Features

- First-in First-out Dual Port Memory
- 4096-bit x 9 Organization
- Fast Flag and Access Times: 15, 30 ns
- Wide Temperature Range: -55°C to +125°C
- Fully Expandable by Word Width or Depth
- Asynchronous Read/Write Operations
- Empty, Full and Half Flags in Single Device Mode
- Retransmit Capability
- Bi-directional Applications
- Battery Backup Operation: 2V Data Retention
- TTL Compatible
- Single 5V ± 10% Power Supply
- No Single Event Latch-up below a LET Threshold of 80 MeV/mg/cm²
- Tested up to a Total Dose of 30 krads (Si) according to MIL STD 883 Method 1019
- QML Q and V with SMD 5962-89568
- ESCC B with specification 9301/049

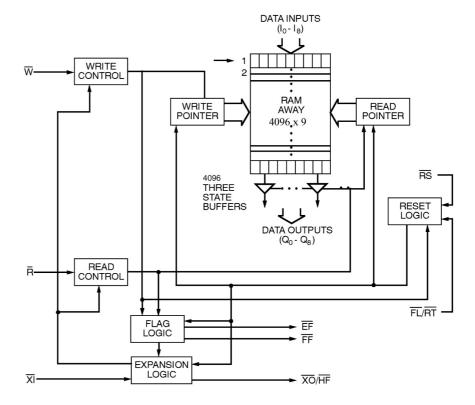
Description

The M67204H implements a first-in first-out algorithm, featuring asynchronous read/write operations. The FULL and EMPTY flags prevent data overflow and underflow. The expansion logic allows unlimited expansion in word size and depth with no timing penalties. Twin address pointers automatically generate internal read and write addresses, and no external address information is required for the Atmel FIFOs. address pointers are automatically incremented with the write pin and read pin. The 9 bits wide data are used in data communications applications where a parity bit for error checking is necessary. The retransmit pin reset the read pointer to zero without affecting the write pointer. This is very useful for retransmitting data when an error is detected in the system.

Using an array of eight transistors (8T) memory cell, the M67204H combines an extremely low standby supply current (typ = 0.1 μ A) with a fast access time at 15 ns over the full temperature range. All versions offer battery backup data retention capability with a typical power consumption at less than 2 μ W.

The M67204H is processed according to the methods of the latest revision of the MIL PRF 38535 (Q and V) or ESA SCC 9000.

Rad. Tolerant High Speed 4 Kb x 9 Parallel FIFO


M67204H

4141I-AERO-06/04

Block Diagram

/ww.DataSheet4U.com

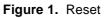
Pin Configuration

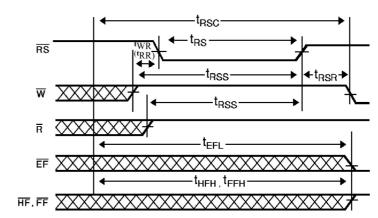
DIL ceramic 28-pin 300 mils FP 28-pin 400 mils

	(top viev	w)
$ \begin{array}{c} \mathbb{W} & \square \\ \mathbb{I}_8 & \square \\ \mathbb{I}_3 & \square \\ \mathbb{I}_2 & \square \\ \mathbb{I}_1 & \square \\ \mathbb{I}_0 & \square \\ \mathbb{I}_1 & \square \\ \mathbb{V} & \square \\ $	1 2 3 4 5 6 7 8 9 10 11 11 12	w) $28 \square V_{CC}$ $27 \square I_4$ $26 \square I_5$ $25 \square I_6$ $24 \square I_7$ $23 \square FL/RT$ $22 \square RS$ $21 \square EF$ $20 \square XO/HF$ $19 \square Q_7$ $18 \square Q_6$ $17 \square Q_5$ $16 \square Q_4$ $15 \square R$

Pin Description

Names	Description
FF	Full Flag
XO/HF	Expansion Out/Half-Full Flag
XI	Expansion IN
FL/RT	First Load/Retransmit
VCC	Power Supply
GND	Ground
10-8	Inputs
Q0-8	Outputs
W	Write Enable
R	Read Enable
RS	Reset
ĒF	Empty Flag


/ww.DataSheet4U.com


Data In $(I_0 - I_8)$

Reset (RS)

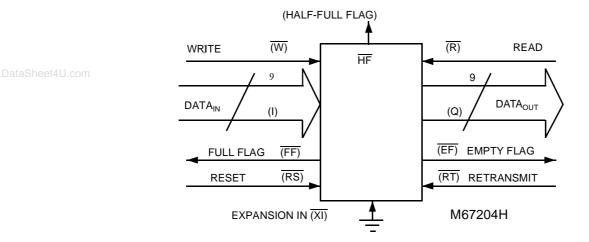
Data inputs for 9-bit data

Reset occurs whenever the Reset (\overline{RS}) input is taken to a low state. Reset returns both internal read and write pointers to the first location. A reset is required after power-up before a write operation can be enabled. Both the Read Enable (\overline{R}) and Write Enable (\overline{W}) inputs must be in the high state during the period shown in Figure 1 (i.e. t_{RSS} before the rising edge of \overline{RS}) and should not change until t_{RSR} after the rising edge of \overline{RS} . The Half-Full Flag (HF) will be reset to high After Reset (RS).

Notes: 1. \overline{EF} , \overline{FF} and \overline{HF} may change status during reset, but flags will be valid at t_{RSC} . 2. \overline{W} and \overline{R} = VIH around the rising edge of RS.

Write Enable (W)	A write cycle is initiated on the falling edge of this input if the Full Flag (\overline{FF}) is not set. Data set-up and hold times must be maintained in the rise time of the leading edge of the Write Enable (\overline{W}). Data is stored sequentially in the Ram array, regardless of any current read operation.
	Once half the memory is filled, and during the falling edge of the next write operation, the Half-Full Flag (HF) will be set to low and remain in this state until the difference between the write and read pointers is less than or equal to half of the total available memory in the device. The Half-Full Flag (HF) is then reset by the rising edge of the read operation.
<i>w</i> .DataSheet4U.com	To prevent data overflow, the Full Flag (\overline{FF}) will go low, inhibiting further write opera- tions. On completion of a valid read operation, the Full Flag (\overline{FF}) will go high after TRFF, allowing a valid write to begin. When the FIFO stack is full, the internal write pointer is blocked from \overline{W} , so that external changes to \overline{W} will have no effect on the full FIFO stack.
Read Enable (R)	A read cycle is initiated on the falling edge of the Read Enable (\overline{R}) provided that the Empty Flag (\overline{EF}) is not set. The data is accessed on a first in/first out basis, not with standing any current write operations. After Read Enable (\overline{R}) goes high, the Data Outputs (Q0 - Q8) will return to a high impedance state until the next Read operation. When all the data in the FIFO stack has been read, the Empty Flag (\overline{EF}) will go low, allowing the "final" read cycle, but inhibiting further read operation has been completed, the Empty Flag (\overline{EF}) will go high after tWEF and a valid read may then be initiated. When the FIFO stack is empty, the internal read pointer is blocked from \overline{R} , so that external changes to \overline{R} will have no effect on the empty FIFO stack.
F <u>irst L</u> oad/Retransmit (FL/RT)	This is a dual-purpose input. In the Depth Expansion Mode, this pin is connected to ground to indicate that it is the first loaded (see Operating Modes). In the Single Device Mode, this pin acts as the retransmit input. The Single Device Mode is initiated by connecting the Expansion In (\overline{XI}) to ground.
	The M67204H can be made to retransmit data when the Retransmit Enable Control (\overline{RT}) input is pulsed low. A retransmit operation will set the internal read point to the first location and will not affect the write pointer. Read Enable (\overline{R}) and Write Enable (\overline{W}) must be in the high state during retransmit. The retransmit feature is intended for use when a number of writes equals to or less than the depth of the FIFO has occured since the last RS cycle. The retransmit feature is not compatible with the Depth Expansion Mode and will affect the Half-Full Flag (\overline{HF}), in accordance with the relative locations of the read and write pointers.
Expansion In (\overline{XI})	This input is a dual-purpose pin. Expansion In (\overline{XI}) is connected to GND to indicate an operation in the single device mode. Expansion In (\overline{XI}) is connected to Expansion Out (\overline{XO}) of the previous device in the Depth Expansion or Daisy Chain modes.
Full Flag (FF)	The Full Flag (\overline{FF}) will go low, inhibiting further write operations when the write pointer is one location less than the read <u>pointer</u> , indicating that the device is full. If the read pointer is not moved after Reset (RS), the Full Flag (FF) will go low after 4096 writes.
Empty Flag (EF)	The Empty Flag ($\overline{\text{EF}}$) will go low, inhibiting further read operations when the read pointer is equal to the write pointer, indicating that the device is empty.

Expan <u>sion O</u> ut/Half-full Flag (XO/HF)	This is a dual-purpose output. In the single device mode, when Expansion In (\overline{XI}) is connected to ground, this output acts as an indication of a half-full memory.
	After half the memory is filled and on the falling edge of the next write operation, the Half-Full Flag (HF) will be set to low and will remain set until the difference between the write and read pointers is less than or equal to half of the total memory of the device. The Half-Full Flag (HF) is then reset by the rising edge of the read operation.
	In the Depth Expansion Mode, Expansion In (\overline{XI}) is connected to Expansion Out (\overline{XO}) of the previous device. This output acts as a signal to the next device in the Daisy Chain by providing a pulse to the next device when the previous device reaches the last memory location.
Data Output (Q ₀ - Q ₈) DataSheet40.com	DATA <u>o</u> utput for 9-bit wide data. This data is in a high impedance condition whenever Read (R) is in a high state.



Functional Description

Single Device Mode

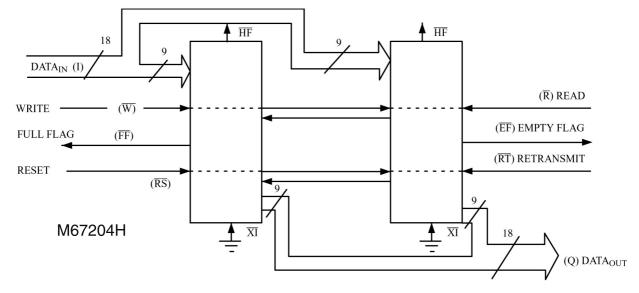

A single M67204H may be used when the application requirements are for 4096 words or less. The M67204H is in a Single Device Configuration when the Expansion In (\overline{XI}) control input is grounded (see Figure 2). In this mode the Half-Full Flag (\overline{HF}), which is an active low output, is shared with Expansion Out (\overline{XO}).

Figure 2. Block Diagram of Single 4096 bits x 9

Width Expansion Mode Word width may be increased simply by connecting the corresponding input control signals of multiple devices. Status flags (EF, FF and HF) can be detected from any device. Figure 3 demonstrates an 18-bit word width by using two M67204H. Any word width can be attained by adding additional M67204H.

Figure 3. Block Diagram of 4096 bits \times 18 FIFO Memory Used in Width Expansion Mode

Note: Flag detection is accomplished by monitoring the FF, EF and the HF signals on either (any) device used in the width expansion configuration. Do not connect any output control signals together.

Table 1. Reset and RetransmitSingle Device Configuration/Width Expansion Mode

		Inputs		Internal Status			Outputs	
Mode	RS	RT	ХІ	Read Pointer	Write Pointer	EF	FF	HF
Reset	0	Х	0	Location Zero	Location Zero	0	1	1
Retransmit	1	0	0	Location Zero	Unchanged	Х	Х	Х
Read/Write	1	1	0	Increment	Increment ⁽¹⁾	Х	Х	Х

Note: 1. Pointer will increment if flag is high.

ww.Da

Table 2. Reset and First Load Truth Table Depth Expansion/Compound Expansion Mode

		Inputs Internal Status			l Status	Outputs	
Mode	RS	RT	XI	Read Pointer Write Pointer		EF	FF
Reset First Device	0	0	(1)	Location Zero	Location Zero	0	1
Reset All Other Devices	0	1	(1)	Location Zero	Location Zero	0	1
Read/Write	1	Х	(1)	Х	Х	Х	Х

Note: 1. \overline{XI} is connected to \overline{XO} of previous device. See Figure 4.

Depth Expansion (Daisy Chain) Mode

The M67204H can be easily adapted for applications which require more than 4096 words. Figure 4 demonstrates Depth Expansion using three M67204H. Any depth can be achieved by adding additional M67204H.

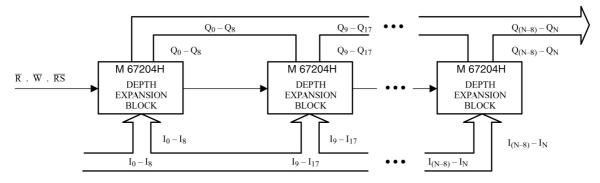
The M67204H operates in the Depth Expansion configuration if the following conditions are met:

- The first device must be designated by connecting the First Load (FL) control input to ground.
- 2. All other devices must have \overline{FL} in the high state.
- The Expansion Out (XO) pin of each device must be connected to the Expansion In (XI) pin of the next device. See Figure 4.
- External logic is needed to generate a composite Full Flag (FF) and Empty Flag (EF). This requires that all EF's and all FFs be ORed (i.e. all must be set to generate the correct composite FF or EF). See Figure 4.
- 5. The Retransmit (RT) function and Half-Full Flag (HF) are not available in the Depth Expansion Mode.

Compound Expansion Module

It is quite simple to apply the two expansion techniques described above together to create large FIFO arrays (see Figure 5).

Bidirectional Mode


Applications which require data buffering between two systems (each system being capable of Read and Write operations) can be created by coupling M67204H as shown in Figure 6. Care must be taken to ensure that the appropriate flag is monitored by each system (i.e. \overline{FF} is monitored on the device on which \overline{W} is in use; \overline{EF} is monitored on the device on which \overline{R} is in use). Both Depth Expansion and Width Expansion may be used in this mode.

Data Flow – Through Modes Two types of flow-through modes are permitted: a read flow-through and a write flowthrough mode. In the read flow-through mode (Figure 17) the FIFO stack allows a single word to be read after one word has been written to an empty FIFO stack. The data is enabled on the bus at (tWEF + tA) ns after the leading edge of W which is known as the first write edge and remains on the bus until the R line is raised from low to high, after which the bus will go into a three-state mode after tRHZ ns. The EF line will show a pulse indicating temporary reset and then will be set. In the interval in which R is low, more words may be written to the FIFO stack (the subsequent writes after the first write edge will reset the Empty Flag); however, the same word (written on the first write edge) presented to the output bus as the read pointer will not be incremented if R is low. On toggling R, the remaining words written to the FIFO will appear on the output bus in accordance with the read cycle timings.

In the write flow-through mode (Figure 18), the FIFO stack allows a single word of data to be written immediately after a single word of data has been read from a full FIFO stack. The \overline{R} line causes the \overline{FF} to be reset, but the \overline{W} line, being low, causes it to be set again in anticipation of a new data word. The new word is loaded into the FIFO stack on the leading edge of \overline{W} . The \overline{W} line must be toggled when \overline{FF} is not set in order to write new data into the FIFO stack and to increment the write pointer.

Figure 4. Block Diagram of 12288 bits × 9 FIFO Memory (Depth Expansion)

Figure 5. Compound FIFO Expansion

w.DataSheet4U.com

- Notes: 1. For depth expansion block see section on Depth Expansion and Figure 4.
 - 2. For Flag detection see section on Width Expansion and Figure 3.

Figure 6. Bidirectional FIFO Mode

Absolute Maximum Ratings

Electrical Characteristics

Supply Voltage (VCC - GND): 0.5V to 7.0V
Input or Output Voltage Applied:.(GND - 0.3V) to (Vcc + 0.3V)
Storage Temperature: 65 °C to + 150 °C

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Parameters

Table 3. DC Test Conditions

 $TA = -55^{\circ}C$ to + 125°C; Vss = 0V; Vcc = 4.5V to 5.5V

Parameter	Description	M M67204H-30	M M67204H-15	Unit	Value
I _{CCOP} ⁽¹⁾	Operating supply current	110 120		mA	Мах
I _{CCSB} ⁽²⁾	Standby supply current	5	5 5		Max
I _{CCPD} ⁽³⁾	Power down current	400 400		μA	Max
ILI ⁽⁴⁾	Input leakage current	±	±1		Max
ILO ⁽⁵⁾	Output leakage current	±	±1		Мах
VIL ⁽⁶⁾	Input low voltage	0	.8	V	Мах
VIH ⁽⁶⁾	Input high voltage	2	2.2		Min
VOL ⁽⁷⁾	Output low voltage	0.4		V	Мах
VOH ⁽⁷⁾	Output high voltage	2.4		V	Min
C IN ⁽⁸⁾	Input capacitance	8		pF	Мах
C OUT ⁽⁸⁾	Output capacitance	8	3	pF	Мах

1. <u>Icc measurements are made with outputs open.</u>

2. $\overline{R} = \overline{W} = \overline{RS} = \overline{FL/RT} = VIH.$

3. All input = Vcc.

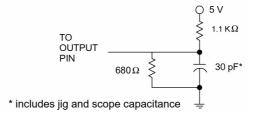
4. $\underline{0.4} \le \text{Vin} \le \text{Vcc.}$

5. $\overline{R} = VIH, 0.4 \le VOUT \le VCC.$

6. VIH max = Vcc + 0.3V. VIL min = -0.3V or -1V pulse width 50 ns. For XI input, VIH= 2.8V

7. Vcc min, IOL = 8 mA, IOH = -2 mA.

8. Guaranteed but not tested.


AC Parameters

AC Test Conditions

Input pulse levels: Gnd to 3.0V Input rise/Fall times: 5 ns Input timing reference levels: 1.5V Output reference levels: 1.5V Output load: See Figure 7

Figure 7. Output Load

ww.DataSheet4U.com

Table 4. AC Test Conditions M67204H- 15 M67204H- 30 Symbol⁽¹⁾ Parameter (3) (4) Symbol⁽²⁾ Min. Max. Min. Max. Unit Read Cycle tRC TRLRL Read cycle time 25 -40 ns TRLQV tΑ Access time 15 30 ns TRHRL tRR Read recovery time 10 -10 ns Read pulse width (5) TRLRH tRPW 15 30 -ns Read low to data low Z⁽⁶⁾ TRLQX tRLZ 0 5 -ns TWHQX tWLZ Write high to data low Z⁽⁶⁾⁽⁷⁾ 3 5 _ ns TRHQX tDV Data valid from read high 5 5 ns tRHZ TRHQZ Read high to data high Z⁽⁶⁾ 15 20 -ns Write Cycle TWLWL tWC Write cycle time 25 -40 ns Write pulse width⁽⁵⁾ TWLWH tWPW 15 30 ns TWHWL tWR Write recovery time 10 10 _ ns TDVWH tDS Data set-up time 9 18 ns -TWHDX tDH 0 Data hold time 0 -ns **Reset Cycle** tRSC TRSLWL Reset cycle time 25 -40 ns Reset pulse width (5) TRSLRSH tRS 15 30 ns --TWHRSH tRSS 30 Reset set-up time 20 -ns

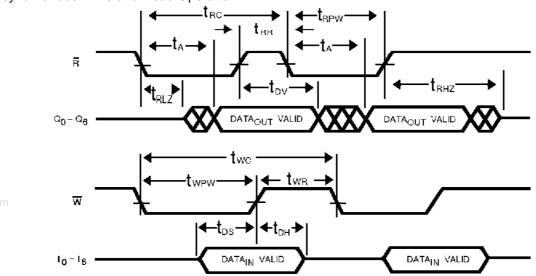
Table 4. AC Test Conditions (Continued)

			M6720	04H- 15	M672	04H- 30	
Symbol ⁽¹⁾	Symbol ⁽²⁾	Parameter ^{(3) (4)}	Min.	Max.	Min.	Max.	Unit
TRSHWL	tRSR	Reset recovery time	10	-	10	_	ns
Retransmit Cycl	e						
TRTLWL	tRTC	Retransmit cycle time	25	-	40	-	ns
TRTLRTH	tRT	Retransmit pulse width ⁽⁵⁾	15	-	30	-	ns
TWHRTH	tRTS	Retransmit set-up time ⁽⁶⁾	15	-	30	-	ns
TRTHWL	tRTR	Retransmit recovery time	10	-	10	-	ns
Flags							
TRSLEFL	tEFL	Reset to EF low	-	25	-	30	ns
TRSLFFH	tHFH, tFFH	Reset to HF/FF high	-	25	-	30	ns
TRLEFL	tREF	Read low to EF low	-	25	-	30	ns
TRHFFH	tRFF	Read high to FF high	-	25	_	30	ns
TEFHRH	tRPE	Read width after EF high	15	-	30	-	ns
TWHEFH	tWEF	Write high to EF high	-	15	-	30	ns
TWLFFL	tWFF	Write low to FF low	-	20	-	30	ns
TWLHFL	tWHF	Write low to HF low	-	30	-	30	ns
TRHHFH	tRHF	Read high to HF high	-	30	-	30	ns
TFFHWH	tWPF	Write width after FF high	15	-	30	_	ns
Expansion							
TWLXOL	tXOL	Read/Write to XO low	-	15	_	30	ns
тwнхон	tXOH	Read/Write to XO high	-	15	-	30	ns
TXILXIH	tXI	XI pulse width	15	-	30	_	ns
TXIHXIL	tXIR	XI recovery time	10	-	10	_	ns
TXILRL	tXIS	XI set-up time	10	_	10	_	ns

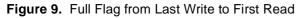
1. STD symbol.

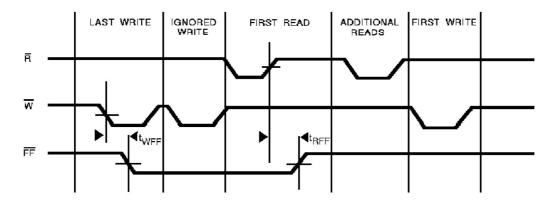
2. ALT symbol.

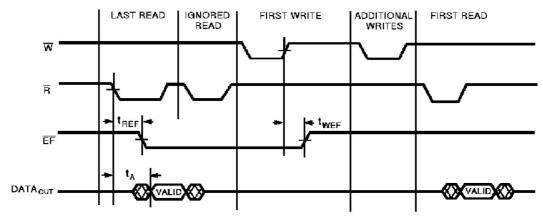
3. Timings referenced as in ac test conditions.

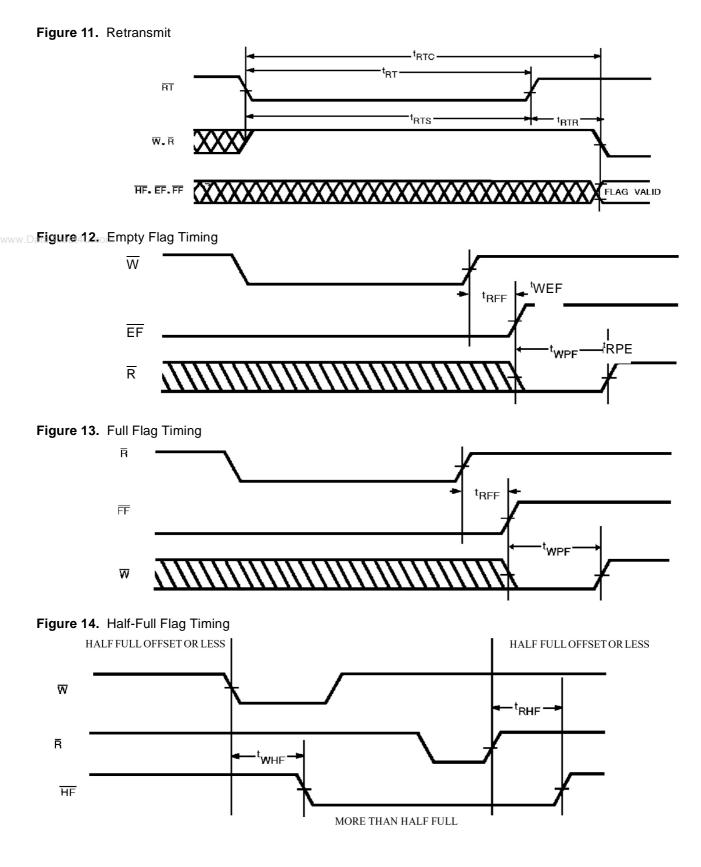

4. All parameters tested only.

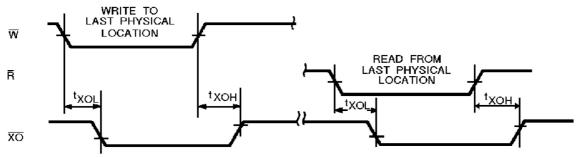
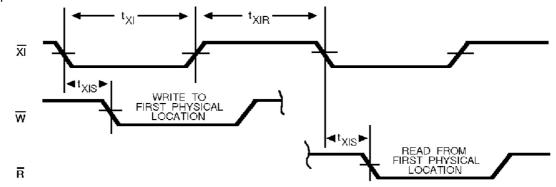
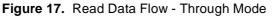
5. Pulse widths less than minimum value are not allowed.

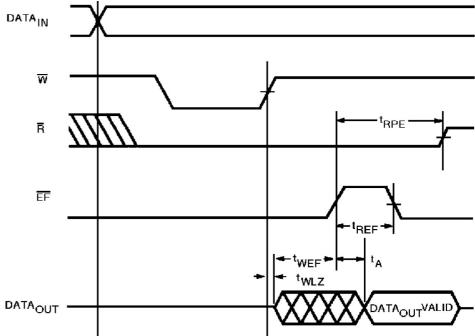

6. Values guaranteed by design, not currently tested.

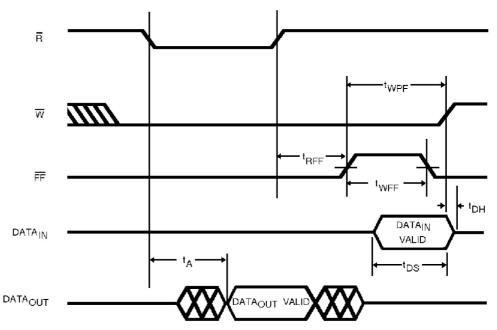

7. Only applies to read data flow-through mode.






Figure 16. Expansion In

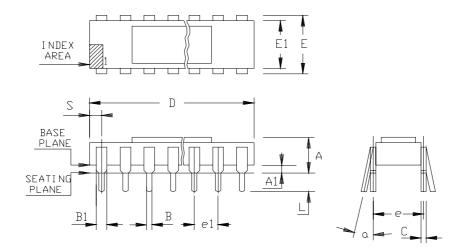


ww.DataSheet4U.com

Figure 18. Write Data Flow - Through Mode

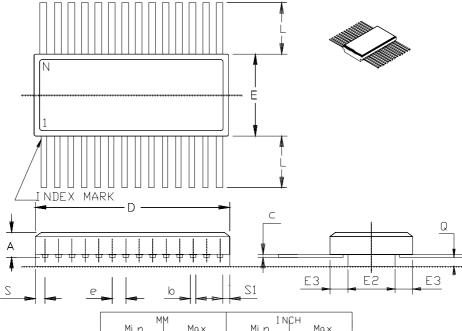
Ordering Information

Reference Number	Temperature Range	Speed	Package	Quality Flow
MMCP-67204HV-15-E ⁽¹⁾	25°C	15 ns	SB28.3	Engineering Samples
MMCP-67204HV-15	-55 to +125°C	15 ns	SB28.3	Standard Mil.
MMCP-67204HV-30	-55 to +125°C	30 ns	SB28.3	Standard Mil.
SMCP-67204HV-15SB	-55 to +125°C	15 ns	SB28.3	SCC B
SMCP-67204HV-30SB	-55 to +125°C	30 ns	SB28.3	SCC B
5962-8956810QTC	-55 to +125°C	15 ns	SB28.3	QML Q
5962-8956809QTC	-55 to +125°C	30 ns	SB28.3	QML Q
5962-8956810VTC	-55 to +125°C	15 ns	SB28.3	QML V
5962-8956809VTC	-55 to +125°C	30 ns	SB28.3	QML V
5962D8956810VTC	-55 to +125°C	15 ns	SB28.3	QML V RHA
5962D8956809VTC	-55 to +125°C	30 ns	SB28.3	QML V RHA
MMDP-67204HV-15-E	25°C	15 ns	FP28.4	Engineering Samples
MMDP-67204HV-15	-55 to +125°C	15 ns	FP28.4	Mil.
MMDP-67204HV-30	-55 to +125°C	30 ns	FP28.4	Mil.
SMDP-67204HV-15SB	-55 to +1251°C	15 ns	FP28.4	SCC B
SMDP-67204HV-30SB	-55 to +125°C	30 ns	FP28.4	SCC B
5962-8956810QNC	-55 to +125°C	15 ns	FP28.4	QML Q
5962-8956809QNC	-55 to +125°C	30 ns	FP28.4	QML Q
5962-8956810VNC	-55 to +125°C	15 ns	FP28.4	QML V
5962-8956809VNC	-55 to +125°C	30 ns	FP28.4	QML V
5962D8956810VNC	-55 to +125°C	15 ns	FP28.4	QML V RHA
5962D8956809VNC	-55 to +125°C	30 ns	FP28.4	QML V RHA
MM0 -67204HV-15-E ⁽¹⁾	25°C	15 ns	Die	Engineering Samples
5962-8956810Q9A ⁽¹⁾	-55 to +125°C	15 ns	Die	QML Q
5962-8956810V9A ⁽¹⁾	-55 to +125°C	15 ns	Die	QML V


Note: 1. Contact Atmel for availability.

Package Drawings

28-lead Side Braze 300 mils


ww.DataSheet4U.com

	[
_	М	М	ΙN	СН
A	2, 82	3, 94	. 111	. 155
A1	0.63	1.14	. 025	.045
В	0.38	0.53	. 015	. 021
B1	0.96	1.52	. 038	. 060
С	0.20	0.30	. 008	. 012
D	27.43	28.45	1.080	1.120
E	7.49	8. 25	. 295	. 325
E1	7.11	7.87	. 280	. 31 0
L	3.18	4.44	. 125	. 175
S	1.10	2.03	.043	. 080
e	7.62	TYP	. 300	TYP
e1	2. 54	ΤΥΡ	. 100	ΤΥΡ
۵		0 °	1	5°

28-lead Flat Pack (400 mils)

	Min	Max Max	Min	LH Max	
A	2, 29	3, 30	, 090	. 1 30	
b	0.38	0.48	. 015	. 019	
С	0.08	0.15	. 003	. 006	
D		18.80		. 740	
E	9.65	10.67	. 380	. 420	
E2	4. 57		. 180		
E3	0.76		. 030		
e	1.27	BSC	.050	D BSC	
L	6.35	9,40	, 250	. 370	
Q	0.66		. 026		
S		1.30		. 051	
S1	0.00		. 000		
N	2	8	28		

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

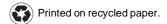
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

