8-Stage Static Bidirectional Parallel/ Serial Input/Output Bus Register High-Voltage Silicon-Gate CMOS

The IW4034B is a static eight-stage parallel-or serial-input paralleloutput register. It can be used to:

1) bidirectionally transfer parallel information between two buses, 2) convert serial data to parallel form and direct the parallel data to either of two buses, 3) store (recirculate) parallel data, or 4) accept parallel data from either of two buses and convert that data to serial form. Inputs that control the operations include a single-phase CLOCK (CL), A DATA ENABLE (AE), ASYNCHRONOUS/SYNCHRONOUS (A/S), A-BUS-TO-B-BUS/ B-BUS-TO-A-BUS (A/B), and PARALLEL/SERIAL (P/S).

Data inputs include 16 bidirectional parallel data lines of which the eight A data lines are inputs (3-state outputs) and the B data lines are outputs (inputs) dependung on the signal level on the A / B input. In addition, an input for SERIAL DATA is also provided.

All register stages are D-type master-slave flip-flops with separate master and slave clock inputs generated internally to allow synchronous or asynchronous data transfer from master to slave.

- Operating Voltage Range: 3.0 to 18 V
- Maximum input current of $1 \mu \mathrm{~A}$ at 18 V over full package-temperature range; 100 nA at 18 V and $25^{\circ} \mathrm{C}$
- Noise margin (over full package temperature range):

> 1.0 V min @ 5.0 V supply
> 2.0 V min @ 10.0 V supply
> 2.5 V min @ 15.0 V supply

LOGIC DIAGRAM

[^0]PIN ASSIGNMENT
B8
B7
B6

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage (Referenced to GND)	-0.5 to +20	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {IN }}$	DC Input Current, per Pin	± 10	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	$\begin{aligned} & 750 \\ & 500 \end{aligned}$	mW
P_{D}	Power Dissipation per Output Transistor	100	mW
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

+ Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	3.0	18	V
$\mathrm{~V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {Out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
				$\geq-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{V}_{\text {IH }}$	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OuT }}=1.0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}-1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}-1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1.5 \\ 3 \\ 4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3 \\ 4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3 \\ 4 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	V
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$	18	± 0.1	± 0.1	± 1.0	$\mu \mathrm{A}$
I_{OZ}	Minimum Three State Leakage Current	Output in High-Impedance State $\begin{aligned} & V_{\mathrm{IN}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	18	± 0.4	± 0.4	± 12.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \\ 20 \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 20 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 20 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 150 \\ 300 \\ 600 \\ 3000 \end{gathered}$	$\mu \mathrm{A}$
I_{OL}	Minimum Output Low (Sink) Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{U}_{\mathrm{OL}}=0.4 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{OL}}=0.5 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{OL}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	mA
I_{OH}	Minimum Output High (Source) Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{U}_{\mathrm{OH}}=2.5 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{OH}}=4.6 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{OH}}=9.5 \mathrm{~V} \\ & \mathrm{U}_{\mathrm{OH}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -2 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	$\begin{aligned} & -1.6 \\ & -0.51 \\ & -1.3 \\ & -3.4 \end{aligned}$	$\begin{gathered} -1.15 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	mA

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
			$\geq-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (Figure 2)	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 2 \\ & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 7 \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \\ 3.5 \end{gathered}$	MHz
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay, A(B) Parallel Data In to B(A) Parallel Data Out; Serial to Parallel Data Out (Figures 1,2)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 700 \\ & 240 \\ & 170 \end{aligned}$	$\begin{aligned} & 700 \\ & 240 \\ & 170 \end{aligned}$	$\begin{gathered} 1400 \\ 480 \\ 340 \end{gathered}$	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\mathrm{PHZ}}$, $\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Maximum Propagation Delay, A/B or AE to "A" Output (Figure 3)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \end{aligned}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \end{aligned}$	$\begin{aligned} & 800 \\ & 320 \\ & 240 \end{aligned}$	ns
$\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$	Maximum Output Transition Time, Any Output (Figures 1,2)	$\begin{gathered} 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 400 \\ & 200 \\ & 160 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance	-		7.5		pF

TIMING REQUIREMENTS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$)

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
			$\geq-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial Data to Clock (Figure 4)	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 160 \\ 60 \\ 40 \end{gathered}$	$\begin{gathered} 160 \\ 60 \\ 40 \end{gathered}$	$\begin{gathered} \hline 320 \\ 120 \\ 80 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Parallel Data to Clock (Figure 4)	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{gathered} 100 \\ 60 \\ 40 \end{gathered}$	ns
th_{h}	Minimum Hold Time, Clock to Data (Figure 4)	$\begin{gathered} \hline 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 50 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 50 \\ & 15 \\ & 10 \end{aligned}$	$\begin{gathered} 100 \\ 30 \\ 20 \end{gathered}$	ns
t_{w}	Minimum Pulse Width, AE, P/S, A/S (Figure 5)	$\begin{gathered} \hline 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{gathered} \hline 350 \\ 140 \\ 80 \end{gathered}$	$\begin{gathered} \hline 350 \\ 140 \\ 80 \end{gathered}$	$\begin{aligned} & 700 \\ & 280 \\ & 160 \end{aligned}$	ns
t_{w}	Minimum Pulse Width, Clock (Figure 2)	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 250 \\ 100 \\ 70 \end{gathered}$	$\begin{gathered} 250 \\ 100 \\ 70 \end{gathered}$	$\begin{aligned} & \hline 500 \\ & 200 \\ & 140 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Minimum Input Rise or Fall Time, Clock (Figure 2)	$\begin{gathered} \hline 5.0 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	ns

TRUTH TABLE FOR REGISTER INPUT-LEVELS AND RESULTING REGISTER OPERATION

"A" Enable	P/S	A/B	A/S	
L	L	L	X	Serial Mode; Synch. Serial Data Input, "A" Parallel Data Outputs Disabled
L	L	H	X	Serial Mode, Synch. Serial Data Input, "B" Parallel Data Output
L	H	L	L	Parallel Mode; "B" Synch. Parallel Data Inputs, "A" Parallel Data Outputs Disabled
L	H	L	H	Parallel Mode; "B" Asynch. Parallel Data Inputs, "A" Parallel Data Outputs Disabled
L	H	H	L	Parallel Mode; "A" Parallel Data Inputs Disabled, "B" Parallel Data Outputs, Synch. Data Recirculation
L	H	H	H	Parallel Mode; "A" Parallel Data Inputs Disabled, "B" Parallel Data Outputs, Asynch. Data Recirculation
H	L	L	X	Serial Mode; Synch. Serial Data Input, "A" Parallel Data Output
H	L	H	X	Serial Mode; Synch. Serial Data Input, "B" Parallel Data Output
H	H	L	L	Parallel Mode; "B" Synch. Parallel Data Input, "A" Parallel Data Output
H	H	L	H	Parallel Mode; "B" Asynch. Parallel Data Input, "A" Parallel Data Output
H	H	H	L	Parallel Mode; "A" Synch. Parallel Data Input, "B" Parallel Data Output
H	H	H	H	Parallel Mode; "A" Asynch. Parallel Data Input, "B" Parallel Data Output

* Outputs change at positive transition of clock in the serial mode and when the A/S control input is "low" in the parallel mode. During transfer from parallel to serial operation A / S should remain low in oder to prevent D_{S} transfer into Flip Flops.

X = Don't Care

PARALLEL OPERATION

A high P/S input signal allows data transfer into the register via the parallel data lines synchronously with the positive transition of the clock provided the A / S input is low. If the A / S input is high the transfer is independent of the clock. The direction of data flow is controlled by the A / B input. When this signal is high the A data lines are inputs (and B data lines are outputs); a low A / B signal reverses the direction of data flow.

The AE input is an additional feature which allows many registers to feed data to a common bus. The A DATA lines are enabled only when this signal is high.

Data storage through recirculation of data in each register stage is accomplished by making the A / B signal high and the AE signal low.

SERIAL OPERATION

A low P/S signal allows serial data to transfer into the register synchronously with the positive transition of the clock. The A/S input is internally disabled when the register is in the serial mode (asynchronous serial operation is not allowed).

The serial data appears as output data on either the B lines (when A / B is high) or the A lines (when A / B is low and the AE signal is high).

FLIP-FLOP TRUTH TABLE

Inputs			Output
$\overline{\mathrm{CL}} \mathrm{M}$	CL_{5}	D	Q
-	<	L	L
\checkmark	\checkmark	L	L
入	Γ	L	INVALID CONDITION
\checkmark	\checkmark	X	L
\checkmark	\checkmark	H	H
\checkmark	\checkmark	H	H
\square	Γ	H	INVALID CONDITION

X = don't care

Figure 2. Synchronous operation

OUTPUT A

Figure 3. Switching Waveforms
Figure 4. Switching Waveforms

Figure 5. Switching Waveforms

TIMING DIAGRAM

EXPANDED LOGIC DIAGRAM

Steering logic diagram

Register stage logic diagram (1/8 stages)

N SUFFIX PLASTIC

(MS - 001AF)

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

Symbol	Dimensions, mm	
	MIN	MAX
A	31.24	32.51
B	6.10	7.11
C		5.33
D	0.36	0.56
F	1.14	1.78
G	2.54	
H	7.62	
J	0°	10°
K	2.92	3.81
L	7.62	8.26
M	0.20	0.36
N	0.38	

DW SUFFIX SOIC

(MS - 013AD)

NOTES:

1. Dimensions A and B do not include mold flash or protrusion.
2. Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ; for B - $0.25 \mathrm{~mm}(0.010)$ per side.

Symbol.	Dimensions, mm	
	MAX	
A	15.20	15.60
B	7.40	7.60
C	2.35	2.65
D	0.33	0.51
F	0.40	1.27
G	1.27	
H	9.53	
J	0°	8°
K	0.10	0.30
M	0.23	0.32
P	10.0	10.65
R	0.25	0.75

[^0]: PIN $24=\mathrm{V}_{\mathrm{CC}}$ PIN 12= GND

