

Current Transducer HA 200 to 500-SU

For the electronic measurement of unipolar DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit.

Electrical data

	Type	Primary nominal	Primary current	
		DC or AC peak current I _{PN}	measuring range I _P	
	HA 200-SU 200 A		0 + 200 A	
	HA 300-SU 300 A		0 + 300 A	
	HA 400-SU	400 A	0 + 400 A	
	HA 500-SU	500 A	0 + 500 A	
Î	Overload capacity (Ampere Turns)		30000	Α
V _{OUT}	Analogue output voltage @ + I _{PN}		+10	V
R	Load resistance		>1	$k\Omega$
v c	Supply voltage (± 5 %)		± 15	V
I _c	Current consumption (max)		25	mA
$\ddot{\mathbf{V}}_{_{\mathrm{b}}}$	Rms rated v	voltage 1)	50	V
Accuracy - Dynamic performance data				
X	Accuracy 2)	@ I _{PN} , T _A = 25°C, @ ± 15 V	± 1	%
$\mathbf{\epsilon}_{\scriptscriptstyle ar{}}$	Linearity 2)	PN, A	± 0.5	%
			Max	
\mathbf{V}_{OE}	Electrical of	fset voltage @ $I_P = 0$, $T_A = 25$ °C	± 25	mV
V _{OM}		set voltage @ $I_p = 0$, $T_A = 25$ °C		
OW		rload of 3 x I _{PN}	< 12.5	mV
\mathbf{V}_{OT}		It of offset voltage $T_A = 0 + 60^{\circ}C$	± 5	mV/°K
TCE _G		It of gain $T_A = 0 + 60$ °C	± 0.05	%/°K
t, G		ime @ 90 % of I ,	< 7	μs
di/dt		tely followed	> 50	A/µs
f		pandwidth (- 3 dB) ³⁾	DC 50	kHz
Ge	eneral data			
T _A	Ambient on	erating temperature	0 + 60	°C
T _s	=	prage temperature	- 10 + 70	°C
• s	,	nago tomporataro	10 1 70	O

 $\underline{\text{Notes}}$: $^{\text{1)}}$ For use on SELV systems or with insulated conductors on higher rated systems

170

- 2) Excludes the electrical offset
- ³⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency

$I_{PN} = 200..500 A$

Features

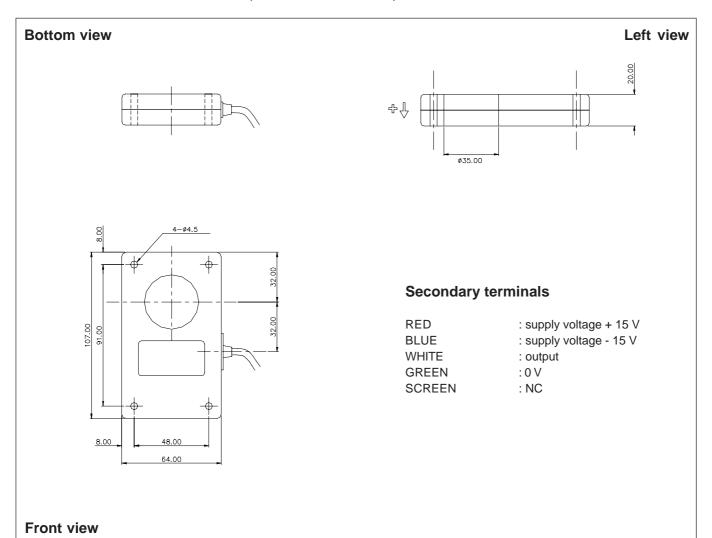
- Open loop transducer using Hall Effect
- Panel mounting
- Insulated plastic case to UL 94-HB.

Advantages

- Very good linearity
- Very good accuracy
- Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- · Current overload capability
- Low power consumption
- Wide dynamic range 200 to 500 A in one package.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptable Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


HA2/500U980828/1

m

Mass

Dimensions HA 200 to 500-SU (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

• Connection of secondary

• Enclosure

± 0.5 mm Ø 35 mm

35 mm

Via 4 core screened PVC cable 1.5 m in length

Moulded ABS plastic

Remarks

- $\bullet~\mathbf{V}_{\mathrm{OUT}}$ is positive when \mathbf{I}_{P} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.