architecture while including Special Function Register extensions to control on-chip peripherals and instruction set extensions to shift 64-bit operands and configure on-chip hardware. Multiple 128 -bit internal buses, on-chip instruction caching and a sophisticated instruction scheduler allow the processor to sustain execution of two instructions every clock and peak at execution of three instructions per clock.

A 32-bit demultiplexed and pipelined burst bus provides a 132 Mbyte/s bandwidth to a system's highspeed external memory sub-system. In addition, the 80960CA's on-chip caching of instructions, procedure context and critical program data substantially decouple system performance from the wait states associated with accesses to the system's slower, cost sensitive, main memory subsystem.

The 80960CA bus controller integrates full wait state and bus width control for highest system performance with minimal system design complexity. Unaligned access and Big Endian byte order support reduces the cost of porting existing applications to the 80960 CA .

The processor also integrates four complete datachaining DMA channels and a high-speed interrupt controller on-chip. DMA channels perform: singlecycle or two-cycle transfers, data packing and unpacking and data chaining. Block transfers-in addition to source or destination synchronized trans-fers-are provided.

The interrupt controller provides full programmability of 248 interrupt sources into 32 priority levels with a typical interrupt task switch ("latency") time of 750 ns .

Figure 1. 80960CA Block Diagram

2.1 The C-Series Core

The C-Series core is a very high performance microarchitectural implementation of the 80960 Core Architecture. The C-Series core can sustain execution of two instructions per clock (50 MIPs at 25 MHz). To achieve this level of performance, Intel has incorporated state-of-the-art silicon technology and innovative microarchitectural constructs into the implementation of the C-Series core. Factors that contribute to the core's performance include:

- Parallel instruction decoding allows issuance of up to three instructions per clock
- Single-clock execution of most instructions
- Parallel instruction decode allows sustained, simultaneous execution of two single-clock instructions every clock cycle
- Efficient instruction pipeline minimizes pipeline break losses
- Register and resource scoreboarding allow simultaneous multi-clock instruction execution
- Branch look-ahead and prediction allows many branches to execute with no pipeline break
- Local Register Cache integrated on-chip caches Call/Return context
- Two-way set associative, 1 Kbyte integrated instruction cache
- 1 Kbyte integrated Data RAM sustains a fourword (128-bit) access every clock cycle

2.2 Pipelined, Burst Bus

A 32-bit high performance bus controller interfaces the 80960CA to external memory and peripherals. The Bus Control Unit features a maximum transfer rate of 100 Mbytes per second (at 25 MHz). Internally programmable wait states and 16 separately configurable memory regions allow the processor to interface with a variety of memory subsystems with a minimum of system complexity and a maximum of performance. The Bus Controller's main features include:

- Demultiplexed, Burst Bus to exploit most efficient DRAM access modes
- Address Pipelining to reduce memory cost while maintaining performance
- 32-, 16- and 8-bit modes for I/O interfacing ease
- Full internal wait state generation to reduce system cost
- Little and Big Endian support to ease application development
- Unaligned access support for code portability
- Three-deep request queue to decouple the bus from the core

2.3 Flexible DMA Controller

A four-channel DMA controller provides high speed DMA control for data transfers involving peripherals and memory. The DMA provides advanced features such as data chaining, byte assembly and disassembly and a high performance fly-by mode capable of transfer speeds of up to 45 Mbytes per second at 25 MHz . The DMA controller features a performance and flexibility which is only possible by integrating the DMA controller and the 80960CA core.

2.4 Priority interrupt Controller

A programmable-priority interrupt controller manages up to 248 external sources through the 8 -bit external interrupt port. The interrupt Unit also handles the four internal sources from the DMA controller and a single non-maskable interrupt input. The 8 -bit interrupt port can also be configured to provide individual interrupt sources that are level or edge triggered.

Interrupts in the 80960CA are prioritized and signaled within 270 ns of the request. If the interrupt is of higher priority than the processor priority, the context switch to the interrupt routine typically is complete in another 480 ns . The interrupt unit provides the mechanism for the low latency and high throughput interrupt service which is essential for embedded applications.

2.5 Instruction Set Summary

Table 1 summarizes the 80960 CA instruction set by logical groupings. See the $1960{ }^{\circledR}$ CA Microprocessor User's Manual for a complete description of the instruction set.

Table 1. 80960CA Instruction Set

Data Movement	Arithmetic	Logical	Bit and Bit Field and Byte
Load Store Move Load Address	Add Subtract Multiply Divide Remainder Modulo Shift *Extended Shift Extended Multiply Extended Divide Add with Carry Subtract with Carry Rotate	And Not And And Not Or Exclusive Or Not Or Or Not Nor Exclusive Nor Not Nand	Set Bit Clear Bit Not Bit Alter Bit Scan For Bit Span Over Bit Extract Modify Scan Byte for Equal
Comparison	Branch	Call/Return	Fault
Compare Conditional Compare Compare and Increment Compare and Decrement Test Condition Code Check Bit	Unconditional Branch Conditional Branch Compare and Branch	Call Call Extended Call System Return Branch and Link	Conditional Fault Synchronize Faults
Debug	Processor Management	Atomic	
Modify Trace Controls Mark Force Mark	Flush Local Registers Modify Arithmetic Controls Modify Process Controls *System Control *DMA Control	Atomic Add Atomic Modify	

NOTES:

Instructions marked by (*) are 80960CA extensions to the 80960 instruction set

3.0 PACKAGE INFORMATION

3.1 Package Introduction

This section describes the pins, pinouts and thermal characteristics for the 80960CA in the 168-pin Ceramic Pin Grid Array (PGA) package. For complete package specifications and information, see the Packaging Handbook (Order No. 240800).

3.2 Pin Descriptions

The 80960CA pins are described in this section. Table 2 presents the legend for interpreting the pin descriptions in the following tables. Pins associated with the 32-bit demultiplexed processor bus are described in Table 3. Pins associated with basic processor configuration and control are described in Table 4. Pins associated with the 80960CA DMA Controller and Interrupt Unit are described in Table 5.

All pins float while the processor is in the ONCE mode.

Table 2. Pin Description Nomenclature

Symbol	Description
1	Input only pin
0	Output only pin
I/O	Pin can be either an input or output
-	Pins "must be" connected as described
S(...)	Synchronous. Inputs must meet setup and hold times relative to PCLK2:1 for proper operation. All outputs are synchronous to PCLK2:1. S(E) Edge sensitive input S(L) Level sensitive input
A(...)	Asynchronous. Inputs may be asynchronous to PCLK2:1. $A(E)$ Edge sensitive input A(L) Level sensitive input
H(...)	While the processor's bus is in the Hold Acknowledge or Bus Backoff state, the pin: $H(1)$ is driven to $V_{C C}$ $H(0)$ is driven to $V_{S S}$ $H(Z)$ floats $H(Q)$ continues to be a valid input
$\mathrm{R}(. .$.	While the processor's RESET pin is low, the pin: $R(1)$ is driven to $V_{C C}$ $R(0)$ is driven to $V_{S S}$ $R(Z)$ floats $R(Q)$ continues to be a valid output

Table 3. 80960CA Pin Description-External Bus Signals

Name	Type	Description
A31:2	$\begin{gathered} 0 \\ S \\ H(Z) \\ R(Z) \end{gathered}$	ADDRESS BUS carries the physical address' upper 30 bits. A31 is the most significant address bit; A2 is the least significant. During a bus access, A31:2 identify all external addresses to word (4-byte) boundaries. The byte enable signals indicate the selected byte in each word. During burst accesses, A3:2 increment to indicate successive data cycles.
D31:0	$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & \mathrm{~S}(\mathrm{~L}) \\ & \mathrm{H}(\mathrm{Z}) \\ & \mathrm{R}(\mathrm{Z}) \end{aligned}$	DATA BUS carries 32-, 16- or 8 -bit data quantities depending on bus width configuration. The least significant bit of the data is carried on DO and the most significant on D31. When the bus is configured for 8 -bit data, the lower 8 data lines, D7:0 are used. For 16-bit data bus widths, D15:0 are used. For 32 bit bus widths the full data bus is used.
BE3:0	$\begin{gathered} 0 \\ S \\ H(Z) \\ R(1) \end{gathered}$	BYTE ENABLES select which of the four bytes addressed by A31:2 are active during an access to a memory region configured for a 32-bit data-bus width. $\overline{\mathrm{BE}} 3$ applies to D31:24; $\overline{\mathrm{BE} 2}$ applies to D23:16; $\overline{\mathrm{BE}}$ applies to D15:8; $\overline{\mathrm{BE}}$ applies to D7:0. 32-bit bus: For accesses to a memory region configured for a 16-bit data-bus width, the processor uses the $\overline{\mathrm{BE}}, \overline{\mathrm{BE} 1}$ and $\overline{\mathrm{BE}}$ pins as $\overline{\mathrm{BHE}}, \mathrm{A} 1$ and $\overline{\mathrm{BLE}}$ respectively. $\begin{array}{lll}\text { 16-bit bus: } & \overline{\mathrm{BE} 3} & \text {-Byte High Enable }(\overline{\mathrm{BHE}}) \\ & \overline{\mathrm{BE} 2} & \text {-Not used (driven high or low) }\end{array}$ $\overline{\overline{B E 1}}$ —Address Bit 1 (A1) $\overline{\overline{B E O}}$-Byte Low Enable ($\overline{\mathrm{BLE}}$) -enable D7:0 For accesses to a memory region configured for an 8-bit data-bus width, the processor uses the $\overline{\mathrm{BE} 1}$ and $\overline{\mathrm{BEO}}$ pins as A 1 and A 0 respectively. 8-bit bus: $\quad \overline{\mathrm{BE} 3} \quad$-Not used (driven high or low) $\overline{\mathrm{BE} 2} \quad$-Not used (driven high or low) $\overline{\mathrm{BE1}}$ —Address Bit 1 (A1) $\overline{B E O} \quad$-Address Bit 0 (AO)
W/R	$\begin{gathered} 0 \\ S \\ H(Z) \\ R(0) \end{gathered}$	WRITE/READ is asserted for read requests and deasserted for write requests. The $\mathrm{W} / \overline{\mathrm{R}}$ signal changes in the same clock cycle as $\overline{\mathrm{ADS}}$. It remains valid for the entire access in non-pipelined regions. In pipelined regions, W/ $\overline{\mathrm{R}}$ is not guaranteed to be valid in the last cycle of a read access.
$\overline{\text { ADS }}$	$\begin{gathered} 0 \\ S \\ H(Z) \\ R(1) \end{gathered}$	ADDRESS STROBE indicates a valid address and the start of a new bus access. $\overline{A D S}$ is asserted for the first clock of a bus access.

Table 3. 80960CA Pin Description-External Bus Signals (Continued)

Name	Type	Description
READY	$\begin{gathered} \mathrm{I} \\ \mathrm{~S}(\mathrm{~L}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	READY is an input which signals the termination of a data transfer. $\overline{\text { READY }}$ is used to indicate that read data on the bus is valid or that a write-data transfer has completed. The READY signal works in conjunction with the internally programmed wait-state generator. If $\overline{\operatorname{READY}}$ is enabled in a region, the pin is sampled after the programmed number of wait-states has expired. If the READY pin is deasserted, wait states continue to be inserted until READY becomes asserted. This is true for the N NAD, N NDD, NWAD and NWDD wait states. The NXDA wait states cannot be extended.
BTERM	$\begin{gathered} \text { I } \\ \mathrm{S}(\mathrm{~L}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	BURST TERMINATE is an input which breaks up a burst access and causes another address cycle to occur. The BTERM signal works in conjunction with the internally programmed wait-state generator. If READY and BTERM are enabled in a region, the BTERM pin is sampled after the programmed number of wait states has expired. When BTERM is asserted, a new $\overline{\text { ADS signal is }}$ generated and the access is completed. The READY input is ignored when BTERM is asserted. BTERM must be externally synchronized to satisfy BTERM setup and hold times.
WAIT	$\begin{gathered} 0 \\ S \\ H(Z) \\ R(1) \end{gathered}$	WAIT indicates internal wait state generator status. WAIT is asserted when wait states are being caused by the internal wait state generator and not by the READY or BTERM inputs. WAIT can be used to derive a write-data strobe. WAIT can also be thought of as a READY output that the processor provides when it is inserting wait states.
BLAST	$\begin{gathered} 0 \\ S \\ H(Z) \\ R(0) \end{gathered}$	BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last data transfer of burst and non-burst accesses after the wait state counter reaches zero. BLAST remains asserted until the clock following the last cycle of the last data transfer of a bus access. If the $\overline{\text { READY }}$ or $\overline{B T E R M}$ input is used to extend wait states, the BLAST signal remains asserted until $\overline{\text { READY }}$ or $\overline{\text { BTERM }}$ terminates the access.
DT/ \bar{R}	$\begin{gathered} 0 \\ S \\ H(Z) \\ R(0) \end{gathered}$	DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/ \bar{R} is used in conjunction with $\overline{\mathrm{DEN}}$ to provide control for data transceivers attached to the external bus. When DT/ $\overline{\mathrm{R}}$ is asserted, the signal indicates that the processor receives data. Conversely, when deasserted, the processor sends data. DT/ \bar{R} changes only while $\overline{D E N}$ is high.
$\overline{\text { DEN }}$	$\begin{gathered} 0 \\ S \\ H(Z) \\ R(1) \end{gathered}$	DATA ENABLE indicates data cycles in a bus request. $\overline{\mathrm{DEN}}$ is asserted at the start of the bus request first data cycle and is deasserted at the end of the last data cycle. $\overline{\mathrm{DEN}}$ is used in conjunction with $\mathrm{DT} / \overline{\mathrm{R}}$ to provide control for data transceivers attached to the external bus. $\overline{\text { DEN }}$ remains asserted for sequential reads from pipelined memory regions. $\overline{\mathrm{DEN}}$ is deasserted when DT/ \bar{R} changes.
$\overline{\text { LOCK }}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~S} \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(1) \end{gathered}$	BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK may be used to prevent external agents from accessing memory which is currently involved in an atomic operation. LOCK is asserted in the first clock of an atomic operation and deasserted in the clock cycle following the last bus access for the atomic operation. To allow the most flexibility for memory system enforcement of locked accesses, the processor acknowledges a bus hold request when LOCK is asserted. The processor performs DMA transfers while LOCK is active.
HOLD	$\begin{gathered} \text { I } \\ \mathrm{S}(\mathrm{~L}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	HOLD REQUEST signals that an external agent requests access to the external bus. The processor asserts HOLDA after completing the current bus request. HOLD, HOLDA and BREQ are used together to arbitrate access to the processor's external bus by external bus agents.

Table 3. 80960CA Pin Description-External Bus Signals (Continued)

Name	Type	Description
$\overline{\text { BOFF }}$	I S(L) H(Z)	BUS BACKOFF, when asserted, suspends the current access and causes the bus pins to float. When BOFF is deasserted, the $\overline{\text { ADS }}$ signal is asserted on the next clock cycle and the access is resumed.
	$\mathrm{R}(\mathrm{Z})$	

Table 4. 80960CA Pin Description—Processor Control Signals

Name	Type	Description
RESET	$\begin{gathered} \mathbf{I} \\ \mathrm{A}(\mathrm{~L}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	RESET causes the chip to reset. When RESET is asserted, all external signals return to the reset state. When RESET is deasserted, initialization begins. When the $2-x$ clock mode is selected, RESET must remain asserted for 32 CLKIN cycles before being deasserted to guarantee correct processor initialization. When the 1 -x clock mode is selected, RESET must remain asserted for 10,000 CLKIN cycles before being deasserted to guarantee correct processor initialization. The CLKMODE pin selects $1-\mathrm{x}$ or $2-\mathrm{x}$ input clock division of the CLKIN pin. The processor's Hold Acknowledge bus state functions while the chip is reset. If the processor's bus is in the Hold Acknowledge state when RESET is asserted, the processor will internally reset, but maintains the Hold Acknowledge state on external pins until the Hold request is removed. If a Hold request is made while the processor is in the reset state, the processor bus will grant HOLDA and enter the Hold Acknowledge state.
$\overline{\text { FAIL }}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~S} \\ \mathrm{H}(\mathrm{Q}) \\ \mathrm{R}(0) \end{gathered}$	FAIL indicates failure of the processor's self-test performed at initialization. When RESET is deasserted and the processor begins initialization, the FAIL pin is asserted. An internal self-test is performed as part of the initialization process. If this self-test passes, the FAIL pin is deasserted; otherwise it remains asserted. The FAIL pin is reasserted while the processor performs an external bus self-confidence test. If this self-test passes, the processor deasserts the FAIL pin and branches to the user's initialization routine; otherwise the FAIL pin remains asserted. Internal self-test and the use of the FAIL pin can be disabled with the STEST pin.
STEST	$\begin{gathered} \mathbf{I} \\ \mathrm{S}(\mathrm{~L}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	SELF TEST causes the processor's internal self-test feature to be enabled or disabled at initialization. STEST is read on the rising edge of RESET. When asserted, the processor's internal self-test and external bus confidence tests are performed during processor initialization. When deasserted, only the bus confidence tests are performed during initialization.
ONCE	$\begin{gathered} \text { I } \\ \text { A(L) } \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	ON CIRCUIT EMULATION, when asserted, causes all outputs to be floated. ONCE is continuously sampled while RESET is low and is latched on the rising edge of RESET. To place the processor in the ONCE state: (1) assert RESET and ONCE (order does not matter) (2) wait for at least 16 CLKIN periods in 2-x mode-or 10,000 CLKIN periods in 1-x mode-after V_{CC} and CLKIN are within operating specifications (3) deassert RESET (4) wait at least 32 CLKIN periods (The processor will now be latched in the ONCE state as long as $\overline{R E S E T}$ is high.) To exit the ONCE state. bring $\mathrm{V}_{C C}$ and CLKIN to operating conditions, then assert RESET and bring ONCE high prior to deasserting RESET. CLKIN must operate within the specified operating conditions of the processor until Step 4 above has been completed. CLKIN may then be changed to DC to achieve the lowest possible ONCE mode leakage current. $\overline{\text { ONCE }}$ can be used by emulator products or for board testers to effectively make an installed processor transparent in the board.

Table 4. 80960CA Pin Description—Processor Control Signals (Continued)

Name	Type	Description
CLKIN	$\begin{gathered} \mathbf{I} \\ \mathrm{A}(\mathrm{E}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	CLOCK INPUT is an input for the external clock needed to run the processor. The external clock is internally divided as prescribed by the CLKMODE pin to produce PCLK2:1.
CLKMODE	$\begin{gathered} \mathbf{I} \\ \mathrm{A}(\mathrm{~L}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	CLOCK MODE selects the division factor applied to the external clock input (CLKIN). When CLKMODE is high, CLKIN is divided by one to create PCLK2:1 and the processor's internal clock. When CLKMODE is low, CLKIN is divided by two to create PCLK2:1 and the processor's internal clock. CLKMODE should be tied high or low in a system as the clock mode is not latched by the processor. If left unconnected, the processor will internally pull the CLKMODE pin low, enabling the 2-x clock mode.
PCLK2:1	$\begin{gathered} 0 \\ S \\ H(Q) \\ R(Q) \end{gathered}$	PROCESSOR OUTPUT CLOCKS provide a timing reference for all processor inputs and outputs. All input and output timings are specified in relation to PCLK2 and PCLK1. PCLK2 and PCLK1 are identical signals. Two output pins are provided to allow flexibility in the system's allocation of capacitive loading on the clock. PCLK2:1 may also be connected at the processor to form a single clock signal.
$\mathrm{V}_{\text {SS }}$	-	GROUND connections must be connected externally to a $\mathrm{V}_{\text {SS }}$ board plane.
$\mathrm{V}_{\text {CC }}$	-	POWER connections must be connected externally to a $\mathrm{V}_{\text {CC }}$ board pane.
$\mathrm{V}_{\text {CCPLL }}$	-	$\mathrm{V}_{\text {CCPLL }}$ is a separate V_{CC} supply pin for the phase lock loop used in $1-\mathrm{x}$ clock mode. Connecting a simple lowpass filter to $\mathrm{V}_{\text {CCPLL }}$ may help reduce clock jitter (T_{CP}) in noisy environments. Otherwise, $\mathrm{V}_{\text {CCPLL }}$ should be connected to V_{CC}. This pin is implemented starting with the D-stepping. See Table 13 for die stepping information.
NC	-	NO CONNECT pins must not be connected in a system.

Table 5. 80960CA Pin Description—DMA and Interrupt Unit Control Signals

Name	Type	Description
DREQ3:0	$\begin{gathered} \text { I } \\ \mathrm{A}(\mathrm{~L}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	DMA REQUEST causes a DMA transfer to be requested. Each of the four signals requests a transfer on a single channel. DREQO requests channel 0 , DREQ1 requests channel 1, etc. When two or more channels are requested simultaneously, the channel with the highest priority is serviced first. The channel priority mode is programmable.
DACK3:0	$\begin{gathered} \hline \mathbf{O} \\ S \\ H(1) \\ R(1) \end{gathered}$	DMA ACKNOWLEDGE indicates that a DMA transfer is being executed. Each of the four signals acknowledges a transfer for a single channel. DACKO acknowledges channel 0, $\overline{\text { DACK1 }}$ acknowledges channel 1, etc. $\overline{\text { DACK3:0 }}$ are asserted when the requesting device of a DMA is accessed.
$\overline{\text { EOP/TC3:0 }}$	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \mathrm{~A}(\mathrm{~L}) \\ \mathrm{H}(\mathrm{Z} / \mathrm{Q}) \\ \mathrm{R}(Z) \end{gathered}$	END OF PROCESS/TERMINAL COUNT can be programmed as either an input (EOP3:0) or as an output (TC3:0), but not both. Each pin is individually programmable. When programmed as an input, EOPx causes the termination of a current DMA transfer for the channel corresponding to the EOPx pin. EOPO corresponds to channel 0, EOP1 corresponds to channel 1, etc. When a channel is configured for source and destination chaining, the EOP pin for that channel causes termination of only the current buffer transferred and causes the next buffer to be transferred. ЕOP3:0 are asynchronous inputs. When programmed as an output, the channel's TCx pin indicates that the channel byte count has reached 0 and a DMA has terminated. TCx is driven with the same timing as $\overline{\text { DACKx }}$ during the last DMA transfer for a buffer. If the last bus request is executed as multiple bus accesses, $\overline{T C x}$ will stay asserted for the entire bus request.
XINT7:0	$\begin{gathered} \mathrm{I} \\ \mathrm{~A}(\mathrm{E} / \mathrm{L}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	EXTERNAL INTERRUPT PINS cause interrupts to be requested. These pins can be configured in three modes: Dedicated Mode: each pin is a dedicated external interrupt source. Dedicated inputs can be individually programmed to be level (low) or edge (falling) activated. Expanded Mode: the eight pins act together as an 8-bit vectored interrupt source. The interrupt pins in this mode are level activated. Since the interrupt pins are active low, the vector number requested is the one's complement of the positive logic value place on the port. This eliminates glue logic to interface to combinational priority encoders which output negative logic. Mixed Mode: $\overline{\text { XINT7:5 }}$ are dedicated sources and XINT4:0 act as the five most significant bits of an expanded mode vector. The least significant bits are set to 010 internally.
$\overline{\text { NMI }}$	$\begin{gathered} \text { I } \\ \mathrm{A}(\mathrm{E}) \\ \mathrm{H}(\mathrm{Z}) \\ \mathrm{R}(\mathrm{Z}) \end{gathered}$	NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. $\overline{\mathrm{NMI}}$ is the highest priority interrupt recognized. $\overline{\mathrm{NMI}}$ is an edge (falling) activated source.

3.3 80960CA Mechanical Data

3.3.1 80960CA PGA Pinout

Tables 6 and 7 list the 80960CA pin names with package location. Figure 2 depicts the complete 80960CA PGA pinout as viewed from the top side of
the component (i.e., pins facing down). Figure 3 shows the complete 80960CA PGA pinout as viewed from the pin-side of the package (i.e., pins facing up). See Section 4.0, ELECTRICAL SPECIFICATIONS for specifications and recommended connections.

Table 6. 80960CA PGA Pinout-In Signal Order

Address Bus		Data Bus		Bus Control		Processor Control		1/0	
Signal	Pin								
A31	S15	D31	R3	$\overline{\text { EE3 }}$	S5	RESET	A16	$\overline{\text { DREQ3 }}$	A7
A30	Q13	D30	Q5	BE2	S6			$\overline{\text { DREQ2 }}$	B6
A29	R14	D29	S2	$\overline{\mathrm{BE}} 1$	S7	FAIL	A2	$\overline{\text { DREQ1 }}$	A6
A28	Q14	D28	Q4	BEO	R9			DREQ0	B5
A27	S16	D27	R2			STEST	B2		
A26	R15	D26	Q3	W/ \bar{R}	S10			$\overline{\text { DACK3 }}$	A10
A25	S17	D25	S1			ONCE	C3	DACK2	A9
A24	Q15	D24	R1	$\overline{\text { ADS }}$	R6			$\overline{\text { DACK1 }}$	A8
A23	R16	D23	Q2			CLKIN	C13	$\overline{\text { DACKO }}$	B8
A22	R17	D22	P3	$\overline{\text { READY }}$	S3	CLKMODE	C14		
A21	Q16	D21	Q1	$\overline{\text { BTERM }}$	R4	PLCK1	B14	$\overline{\mathrm{EOP}} / \overline{\mathrm{TCO}}$	A14
A20	P15	D20	P2			PLCK2	B13	$\overline{\mathrm{EOP}} / \overline{\mathrm{TC} 2}$	A13
A19	P16	D19	P1	WAIT	S12			$\overline{\mathrm{EOP}} / \overline{\mathrm{TC}}$	A12
A18	Q17	D18	N2	BLAST	S8	$\mathrm{v}_{\text {S }}$		EOP/TC0	A11
A17	P17	D17	N1			Location			
A16	N16	D16	M1	DT/ \bar{R}	S11	C7, C8, C9, C10, C11, C12, F15, G3, G15, H3, H15, J3, J15, K3, K15, L3, L15, M3, M15, Q7, Q8, Q9, Q10, Q11		XINT7	C17
A15	N17	D15	L1	$\overline{\text { DEN }}$	S9			XINT6	C16
A14	M17	D14	L2					$\overline{\text { XINT5 }}$	B17
A13	L16	D13	K1	LOCK	S14			$\overline{\text { XINT4 }}$	C15
A12	L17	D12	J1					XINT3	B16
A11	K17	D11	H1			V_{Cc}		$\overline{\text { XINT2 }}$	A17
A10	J17	D10	H2	HOLD	R5	Location		$\overline{\text { XINT1 }}$	A15
A9	H17	D9	G1	HOLDA	S4	B7, B9, B11, B12, C6, E15, F3, F16, G2, H16, J2, J16, K2, K16, M2, M16, N3, N15, Q6, R7, R8, R10, R11		XINTO	B15
A8	G17	D8	F1	BREQ	R13				
A7	G16	D7	E1					$\overline{\text { NMI }}$	D15
A6	F17	D6	F2	D/C	S13				
A5	E17	D5	D1	$\overline{\text { DMA }}$	R12				
A4	E16	D4	E2	$\overline{\text { SUP }}$	Q12	$\mathrm{V}_{\text {CCPLL }}$	B10		
A3	D17	D3	C1			No Connect			
A2	D16	D2	D2	BOFF	B1	Location			
		D1	C2			A1, A3, A4, A5, B3, B4, C4, C5, D3			
		D0	E3						

Table 7. 80960CA PGA Pinout-In Pin Order

Pin	Signal								
A1	NC	C1	D3	G1	D9	M1	D16	R1	D24
A2	FAIL	C2	D1	G2	V_{CC}	M2	$\mathrm{V}_{\text {CC }}$	R2	D27
A3	NC	C3	ONCE	G3	$\mathrm{V}_{\text {SS }}$	M3	$\mathrm{V}_{\text {SS }}$	R3	D31
A4	NC	C4	NC	G15	$\mathrm{V}_{S S}$	M15	$\mathrm{V}_{S S}$	R4	BTERM
A5	NC	C5	NC	G16	A7	M16	V_{CC}	R5	HOLD
A6	DREQ1	C6	V_{CC}	G17	A8	M17	A14	R6	$\overline{\text { ADS }}$
A7	DREQ3	C7	$\mathrm{V}_{S S}$					R7	$V_{C C}$
A8	DACK1	C8	$\mathrm{V}_{S S}$	H1	D11	N1	D17	R8	$\mathrm{V}_{C C}$
A9	$\overline{\text { DACK2 }}$	C9	$\mathrm{V}_{\text {SS }}$	H2	D10	N2	D18	R9	$\overline{\text { BEO }}$
A10	DACK3	C10	$\mathrm{V}_{S S}$	H3	$\mathrm{V}_{\text {SS }}$	N3	V_{CC}	R10	$\mathrm{V}_{C C}$
A11	EOP/TC0	C11	$\mathrm{V}_{\text {SS }}$	H15	$\mathrm{V}_{\text {SS }}$	N15	V_{CC}	R11	$\mathrm{V}_{\text {CC }}$
A12	EOP/TC1	C12	$\mathrm{V}_{S S}$	H16	$\mathrm{V}_{\text {CC }}$	N16	A16	R12	$\overline{\text { DMA }}$
A13	$\overline{\mathrm{EOP} / \overline{T C 2}}$	C13	CLKIN	H17	A9	N17	A15	R13	BREQ
A14	EOP/TC3	C14	CLKMODE					R14	A29
A15	$\overline{\text { XINT1 }}$	C15	$\overline{\text { XINT4 }}$	J1	D12	P1	D19	R15	A26
A16	RESET	C16	$\overline{\text { XINT6 }}$	J2	$\mathrm{V}_{\text {CC }}$	P2	D20	R16	A23
A17	$\overline{\text { XINT2 }}$	C17	$\overline{\text { XINT7 }}$	J3	$\mathrm{V}_{\text {SS }}$	P3	D22	R17	A22
				J15	V_{SS}	P15	A20		
B1	BOFF	D1	D5	J16	V_{CC}	P16	A19	S1	D25
B2	STEST	D2	D2	J17	A10	P17	A17	S2	D29
B3	NC	D3	NC					S3	READY
B4	NC	D15	$\overline{\mathrm{NMI}}$	K1	D13	Q1	D21	S4	HOLDA
B5	DREQ0	D16	A2	K2	$\mathrm{V}_{\text {CC }}$	Q2	D23	S5	$\overline{\mathrm{BE} 3}$
B6	$\overline{\text { DREQ2 }}$	D17	A3	K3	$\mathrm{V}_{S S}$	Q3	D26	56	BE2
B7	$\mathrm{V}_{\text {CC }}$			K15	$\mathrm{V}_{S S}$	Q4	Q28	S7	$\overline{\text { BE1 }}$
B8	$\overline{\text { DACKO }}$	E1	D7	K16	V_{CC}	Q5	D30	S8	BLAST
B9	V_{CC}	E2	D4	K17	A11	Q6	$\mathrm{V}_{\text {CC }}$	S9	$\overline{\mathrm{DEN}}$
B10	$\mathrm{V}_{\text {CCPLL }}$	E3	D0			Q7	V_{SS}	S10	W/R
B11	$\mathrm{V}_{\text {CC }}$	E15	V_{CC}	L1	D15	Q8	V_{SS}	S11	DT/R
B12	$\mathrm{V}_{\text {CC }}$	E16	A4	L2	D14	Q9	$\mathrm{V}_{S S}$	S12	WAIT
B13	PCLK2	E17	A5	L3	$\mathrm{V}_{\text {SS }}$	Q10	$\mathrm{V}_{S S}$	S13	D/C
B14	PCLK1			L15	V_{SS}	Q11	V_{SS}	S14	LOCK
B15	$\overline{\text { XINTO }}$	F1	D8	L16	A13	Q12	SUP	S15	A31
B16	$\overline{\text { XINT3 }}$	F2	D6	L17	A12	Q13	A30	S16	A27
B17	XINT5	F3	V_{CC}			Q14	A28	S17	A25
		F15	$\mathrm{V}_{S S}$			Q15	A24		
		F16	$\mathrm{V}_{\text {CC }}$			Q16	A21		
		F17	A6			Q17	A18		

Figure 2. 80960CA PGA Pinout-View from Top (Pins Facing Down)

Figure 3. 80960CA PGA Pinout—View from Bottom (Pins Facing Up)

3.4 Package Thermal Specifications

The 80960 CA is specified for operation when T_{C} (case temperature) is within the range of $-40^{\circ} \mathrm{C}-$ $+110^{\circ} \mathrm{C}$. T_{C} may be measured in any environment to determine whether the 80960CA is within specified operating range. Case temperature should be measured at the center of the top surface, opposite the pins. Refer to Figure 4.
T_{A} (ambient temperature) can be calculated from θ_{CA} (thermal resistance from case to ambient) using the following equation:

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{C}}-\mathrm{P}^{*} \theta_{\mathrm{CA}}
$$

Table 8 shows the maximum T_{A} allowable (without exceeding T_{C}) at various airflows and operating frequencies (fpCLK).

Note that T_{A} is greatly improved by attaching fins or a heatsink to the package. P (maximum power consumption) is calculated by using the typical I_{CC} as tabulated in Section 4.4, DC Specifications and V_{CC} of 5 V .

Figure 4. Measuring 80960CA PGA Case Temperature
Table 8. Maximum T_{A} at Various Airflows in ${ }^{\circ} \mathrm{C}$

		Airflow-ft/min (m/sec)					
	fPCLK (MHz)	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 200 \\ (1.01) \end{gathered}$	$\begin{gathered} 400 \\ (2.03) \end{gathered}$	$\begin{gathered} 600 \\ (3.04) \end{gathered}$	$\begin{gathered} 800 \\ (4.06) \end{gathered}$	$\begin{gathered} 1000 \\ (5.07) \end{gathered}$
T_{A} with Heatsink*	$\begin{aligned} & 33 \\ & 25 \\ & 16 \end{aligned}$	$\begin{aligned} & 51 \\ & 61 \\ & 74 \end{aligned}$	$\begin{aligned} & 66 \\ & 73 \\ & 82 \end{aligned}$	$\begin{aligned} & 79 \\ & 83 \\ & 89 \end{aligned}$	$\begin{aligned} & 81 \\ & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & 85 \\ & 88 \\ & 92 \end{aligned}$	$\begin{aligned} & 87 \\ & 89 \\ & 93 \end{aligned}$
T_{A} without Heatsink*	$\begin{aligned} & 33 \\ & 25 \\ & 16 \end{aligned}$	$\begin{aligned} & 36 \\ & 49 \\ & 66 \end{aligned}$	$\begin{aligned} & 47 \\ & 58 \\ & 72 \end{aligned}$	$\begin{aligned} & 59 \\ & 67 \\ & 78 \end{aligned}$	$\begin{aligned} & 66 \\ & 73 \\ & 82 \end{aligned}$	$\begin{aligned} & 73 \\ & 78 \\ & 86 \end{aligned}$	$\begin{aligned} & 75 \\ & 80 \\ & 87 \end{aligned}$

NOTES:

$0.285^{\prime \prime}$ high undirectional heatsink (Al alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).

Table 9. 80960CA PGA Package Thermal Characteristics

Thermal Resistance- ${ }^{\circ} \mathrm{C} / \mathrm{Watt}$							$\begin{array}{l\|l} \theta_{J A} & \\ \hline & 4 \theta \\ \hline \end{array}$	
Parameter	Airflow-ft/min (m/sec)							
	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 200 \\ (1.01) \end{gathered}$	$\begin{gathered} 400 \\ (2.03) \end{gathered}$	$\begin{gathered} 600 \\ (3.07) \end{gathered}$	$\begin{gathered} 800 \\ (4.06) \end{gathered}$	$\begin{gathered} 1000 \\ (5.07) \end{gathered}$		
θ Junction-to-Case (Case measured as shown in Figure 4)	1.5	1.5	1.5	1.5	1.5	1.5		
θ Case-to-Ambient (No Heatsink)	17	14	11	9	7.1	6.6		
θ Case-to-Ambient (With Heatsink)*	13	9	5.5	5	3.9	3.4		

NOTES:

1. This table applies to 80960CA PGA plugged into socket or soldered directly to board.
2. $\theta_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}$.

* 0.285 " high unidirectional heatsink (Al alloy 6061,50 mil fin width, 150 mil center-to-center fin spacing).

3.5 Stepping Register Information

Upon reset, register g0 contains die stepping information. Figure 5 shows how g0 is configured. The most significant byte contains an ASCII 0 . The upper middle byte contains an ASCII C. The lower middle byte contains an ASCII A. The least significant byte contains the stepping number in ASCII. g0 retains this information until it is overwritten by the user program.

Figure 5. Register g0
Table 10 contains a cross reference of the number in the least significant byte of register g0 to the die stepping number.

Table 10. Die Stepping Cross Reference

go Least Significant Byte	Die Stepping
01	B
02	C-1
03	C-2,C-3
04	D

3.6 Suggested Sources for 80960CA Accessories

The following is a list of suggested sources for 80960CA accessories. This is not an endorsement of any kind, nor is it a warranty of the performance of any of the listed products and/or companies.

Sockets

1. 3M Textool Test and Interconnection Products Department
P.O. Box 2963

Austin, TX 78769-2963
2. Augat, Inc.

Interconnection Products Group
33 Perry Avenue
P.O. Box 779

Attleboro, MA 02703
(508) 699-7646
3. Concept Manufacturing, Inc.
(Decoupling Sockets)
41484 Christy Street
Fremont, CA 94538
(415) 651-3804

Heatsinks/Fins

1. Thermalloy, Inc. 2021 West Valley View Lane Dallas, TX 75234-8993
(214) 243-4321

FAX: (214) 241-4656
2. E G \& G Division

60 Audubon Road
Wakefield, MA 01880
(617) 245-5900

4.0 ELECTRICAL SPECIFICATIONS

4.1 Absolute Maximum Ratings

Storage Temperature $\ldots \ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Case Temperature Under Bias... $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
Supply Voltage
with Respect to $V_{S S} \ldots \ldots . .-0.5 \mathrm{~V}$ to +6.5 V
$\begin{aligned} & \text { Voltage on Other Pins } \\ & \text { with Respect to } V_{S S}\end{aligned} \ldots . .-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
\qquad

NOTICE: This is a production data sheet. The specifications are subject to change without notice.
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

4.2 Operating Conditions

Table 11. Operating Conditons (80960CA-25, -16)

Symbol	Parameter		Min	Max	Units	Notes
$\mathrm{V}_{\text {CC }}$	Supply Voltage	80960CA-25 80960CA-16	$\begin{aligned} & 4.50 \\ & 4.50 \end{aligned}$	$\begin{aligned} & 5.50 \\ & 5.50 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$	
$\mathrm{f}_{\text {CLK } 2 x}$	Input Clock Frequency (2-x Mode)	80960CA-25 80960CA-16	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 50 \\ & 32 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
$\mathrm{f}_{\text {CLK1x }}$	Input Clock Frequency (1-x Mode)	$\begin{aligned} & \text { 80960CA-25 } \\ & \text { 80960CA-16 } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	(Note 1)
T_{C}	Case Temperature Under Bias	PGA package 80960CA-25, -16	-40	+110	${ }^{\circ} \mathrm{C}$	

NOTES:

1. When in the $1-x$ input clock mode, CLKIN is an input to an internal phase-locked loop and must maintain a minimum frequency of 8 MHz for proper processor operation. However, in the 1-x mode, CLKIN may still be stopped when the processor either is in a reset condition or is reset. If CLKIN is stopped, the specified RESET low time must be provided once CLKIN restarts and has stabilized
2. Case temperatures are "instant on".

4.3 Recommended Connections

Power and ground connections must be made to multiple V_{CC} and V_{SS} (GND) pins. Every 80960CAbased circuit board should include power $\left(\mathrm{V}_{\mathrm{CC}}\right)$ and ground ($\mathrm{V}_{\text {SS }}$) planes for power distribution. Every $V_{C C}$ pin must be connected to the power plane, and every V_{SS} pin must be connected to the ground plane. Pins identified as "NC" must not be connected in the system.

Liberal decoupling capacitance should be placed near the 80960CA. The processor can cause transient power surges when its numerous output buffers transition, particularly when connected to large capacitive loads.

Low inductance capacitors and interconnects are recommended for best high frequency electrical performance. Inductance can be reduced by shortening the board traces between the processor and decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages will offer the lowest possible inductance.

For reliable operation, always connect unused inputs to an appropriate signal level. In particular, any unused interrupt ($\overline{\mathrm{XINT}}, \mathrm{NMI}$) or DMA ($\overline{\mathrm{DREQ}}$) input should be connected to V_{CC} through a pull-up resistor, as should BTERM if not used. Pull-up resistors should be in the in the range of $20 \mathrm{~K} \Omega$ for each pin tied high. If READY or HOLD are not used, the unused input should be connected to ground. N.C. pins must always remain unconnected. Refer to the i960® CA Microprocessor User's Manual (Order Number 270710) for more information.

4.4 DC Specifications

Table 12. DC Characteristics
(80960CA-25, -16 under the conditions described in Section 4.2, Operating Conditions.)

Symbol	Parameter	Min	Max	Units	Notes
$\mathrm{V}_{\text {IL }}$	Input Low Voltage for all pins except $\overline{\text { RESET }}$	-0.3	+ 0.8	V	
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage for all pins except RESET	2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
V_{OL}	Output Low Voltage		0.45	V	$\mathrm{IOL}=5 \mathrm{~mA}$
V_{OH}	$\begin{array}{\|lr} \hline \text { Output High Voltage } & \begin{array}{r} \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \end{array} \end{array}$	$\begin{gathered} 2.4 \\ V_{C C}-0.5 \end{gathered}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	
$\mathrm{V}_{\text {ILR }}$	Input Low Voltage for RESET	-0.3	1.5	V	
$\mathrm{V}_{\text {IHR }}$	Input High Voltage for RESET	3.5	$\mathrm{V}_{\mathrm{CC}}+0.3$	V	
${ }^{\text {LII }}$	Input Leakage Current for each pin except : BTERM, ONCE, DREQ3:0, STEST, $\overline{\text { EOP3:0 }} / \overline{\mathrm{TC} 3: 0}, \overline{\mathrm{NMI}}, \overline{\text { XINT7:0 }}$, $\overline{\text { BOFF }}$, $\overline{\text { READY }}$, HOLD, CLKMODE		± 15	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {CC }}{ }^{(1)}$
ILI2	Input Leakage Current for: BTERM, ONCE, DREQ3:0, STEST, $\overline{\mathrm{EOP} 3: 0} / \overline{\mathrm{TC3}} \mathbf{0}, \overline{\mathrm{NMI}, \mathrm{XINT7:0}}, \overline{\mathrm{BOFF}}$	0	-325	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}(2)$
${ }^{\text {LII3 }}$	Input Leakage Current for: READY, HOLD, CLKMODE	0	500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}(3,7)$
LLO	Output Leakage Current		± 15	$\mu \mathrm{A}$	$0.45 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$
ICC	Supply Current (80960CA-25): $\begin{aligned} & \text { ICC Max } \\ & I_{\text {CC Typ }} \\ & \hline \end{aligned}$		$\begin{aligned} & 750 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	(Note 4) (Note 5)
ICC	Supply Current (80960CA-16): IcC Max ICC Typ		$\begin{aligned} & 550 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	(Note 4) (Note 5)
lonce	ONCE-mode Supply Current		100	mA	
$\mathrm{C}_{\text {IN }}$	Input Capacitance for: CLKIN, RESET, ONCE, READY, HOLD, DREQ3:0, $\overline{\text { BOFF }}$ $\overline{\text { XINT7:0 }}$, $\overline{\text { NMI, }}$ BTERM, CLKMODE	0	12	pF	$\mathrm{F}_{\mathrm{C}}=1 \mathrm{MHz}$
Cout	Output Capacitance of each output pin		12	pF	$\mathrm{F}_{\mathrm{C}}=1 \mathrm{MHz}{ }^{(6)}$
$\mathrm{Cl}_{1 / \mathrm{O}}$	I/O Pin Capacitance		12	pF	$\mathrm{F}_{\mathrm{C}}=1 \mathrm{MHz}$

NOTES:

1. No pullup or pulldown.
2. These pins have internal pullup resistors.
3. These pins have internal pulldown resistors.
4. Measured at worst case frequency, V_{CC} and temperature, with device operating and outputs loaded to the test conditions described in Section 4.5.1, AC Test Conditions.
5. Icc Typical is not tested.
6. Output Capacitance is the capacitive load of a floating output.
7. CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted.

4.5 AC Specifications

Table 13. 80960CA AC Characteristics (25 MHz)
(80960CA-25 only, under conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test Conditions.)

Symbol	Parameter		Min	Max	Units	Notes
Input Clock (1, 9)						
T_{F}	CLKIN Frequency		0	50	MHz	
T_{C}	CLKIN Period	In 1-x Mode (f $\mathrm{f}_{\mathrm{CK}} 1 \mathrm{x}$) In 2-x Mode (fCLK2x)	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{gathered} 125 \\ \infty \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	(11)
$\mathrm{T}_{\text {CS }}$	CLKIN Period Stability	In 1-x Mode ($\mathrm{f}_{\text {CLK1x }}$)		$\pm 0.1 \%$	Δ	(12)
T_{CH}	CLKIN High Time	In 1-x Mode (f CLK 1 x) In 2-x Mode (fCLK2x)	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 62.5 \\ \infty \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	(11)
T_{CL}	CLKIN Low Time	In 1-x Mode (f CLK1x) In 2-x Mode (fCLK2x)	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	62.5	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	(11)
TCR	CLKIN Rise Time		0	6	ns	
T_{CF}	CLKIN Fall Time		0	6	ns	
Output Clocks (1, 8)						
T_{CP}	CLKIN to PCLK2:1 Delay	In 1-x Mode (fCLK1x) In 2-x Mode (f CLK2x)	$\begin{gathered} -2 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 25 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & (3,12) \\ & (3) \\ & \hline \end{aligned}$
T	PCLK2:1 Period	In 1-x Mode (f CLK1x) In 2-x Mode (f CLK2x)			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { (12) } \\ & (3) \\ & \hline \end{aligned}$
T_{PH}	PCLK2:1 High Time		(T/2) - 3	T/2	ns	(12)
T_{PL}	PCLK2:1 Low Time		(T/2) - 3	T/2	ns	(12)
TPR	PCLK2:1 Rise Time		1	4	ns	(3)
TPF	PCLK2:1 Fall Time		1	4	ns	(3)
Synchronous Outputs (8)						
TOH Tov	Output Valid Delay, Output Hold TOH1, TOV1 TOH2, TOV2 TOH3, TOV3 TOH4, TOV4 TOH5, TOV5 ToH6, Tov6 ToH7, Tov7 ToH8, Tov8 ToH9, Tov9 TOH10, TOV10 TOH11, TOV11 TOH12, TOV12 TOH13, TOV13 TOH14, TOV14		3 3 6 3 4 5 3 4 4 4 3 $\mathrm{~T} / 2+3$ 2 3	16 18 20 20 18 18 18 18 18 20 18 $\mathrm{~T} / 2+16$ 16 20		$(6,10)$ $(6,10)$
TOF	Output Float for all ouputs		3	22	ns	(6)
Synchronous Inputs (1, 9, 10)						
$\mathrm{T}_{\text {IS }}$	Input Setup TIS1 TIS2 TIS3 TIS4	$\overline{\text { BTERM } / \frac{\frac{\text { D31:0 }}{\text { READF }}}{\text { BOFF }}} \begin{array}{r} \text { HOLD } \end{array}$	$\begin{gathered} 5 \\ 19 \\ 9 \\ 9 \end{gathered}$		ns ns ns ns	
T_{IH}	$\begin{aligned} & \text { Input Hold } \\ & \mathrm{T}_{\text {IH1 }} \\ & \mathrm{T}_{\text {IH2 }} \\ & \mathrm{T}_{\text {IH3 }} \\ & \mathrm{T}_{\text {IH4 }} \\ & \hline \end{aligned}$		$\begin{aligned} & 5 \\ & 7 \\ & 2 \\ & 5 \end{aligned}$		ns ns ns ns	

Table 13. 80960CA AC Characteristics (25 MHz) (Continued)
(80960CA-25 only, under conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test Conditions.)

Symbol	Parameter	Min	Max	Units	Notes
Relative Output Timings (1, 2, 3, 8)					
T AVSH1	A31:2 Valid to $\overline{\text { ADS Rising }}$	T-4	T+4	ns	
TAVSH2	$\overline{B E 3: 0}, \mathrm{~W} / \overline{\mathrm{R}}, \overline{\mathrm{SUP}}, \mathrm{D} / \overline{\mathrm{C}}$, $\overline{\mathrm{DMA}}, \overline{\mathrm{DACK3}}: 0$ Valid to $\overline{\mathrm{ADS}}$ Rising	T-6	T+6	ns	
T AVEL1	A31:2 Valid to $\overline{\text { DEN }}$ Falling	T-4	T+4	ns	
TAVEL2	$\overline{B E 3: 0}, \mathrm{~W} / \overline{\mathrm{R}}, \overline{\mathrm{SUP}}, \overline{\mathrm{INST}}$, $\overline{\mathrm{DMA}}, \overline{\mathrm{DACK3}}: 0 \mathrm{~V}$ Valid to $\overline{\mathrm{DEN}}$ Falling	T-6	T + 6	ns	
$\mathrm{T}_{\text {NLQV }}$	WAIT Falling to Output Data Valid	± 4		ns	
TDVNH	Output Data Valid to WAIT Rising	N*T-4	N*T + 4	ns	(4)
$\mathrm{T}_{\text {NLNH }}$	$\overline{\text { WAIT Falling to WAIT Rising }}$	$\mathrm{N} * \mathrm{~T} \pm 4$		ns	(4)
$\mathrm{T}_{\text {NHQX }}$	Output Data Hold after WAIT Rising	$(\mathrm{N}+1)^{*} \mathrm{~T}-8$	$(\mathrm{N}+1)^{*} \mathrm{~T}+6$	ns	(5)
TEHTV	DT/不 Hold after DEN High	T/2-7	∞	ns	(6)
TTVEL	DT/ $\overline{\mathrm{R}}$ Valid to $\overline{\mathrm{DEN}}$ Falling	T/2-4		ns	
Relative Input Timings (1, 2, 3)					
$\mathrm{T}_{\text {IS5 }}$	$\overline{\text { RESET }}$ Input Setup (2-x Clock Mode)	8		ns	(13)
$\mathrm{T}_{\text {IH5 }}$	RESET Input Hold (2-x Clock Mode)	7		ns	(13)
TIS6	DREQ3:0 Input Setup	14		ns	(7)
$\mathrm{T}_{\text {IH6 }}$	DREQ3:0 Input Hold	9		ns	(7)
TIS7	XINT7:0, $\overline{\text { NMI }}$ Input Setup	10		ns	(15)
$\mathrm{T}_{\mathrm{IH} 7}$	$\overline{\text { XINT7:0, }}$ NMI Input Hold	10		ns	(15)
$\mathrm{T}_{\text {IS8 }}$	RESET Input Setup (1-x Clock Mode)	3		ns	(14)
$\mathrm{T}_{\mathrm{IH8}}$	RESET Input Hold (1-x Clock Mode)	$\mathrm{T} / 4+1$		ns	(14)

NOTES:

1. See Section 4.5.2, AC Timing Waveforms for waveforms and definitions.
2. See Figure 16 for capacitive derating information for output delays and hold times.
3. See Figure 17 for capacitive derating information for rise and fall times.
4. Where N is the number of $N_{\text {RAD }}, N_{\text {RDD }}$, NWAD or NWDD wait states that are programmed in the Bus Controller Region Table. WAIT never goes active when there are no wait states in an access.
5. $N=$ Number of wait states inserted with READY.
6. Output Data and/or DT/ \bar{R} may be driven indefinitely following a cycle if there is no subsequent bus activity.
7. Since asynchronous inputs are synchronized internally by the 80960 CA , they have no required setup or hold times to be recognized and for proper operation. However, to guarantee recognition of the input at a particular edge of PCLK2:1, the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive PCLK2:1 rising edges to be seen by the processor.
8. These specifications are guaranteed by the processor.
9. These specifications must be met by the system for proper operation of the processor.
10. This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, Derating Curves to adjust the timing for PCLK2:1 loading.
11. In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When the processor is in reset, the input clock may stop even in $1-x$ mode.
12. When in the $1-x$ input clock mode, these specifications assume a stable input clock with a period variation of less than $\pm 0.1 \%$ between adjacent cycles.
13. In 2-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the falling edge of the CLKIN. (See Figure 21).
14. In $1-x$ clock mode, $\overline{\text { RESET }}$ is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the rising edge of the CLKIN. (See Figure 22.)
15. The interrupt pins are synchronized internally by the 80960CA. They have no required setup or hold times for proper operation. These pins are sampled by the interrupt controller every other clock and must be active for at least three consecutive PCLK2:1 rising edges when asserting them asynchronously. To guarantee recognition at a particular clock edge, the setup and hold times shown must be met for two consecutive PCLK2:1 rising edges.

Table 14. 80960CA AC Characteristics (16 MHz)
(80960CA-16 only, under conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test Conditions.)

Symbol	Parameter		Min	Max	Units	Notes
Input Clock (1, 9)						
$\mathrm{T}_{\text {F }}$	CLKIN Frequency		0	32	MHz	
T_{C}	CLKIN Period	In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x)	$\begin{array}{r} 62.5 \\ 31.25 \\ \hline \end{array}$	$\begin{gathered} 125 \\ \infty \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	(11)
TCS	CLKIN Period Stability	In 1-x Mode (fCLK1x)		$\pm 0.1 \%$	Δ	(12)
T_{CH}	CLKIN High Time	In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x)	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 62.5 \\ \infty \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	(11)
TCL	CLKIN Low Time	In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x)	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 62.5 \\ \infty \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	(11)
$\mathrm{T}_{\text {CR }}$	CLKIN Rise Time		0	6	ns	
$\mathrm{T}_{\text {CF }}$	CLKIN Fall Time		0	6	ns	
Output Clocks (1, 8)						
$\mathrm{T}_{\text {CP }}$	CLKIN to PCLK2:1 Delay	In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x)	$\begin{gathered} -2 \\ 2 \end{gathered}$	$\begin{gathered} 2 \\ 25 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\begin{aligned} & (3,12) \\ & (3) \\ & \hline \end{aligned}$
T	PCLK2:1 Period	In 1-x Mode (fCLK1x) In 2-x Mode (fCLK2x)			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \text { (12) } \\ & (3) \\ & \hline \end{aligned}$
$\mathrm{T}_{\text {PH }}$	PCLK2:1 High Time		(T/2) -4	T/2	ns	(12)
T_{PL}	PCLK2:1 Low Time		(T/2) - 4	T/2	ns	(12)
T_{PR}	PCLK2:1 Rise Time		1	4	ns	(3)
TPF	PCLK2:1 Fall Time		1	4	ns	(3)
Synchronous Outputs (8)						
$\begin{aligned} & \text { ToH } \\ & \text { Tov } \end{aligned}$	Output Valid Delay, Output Hold Toh1, Tov 1 ToH2, Tov2 Тонз, Tov3 TOH4, Tov4 Toh5, Tov5 Тон6, Tov6 Toh7, Tov7 Toh8, Tov8 Тоня, Tov9 Toh10, Tov10 ToH11, ToV11 ToH12, Tov12 ToH13, Tov13 TOH14, TOV14		3 3 6 3 4 5 3 4 4 4 3 $\mathrm{~T} / 2+3$ 2 3	18 20 22 22 20 20 20 20 20 22 20 $\mathrm{~T} / 2+18$ 18 22	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$(6,10)$ $(6,10)$
ToF	Output Float for All Ouputs		3	22	ns	(6)
Synchronous Inputs (1, 9, 10)						
$\mathrm{T}_{\text {IS }}$	Input Setup $T_{\text {IS1 }}$ $\mathrm{T}_{\text {IS2 }}$ $\mathrm{T}_{\text {IS3 }}$ $\mathrm{T}_{\text {IS4 }}$	$\begin{array}{r} \frac{\text { D31:0 }}{\text { BOFF }} \\ \text { BTERM/ } / \text { READY } \\ \text { HOLD } \end{array}$	$\begin{gathered} 5 \\ 21 \\ 9 \\ 9 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	
T_{IH}	Input Hold $\mathrm{T}_{\mathrm{IH} 1}$ $\mathrm{T}_{\mathrm{IH} 2}$ T_{IH} $\mathrm{T}_{\mathrm{IH} 4}$	$\begin{array}{r} \frac{\text { D31:0 }}{\text { BOFF }} \\ \hline \text { BTERM } / \text { READY } \\ \text { HOLD } \end{array}$	$\begin{aligned} & 5 \\ & 7 \\ & 2 \\ & 5 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	

Table 14. 80960CA AC Characteristics (16 MHz) (Continued)
(80960CA-16 only, under conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test Conditions.)

Symbol	Parameter	Min	Max	Units	Notes
Relative Output Timings (1, 2, 3, 8)					
T ${ }_{\text {AVSH1 }}$	A31:2 Valid to $\overline{\text { ADS Rising }}$	T-4	T+4	ns	
TAVSH2	$\overline{B E 3: 0}, \mathrm{~W} / \overline{\mathrm{R}}, \overline{\mathrm{SUP}}, \mathrm{D} / \overline{\mathrm{C}}$, $\overline{\mathrm{DMA}}, \overline{\mathrm{DACK3}}: 0$ Valid to $\overline{\mathrm{ADS}}$ Rising	T-6	T+6	ns	
TAVEL1	A31:2 Valid to $\overline{\mathrm{DEN}}$ Falling	T-6	T+6	ns	
$\mathrm{T}_{\text {AVEL2 }}$	$\overline{B E 3: 0}, \mathrm{~W} / \overline{\mathrm{R}}, \overline{\mathrm{SUP}, \overline{I N S T},}$ $\overline{\text { DMA, }} \overline{\text { DACK3:0 }}$ Valid to $\overline{\text { DEN }}$ Falling	T-6	$T+6$	ns	
T NLQV	WAIT Falling to Output Data Valid	± 4		ns	
ToVNH	Output Data Valid to WAIT Rising	N*T-4	N*T + 4	ns	(4)
$\mathrm{T}_{\mathrm{NLNH}}$	$\overline{\text { WAIT Falling to WAIT Rising }}$	N * $\mathrm{T} \pm 4$		ns	(4)
$\mathrm{T}_{\text {NHQX }}$	Output Data Hold after WAIT Rising	$(\mathrm{N}+1)^{*} \mathrm{~T}-8$	$(\mathrm{N}+1)^{*} \mathrm{~T}+4$	ns	(5)
TEHTV	DT/冹 Hold after DEN High	T/2-7	∞	ns	(6)
TTVEL	DT/ $\overline{\mathrm{R}}$ Valid to $\overline{\mathrm{DEN}}$ Falling	T/2-4		ns	
Relative Input Timings (1, 2, 3)					
$\mathrm{T}_{\text {IS5 }}$	RESET Input Setup (2-x Clock Mode)	10		ns	(13)
$\mathrm{T}_{\mathrm{IH} 5}$	$\overline{\text { RESET }}$ Input Hold (2-x Clock Mode)	9		ns	(13)
$\mathrm{T}_{\text {IS6 }}$	DREQ3:0 Input Setup	16		ns	(7)
$\mathrm{T}_{\text {IH6 }}$	DREQ3:0 Input Hold	11		ns	(7)
T_{157}	XINT7:0 $\overline{\text { NMI }}$ Input Setup	10		ns	(15)
$\mathrm{T}_{\mathrm{IH} 7}$	XINT7:0 $\overline{\text { NMI }}$ Input Hold	10		ns	(15)
$\mathrm{T}_{\text {IS8 }}$	RESET Input Setup (1-x Clock Mode)	3		ns	(14)
$\mathrm{T}_{\mathbf{I H 8}}$	$\overline{\text { RESET }}$ Input Hold (1-x Clock Mode)	$\mathrm{T} / 4+1$		ns	(14)

NOTES:

1. See Section 4.5.2, AC Timing Waveforms for waveforms and definitions.
2. See Figure 16 for capacitive derating information for output delays and hold times.
3. See Figure 17 for capacitive derating information for rise and fall times.
4. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus Controller Region Table. WAIT never goes active when there are no wait states in an access.
5. $N=$ Number of wait states inserted with READY.
6. Output Data and/or DT/ \bar{R} may be driven indefinitely following a cycle if there is no subsequent bus activity.
7. Since asynchronous inputs are synchronized internally by the 80960CA, they have no required setup or hold times to be recognized and for proper operation. However, to guarantee recognition of the input at a particular edge of PCLK2:1, the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive PCLK2:1 rising edges to be seen by the processor.
8. These specifications are guaranteed by the processor.
9. These specifications must be met by the system for proper operation of the processor.
10. This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, Derating Curves to adjust the timing for PCLK2:1 loading.
11. In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When the processor is in reset, the input clock may stop even in $1-x$ mode.
12. When in the $1-\mathrm{x}$ input clock mode, these specifications assume a stable input clock with a period variation of less than $\pm 0.1 \%$ between adjacent cycles.
13. In $2-x$ clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the falling edge of the CLKIN. (See Figure 21).
14. In 1-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the rising edge of the CLKIN. (See Figure 22.)
15. The interrupt pins are synchronized internally by the 80960 CA . They have no required setup or hold times for proper operation. These pins are sampled by the interrupt controller every other clock and must be active for at least three consecutive PCLK2:1 rising edges when asserting them asynchronously. To guarantee recognition at a particular clock edge, the setup and hold times shown must be met for two consecutive PCLK2:1 rising edges.

4.5.1 AC Test Conditions

The AC Specifications in Section 4.5 are tested with the 50 pF load shown in Figure 6. Figure 15 shows how timings vary with load capacitance.

Specifications are measured at the 1.5 V crossing point, unless otherwise indicated. Input waveforms are assumed to have a rise and fall time of $\leq 2 \mathrm{~ns}$ from 0.8 V to 2.0 V . See Section 4.5.2, AC Timing Waveforms for AC spec definitions, test points and illustrations.

Figure 6. AC Test Load

4.5.2 AC Timing Waveforms

Figure 7. Input and Output Clock Waveforms

Figure 8. CLKIN Waveform

Figure 9. Output Delay and Float Waveform

Figure 10. Input Setup and Hold Waveform
TOV T_{OH} OUTPUT DELAY-The maximum output delay is referred to as the Output Valid Delay (Tov). The minimum output delay is referred to as the Output Hold (T_{OH}).
TOF OUTPUT FLOAT DELAY-The output float condition occurs when the maximum output current becomes less than loo in magnitude.
$\mathrm{T}_{\text {IS }} \quad \mathrm{T}_{\mathrm{IH}} \quad$ INPUT SETUP AND HOLD—The input setup and hold requirements specify the sampling window during which synchronous inputs must be stable for correct processor operation.

271327-11
Figure 11. $\overline{\text { NMI, }} \overline{\text { XINT7:0 }} \mathbf{0}$ Input Setup and Hold Waveform

Figure 12. Hold Acknowledge Timings
TOV TOH OUTPUT DELAY-The maximum output delay is referred to as the Output Valid Delay (Tov). The minimum output delay is referred to as the Output Hold (ТОН).
TOF OUTPUT FLOAT DELAY-The output float condition occurs when the maximum output current becomes less than loo in magnitude.
$\mathrm{T}_{\text {IS }} \mathrm{T}_{\text {IH }}$ INPUT SETUP AND HOLD—The input setup and hold requirements specify the sampling window during which synchronous inputs must be stable for correct processor operation.

Figure 13. Bus Backoff BOFF Timings

Figure 14. Relative Timings Waveforms

4.5.3 Derating Curves

All outputs except: $\overline{\text { LOCK }}$,
.
$\frac{\text { All outputs except: } \overline{\text { LOCK }},}{} \begin{aligned} & \text { DMA }, \text { SUP, BREQ, } \\ & \text { EOP3:0/TC3:0, FAIL }\end{aligned}$ -
$\overline{\text { LOCK, }} \overline{\text { DMA, }}$, SUP, BREQ, $\overline{\text { DACK3:0, }} \overline{\text { EOP3:0 }} / \overline{T C 3}: 0, \overline{\text { FAIL }}$

NOTE:
PCLK Load $=50 \mathrm{pF}$
Figure 15. Output Delay or Hold vs Load Capacitance

a) All outputs except: $\overline{\mathrm{LOCK}}, \overline{\mathrm{DMA}}, \overline{\mathrm{SUP}}, \mathrm{HOLDA}$, BREQ, $\overline{\text { DACK3:0 }}, \overline{\text { EOP3:0 }} / \overline{\text { TC3 }} \mathbf{0}, \overline{\text { FAIL }}$

271327-16
b) LOCK, $\overline{\mathrm{DMA}}, \overline{\mathrm{SUP}}, \mathrm{HOLDA}, \mathrm{BREQ}, \overline{\mathrm{DACK3}} \mathbf{0}$, EOP3:0/TC3:0, FAIL

Figure 16. Rise and Fall Time Derating at Highest Operating Temperature and Minimum $\mathbf{V}_{\text {CC }}$

Figure 17. Icc vs Frequency and Temperature

5.0 RESET, BACKOFF AND HOLD ACKNOWLEDGE

Table 15 lists the condition of each processor output pin while $\overline{R E S E T}$ is asserted (low).

Table 15. Reset Conditions

Pins	State During Reset (HOLDA Inactive)
A31:2	Floating
D31:0	Floating
$\overline{\mathrm{BE3}: 0}$	Driven high (Inactive)
W/ \bar{R}	Driven low (Read)
$\overline{\mathrm{ADS}}$	Driven high (Inactive)
$\overline{\text { WAIT }}$	Driven high (Inactive)
$\overline{\mathrm{BLAST}}$	Driven low (Active)
DT/ $\overline{\mathrm{R}}$	Driven low (Receive)
$\overline{\mathrm{DEN}}$	Driven high (Inactive)
$\overline{\text { LOCK }}$	Driven high (inactive)
BREQ	Driven low (Inactive)
D/ $\overline{\mathrm{C}}$	Floating
$\overline{\mathrm{DMA}}$	Floating
$\overline{\text { SUP }}$	Floating
$\overline{\text { FAIL }}$	Driven low (Active)
$\overline{\mathrm{DACK3}: 0}$	Driven high (Inactive)
$\overline{\text { EOP3:0 } / \overline{T C 3: 0 ~}}$	Floating (Set to input mode)

NOTES:

1. With regard to bus output pin state only, the Hold Acknowledge state takes precedence over the reset state. Although asserting the RESET pin will internally reset the processor, the processor's bus output pins will not enter the reset state if it has granted Hold Acknowledge to a previous HOLD request (HOLDA is active). Furthermore, the processor will grant new HOLD requests and enter the Hold Acknowledge state even while in reset.
For example, if HOLDA is inactive and the processor is in the reset state, then HOLD is asserted, the processsor's bus pins enter the Hold Acknowledge state and HOLDA is granted. The processor will not be able to perform memory accesses until the HOLD request is removed, even if the RESET pin is brought high. This operation is provided to simplify boot-up synchronization among multiple processors sharing the same bus.

Table 16 lists the condition of each processor output pin while HOLDA is asserted (low).

Table 16. Hold Acknowledge and Backoff Conditions

Pins	State During HOLDA
A31:2	Floating
D31:0	Floating
$\overline{\mathrm{BE3}: 0}$	Floating
$\mathrm{W} / \overline{\mathrm{R}}$	Floating
$\overline{\mathrm{ADS}}$	Floating
$\overline{\text { WAIT }}$	Floating
$\overline{\mathrm{BLAST}}$	Floating
$\mathrm{DT} / \overline{\mathrm{R}}$	Floating
$\overline{\mathrm{DEN}}$	Floating
$\overline{\mathrm{LOCK}}$	Floating
BREQ	Driven (High or low)
$\mathrm{D} / \overline{\mathrm{C}}$	Floating
$\overline{\mathrm{DMA}}$	Floating
$\overline{\text { SUP }}$	Floating
$\overline{\text { FAIL }}$	Driven high (Inactive)
$\overline{\mathrm{DACK3}: 0}$	Driven high (Inactive)
$\overline{\mathrm{EOP3}: 0} / \overline{T C 3: 0}$	Driven (If output)

6.0 BUS WAVEFORMS

Figure 18. Cold Reset Waveform

Figure 19. Warm Reset Waveform

Figure 20. Entering the ONCE State

271327-21

NOTE:
Case 1 and Case 2 show two possible polarities of PCLK2:1
Figure 21. Clock Synchronization in the 2-x Clock Mode

271327-22

NOTE:
In $1 x$ clock mode, the $\overline{\text { RESET }}$ pin is actually sampled on the falling edge of $2 x$ CLK. $2 x$ CLK is an internal signal generated by the PLL and is not available on an external pin. Therefore, RESET is specified relative to the rising edge of CLKIN. The $\overline{\text { RESET }}$ pin is sampled when PCLK is high.

Figure 22. Clock Synchronization in the 1-x Clock Mode

Figure 23. Non-Burst, Non-Pipelined Requests Without Wait States

Figure 24. Non-Burst, Non-Pipelined Read Request With Wait States

Figure 25. Non-Burst, Non-Pipelined Write Request With Wait States

Figure 26. Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus

Function		Byte Order	$\begin{aligned} & \text { 匕} \\ & \text { ¢ } \\ & \text { © } \\ & \hline \end{aligned}$	Bus Width				$N_{\text {RDD }}$	$N_{\text {RAD }}$	Pipe- Lining	External Ready Control	Burst
Bit	31-23	22	21	20-19	18-17	16-12	11-10	9.8	7-3	2	1	0
Value	$\begin{gathered} 0 \\ 0 . .0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline X \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 32 \text {-bit } \\ 10 \\ \hline \end{gathered}$	$\begin{array}{r} x \\ \times x \\ \hline \end{array}$	$\begin{gathered} x \\ \times \times \times \times 0 \times \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 01 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 01 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 00010 \\ \hline \end{gathered}$	${ }_{0}^{\text {OFF }}$	$\begin{gathered} \text { Disabled } \\ 0 \end{gathered}$	$\begin{gathered} \text { Enabled } \\ 1 \end{gathered}$

Figure 27. Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus

271327-28
Figure 28. Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus

Function		Byte Order	$\begin{aligned} & \text { प्ष } \\ & 2 \\ & \mathscr{\Phi} \\ & \underline{\Phi} \end{aligned}$	Bus Width	$\mathrm{N}_{\text {WOD }}$		$N_{\text {XDA }}$	$\mathrm{N}_{\text {RDD }}$	NRAD	Pipe- Lining	External Ready Control	
Bit	31-23	22	21	20.19	18-17	16-12	11.10	$9-8$	7.3	2	1	0
Value	$\begin{gathered} 0 \\ 0 . .0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{x} \\ & \hline \end{aligned}$	0	$\begin{gathered} 32 \text {-bit } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 01 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 00010 \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ 01 \\ \hline \end{array}$	$\begin{gathered} \mathrm{X} \\ \mathrm{xx} \\ \hline \end{gathered}$	$\begin{gathered} x \\ x \times x(x) \\ \hline \end{gathered}$	$\underbrace{\text { OFF }}_{0}$	$\underbrace{\text { Disabled }} 0$	$\begin{gathered} \text { Enabled } \\ 1 \end{gathered}$

Figure 29. Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus

271327-30
Figure 30. Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus

Function	$\begin{aligned} & \text { प्ष } \\ & \sum_{0}^{2} \\ & \text { ew } \end{aligned}$	Byte Order		Bus Width		$N_{\text {WAD }}$	$\mathrm{N}_{\text {XDA }}$	$\mathrm{N}_{\text {RDD }}$	$\mathrm{N}_{\text {RAD }}$	Lining	External Ready Control	Burst
Bit	31-23	22	21	20-19	18-17	16-12	11-10	$9-8$	7-3	2	1	0
Value	$\begin{gathered} 0 \\ 0 . .0 \end{gathered}$	$\begin{gathered} \hline x \\ x \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 8 \text {-bit } \\ 00 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \mathrm{xX} \\ \hline \end{gathered}$	$\begin{gathered} x \\ \times x \times x \times x \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 01 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 01 \\ \hline \end{gathered}$		OFF 0	$\underbrace{\text { Disabled }} \mathbf{0}$	$\begin{gathered} \text { Enabled } \\ 1 \end{gathered}$

Figure 31. Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus

Function		Byte Order		Bus Width		$N_{\text {WAD }}$	$\mathrm{N}_{\text {XDA }}$	$\mathrm{N}_{\text {RDD }}$	$N_{\text {RAD }}$	Pipe Linin		
Bit	31-23	22	21	20-19	18-17	16-12	11-10	9.8	$7-3$	2	1	0
Value	$\begin{gathered} 0 \\ 0 . .0 \end{gathered}$	$\begin{aligned} & \hline X \\ & \mathrm{x} \\ & \hline \end{aligned}$	0	$\begin{gathered} x \\ x \times \\ \hline \end{gathered}$	X $\times \mathbf{x}$	X $\times \times \times \times x$	$\begin{gathered} x \\ x X \\ \hline \end{gathered}$	$\begin{gathered} x \\ x x \\ \hline \end{gathered}$	00000	ON	$\begin{aligned} & \hline X \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\underbrace{\text { Disabled }}_{0}$

Figure 32. Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus

Figure 33. Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus

271327-34
Figure 34. Burst, Pipelined Read Request Without Wait States, 32-Bit Bus

Figure 35. Burst, Pipelined Read Request With Wait States, 32-Bit Bus

Figure 36. Burst, Pipelined Read Request With Wait States, 16-Bit Bus

Figure 37. Burst, Pipelined Read Request With Wait States, 8-Bit Bus

Figure 38. Using External READY

271327-39

NOTE:

$\overline{\text { READY }}$ adds memory access time to data transfers, whether or not the bus access is a burst access. $\overline{B T E R M}$ interrupts a bus access, whether or not the bus access has more data transfers pending. Either the READY signal or the BTERM signal will terminate a bus access if the signal is asserted during the last (or only) data transfer of the bus access.

Figure 39. Terminating a Burst with BTERM

NOTE:
$\overline{R E A D Y} / \overline{B T E R M}$ must be enabled: $N_{\text {RAD }}, N_{\text {RDD }}, N_{\text {WAD }}, N_{\text {WDD }}=0$
Figure 40. BOFF Functional Timing

Figure 41. HOLD Functional Timing

271327-42

NOTES:

1. Case 1: $\overline{\text { DREQ }}$ must deassert before $\overline{\text { DACK }}$ deasserts. Applications are Fly-By and some packing and unpacking modes in which loads are followed by loads or stores are followed by stores.
2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driven high. Applications are non Fly-By transfers and adjacent load-stores or store-loads.
3. $\overline{\text { DACKx }}$ is asserted for the duration of a DMA bus request. The request may consist of multiple bus accesses (defined by ADS and BLAST. Refer to 1960^{\circledR} CA Microprocessor User's Manual for "access", "request" definitions.

Figure 42. DREQ and DACK Functional Timing

NOTE:

$\overline{\mathrm{EOP}}$ has the same AC Timing Requirements as $\overline{\mathrm{DREQ}}$ to prevent unwanted DMA requests. $\overline{\mathrm{EOP}}$ is NOT edge triggered. EOP must be held for a minimum of 2 clock cycles then deasserted within 15 clock cycles.

Figure 43. $\overline{\text { EOP }}$ Functional Timing

271327-44

NOTES:
Terminal Count becomes active during the last bus request of a buffer If the last LOAD/STORE bus request is executed as multiple bus accesses, the TC will be active for the entire bus request. Refer to the $1960{ }^{\circledR}$ CA Microprocessor User's Manual for further information.

Figure 44. Terminal Count Functional Timing

Figure 45. FAIL Functional Timing

Figure 46. A Summary of Aligned and Unaligned Transfers for Little Endian Regions

Figure 47. A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued)

Figure 48. Idle Bus Operation

7.0 REVISION HISTORY

New.

