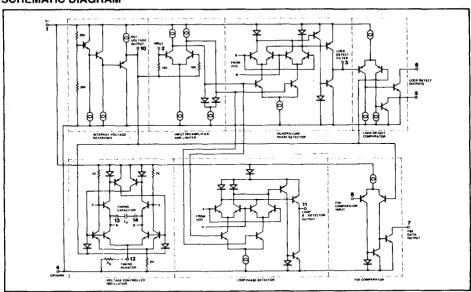

DESCRIPTION

The XR-2211 is a monolithic phase-locked loop (PLL) system especially designed for data communications. It is particularly well suited for FSK modem applications. It operates over a wide supply voltage range of 4.5 to 20V and a wide frequency range of 0.01 Hz to 300 kHz. It can accommodate analog signals between 2 mV and 3V, and can interface with conventional DTL, TTL and ECL logic families. The circuit consists of a basic PLL for tracking an input signal frequency within the passband, a quadrature phase detector which provides carrier detection, and an FSK voltage comparator which provides FSK demodulation. External components are used to independently set carrier frequency, bandwidth, and output delay.


FFATURES

- Wide Frequency Range (0.01 Hz to 300 kHz)
- Wide Supply Voltage Range (4.5V to 20V)
- DTL/TTL/ECL Logic Compatibility
- ESK Demodulation with Carrier-Detection
- Wide Dynamic Range (2 mV to 3V rms)
- Adjustable Tracking Range (±1% to ±80%)
- Excellent Temperature Stability (20 ppm/°C, typical)

APPLICATIONS

- ESK Demodulation
- Data Synchronization
- Tone Decoding
- FM Detection
- Carrier Detection

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Power Supply			. 20V
Input Signal Level		 	. 3V rms
Power Dissipation			
Ceramic Package		 	750 mW
Derate above $T_A = +25$	5°С		6 mW/°C
Plastic Package			
Derate above $T_A = +25$	5°C		. 5 mW/°C

ELECTRICAL CHARACTERISTICS

Test Conditions (see Figure 2):

 $V^{+} = +12V$, $T_{A} = +25^{\circ}C$, $R_{0} = 30 \text{ K}\Omega$. $C_{0} = 0.033 \,\mu\text{F}$.

CONNECTION INFORMATION				
INPUT 2	XR-2211 SIGNAL PREAMP VCO 13 TIMING CAPACITOR CAPACITOR CAPACITOR TIMING TIMING			
GROUND 4	O-DET. O-DET. PRESISTOR LOCK DETECT COMP INTERNAL REFERENCE TO VOLTAGE OUT.			
OUTPUTS 0 6	NC 9 F5K COMP INPUT			

	XR-2211/2211M		11M	XR-2211C				
PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
GENERAL	GENERAL							
Supply Voltage		4.5		20	4.5		20	٧
Supply Current	$R_0 \ge 10 \text{ K}\Omega$. See Fig. 4.		4	7		5	9	mA
OSCILLATOR								
Frequency Accuracy	Deviation from fg = 1/RgCg		±1	±3		±1		%
Frequency Stability	R ₁ = ∞							
Temperature Coefficient	See Fig. 8.		±20	±50		±20		ppm/°(
Power Supply Rejection	V+ = 12 ± 1V. See Fig. 7.	ľ	0.05	0.5		0.05		%/V
	V+ = 5 ±0.5V. See Fig. 7.		0.2	1		0.2		%/V
Upper Frequency Limit	$R_0 = 8.2 \text{ K}\Omega$, $C_0 = 400 \text{ pF}$	100	300			300		kHz
Lowest Practical Operating								
Frequency	$R_0 = 2 M\Omega$, $C_0 = 50 \mu F$		i	0.01		0.01		Hz
Timing Resistor, Rg	See Fig. 5							
Operating Range		5		2000	5		2000	KΩ
Recommended Range	See Fig. 7 and 8.	15	l	100	15		100	KΩ
LOOP PHASE DETECTOR	<u> </u>							
Peak Output Current	Measured at pin 11.	± 150	±200	±300	± 100	± 200	±300	μΑ
Output Offset Current	·		±1			±2		μΑ
Output Impedance			1			1		MΩ
Maximum Swing	Referenced to pin 10.	±4	± 5		±4	±5		V
QUADRATURE PHASE			_					<u> </u>
DETECTOR								
Peak Output Current	Measured at pin 3.	100	150			150		μ
Output Impedance			1			1		МΩ
Maximum Swing			11			11		Vpp
INPUT PREAMP								
Input Impedance	Measured at pin 2.		20			20		КΩ
Input Signal Voltage Required to Cause Limiting			2	10		2		mV rm
VOLTAGE COMPARATOR	A							
Input Impedance	Measured at pins 3 and 8.		2			2		MΩ
Input Bias Current			100			100		nΑ
Voltage Gain	R _L = 5.1 KΩ	55	70		55	70		dΒ
Output Voltage Low	IC = 3 mA		300			300		mV
Output Leakage Current	V ₀ = 12V		.01			.01		μA
INTERNAL REFERENCE								
Voltage Level	Measured at pin 10.	4.9	5.3	5.7	4.75	5.3	5.85	V
Output Impedance			100			100		Ω
				·				 -

TYPICAL PERFORMANCE DATA

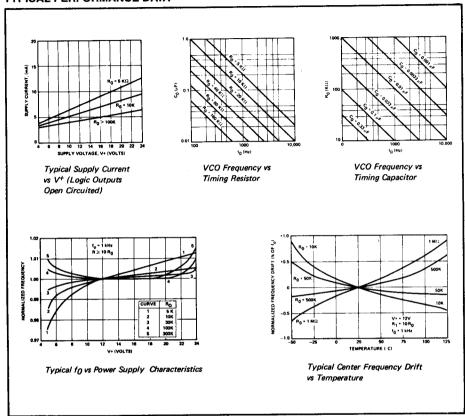


Figure 1. Functional Block Diagram of a Tone and FSK Decoding System Using XR-2211.

DESCRIPTION OF CIRCUIT CONTROLS

SIGNAL INPUT (PIN 2)

Signal is ac coupled to this terminal. The internal impedance at pin 2 is 20 K Ω . Recommended input signal level is in the range of 10 mV rms to 3V rms.

QUADRATURE PHASE DETECTOR OUTPUT (PIN 3)

This is the high-impedance output of quadrature phase detector, and is internally connected to the input of lock-detect voltage-comparator. In tone-detection applications, pin 3 is connected to ground through a parallel combination of RD and CD (see Figure 2) to eliminate the chatter at lock-detect outputs. If this tone-detect section is not used, pin 3 can be left open circuited.

RAYTHEON

Figure 2. Generalized Circuit Connection for FSK and

LOCK-DETECT OUTPUT, Q (PIN 5)

The output at pin 5 is at "high" state when the PLL is out of lock and goes to "low" or conducting state when the PLL is locked. It is an open-collector type output and requires a pull-up resistor, R_L, to V⁺ for proper operation. At "low" state, it can sink up to 5 mA of load current.

LOCK-DETECT COMPLEMENT, Q (PIN 6)

The output at pin 6 is the logic complement of the lock-detect output at pin 5. This output is also an open-collector type stage which can sink 5 mA of load current at low or "on" state.

FSK DATA OUTPUT (PIN 7)

This output is an open-collector logic stage which requires a pull-up resistor, R_L, to V⁺ for proper operation. It can sink 5 mA of load current. When decoding FSK signals, FSK data output is at "high" or off state for low input frequency; and at "low" or on state for high input frequency. If no input signal is present, the logic state at pin 7 is indeterminate.

FSK COMPARATOR INPUT (PIN 8)

This is the high-impedance input to the FSK voltage comparator. Normally, an FSK post-detection or data filter is connected between this terminal and the PLL phase-detector output (pin 11). This data filter is formed by RF and CF of Figure 2. The threshold voltage of the comparator is set by the internal reference voltage, V_{R} , available for pin 10.

REFERENCE VOLTAGE, VR (PIN 10)

This pin is internally biased at the reference voltage level, V_R : $V_R = V^+/2 - 650$ mV. The dc voltage level at this pin forms an internal reference for the voltage levels at pins 3, 8, 11 and 12. Pin 10 must be bypassed to ground with a 0.1 μ F capacitor, for proper operation of the circuit.

LOOP PHASE DETECTOR OUTPUT (PIN 11)

This terminal provides a high-impedance output for the loop phase-detector. The PLL loop filter is formed by R_1 and C_1 connected to pin 11 (see Figure 2). With no input signal, or with no phase-error within the PLL, the dc level at pin 11 is very nearly equal to V_R . The peak voltage swing available at the phase detector output is equal to $\pm V_R$.

VCO CONTROL INPUT (PIN 12)

VCO free-running frequency is determined by external timing resistor, R₀, connected from this terminal to ground. The VCO free-running frequency, f₀, is:

$$f_0 = \frac{1}{R_0 C_0} Hz$$

where C₀ is the timing capacitor across pins 13 and 14. For optimum temperature stability, R₀ must be in the range of $10 \text{ K}\Omega$ to $100 \text{ K}\Omega$ (see Typical Electrical Data).

This terminal is a low-impedance point, and is internally biased at a dc level equal to V_R . The maximum timing current drawn from pin 12 must be limited to \leq 3mA for proper operation of the circuit.

VCO TIMING CAPACITOR (PINS 13 AND 14)

VCO frequency is inversely proportional to the external timing capacitor, Cq, connected across these terminals. Cq must be non-polar, and in the range of 200 pF to $10~\mu F$

VCO FREQUENCY ADJUSTMENT

VCO can be fine-tuned by connecting a potentiometer, R_{X} , in series with R_{0} at pin 12 (see Figure 3).

VCO FREE-RUNNING FREQUENCY, fo.

The XR-2211 does not have a separate VCO output terminal. Instead, the VCO outputs are internally connected to the phase-detector sections of the circuit. However, for set-up or adjustment purposes, VCO free-running frequency can be measured at pin 3 (with CD disconnected), with no input and with pin 2 shorted to pin 10.

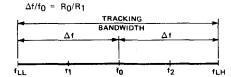
DESIGN EQUATIONS

See Figure 2 for Definitions of Components.

1. VCO Center Frequency, fo:

2. Internal Reference Voltage, VR (measured at pin 10)

$$V_R = V^+/2 - 650 \, \text{mV}$$


3. Loop Lowpass Filter Time Constant, τ:

$$\tau = R_1C_1$$

4. Loop Damping, ζ:

$$\zeta = \frac{1/4}{\sqrt{\frac{C_0}{C_1}}}$$

Loop Tracking Bandwidth, ± Δf/f₀:

FSK Data Filter Time Constant, τ ::

$$\tau_{\mathsf{F}} = \mathsf{R}_{\mathsf{F}}\mathsf{C}_{\mathsf{F}}$$

 Loop Phase Detector Conversion Gain, K_φ: (K_φ is the differential do voltage across pins 10 and 11, per unit of phase error at phase-detector input):

$$K_{\phi} = -2V_{R}/\pi \text{ volts/radian}$$

 VCO Conversion Gain, Kg: (Kg is the amount of change in VCO frequency, per unit of dc voltage change at pin 11):

$$K_0 = -1/V_R C_0 R_1 Hz/volt$$

9. Total Loop Gain, KT:

$$K_T = 2\pi K_\phi K_Q = 4/C_0 R_1 \text{ rad/sec/volt}$$

10. Peak Phase-Detector Current, IA:

$$I_A = V_R \text{ (volts)/25 mA}$$

APPLICATIONS

FSK DECODING

Figure 3 shows the basic circuit connection for FSK decoding. With reference to Figures 2 and 3, the functions of external components are defined as follows: R0 and C0 set the PLL center frequency, R1 sets the system bandwidth, and C1 sets the loop-filter-time-constant and the loop damping factor. CF and RF form a one-pole post-detection filter for the FSK data output. The resistor RB (= 510 K Ω) from pin 7 to pin 8 introduces positive feedback across FSK comparator to facilitate rapid transition between output logic states.

Recommended component values for some of the most commonly used FSK bands are given in Table 1.

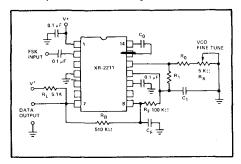


Figure 3. Circuit Connection for FSK Decoding

Design Instructions

The circuit of Figure 3 can be tailored for any FSK decoding application by the choice $\overline{0}f$ five key circuit components; R_0 , R_1 , C_0 , C_1 and C_F . For a given set of FSK mark and space frequencies, f_1 and f_2 , these parameters can be calculated as follows:

1. Calculate PLL center frequency, fg:

$$f_0 = \frac{f_1 + f_2}{2}$$

- 2. Choose value of timing resistor R_0 to be in the range of 10 K Ω to 100 K Ω . This choice is arbitrary. The recommended value is $R_0\cong 20$ K Ω . The final value of R_0 is normally fine-tuned with the series potentiometer, R_X .
- Calculate value of Co from Design Equation No. 1 or from Typical Performance

$$C_0 = 1/R_0 f_0$$

 Calculate R₁ to give a Δf equal to the mark-space deviation:

$$R_1 = R_0 [f_0/f_1 - f_2)]$$

 Calculate C₁ to set loop damping. (See Design Equation No. 4.)

Normally, $\zeta \approx 1/2$ is recommended.

Then:
$$C_1 = C_0/4$$
 for $\zeta = 1/2$

6. Calculate Data Filter Capacitance, CF:

For RF = 100 K Ω , RB = 510 K Ω , the recommended value of CF is:

Note: All calculated component values except R₀ can be rounded-off to the nearest standard value, and R₀ can be varied to fine-tune center frequency through a series potentiometer, R_X. (See Figure 3.)

Design Example:

75 Baud FSK demodulator with mark/space frequencies of 1110/1170 Hz:

Step 1: Calculate f_0 : $f_0 = (1110 + 1170) (1/2) = 1140 Hz$

Step 2: Choose R₀ = 20 K Ω (18 K Ω fixed resistor in series with 5 K Ω potentiometer)

Step 3: Calculate C_0 from VCO Frequency vs Timing Capacitor: $C_0 = 0.044 \ \mu F$

Step 4: Calculate R₁: R₁ = R₀ (2240/60) = 380 K Ω

Step 5: Calculate C₁: $C_1 = C_0/4 = 0.011 \,\mu\text{F}$

Note: All values except Rg can be rounded-off to nearest standard value.

Table 1. Recommended Component Values for Commonly
Used FSK Bands (See Circuit of Figure 3)

FSK BAND	COMPONENT VALUES				
300 Baud f ₁ = 1070 Hz f ₂ = 1270 Hz	$C_0 = 0.039 \mu\text{F}$ $C_1 = 0.01 \mu\text{F}$ $R_1 = 100 \text{K}\Omega$	$C_F = 0.005 \mu\text{F}$ $R_0 = 18 \text{K}\Omega$			
300 Baud f ₁ = 2025 Hz f ₂ = 2225 Hz	C_0 = 0.022 μ F C_1 = 0.0047 μ F R_1 = 200 K Ω	•			

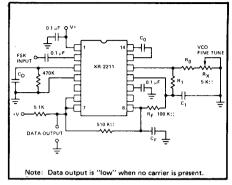


Figure 4. External Connectors for FSK Demodulation with Carrier-Detect Capability

FSK DECODING WITH CARRIER-DETECT

The lock-detect section of the XR-2211 can be used as a carrier-detect option for FSK decoding. The recommended circuit connection for this application is shown in Figure 4. The open-collector lock-detect output, pin 6, is shorted to data output (pin 7). Thus, data output will be disabled at "low" state until there is a carrier within the detection band of the PLL and the pin 6 output goes "high" to enable the data output.

The minimum value of the lock-detect filter capacitance C_D is inversely proportional to the capture range, $\pm\Delta f_c.$ This is the range of incoming frequencies over which the loop can acquire lock and is always less than the tracking range. It is further limited by $C_1.$ For most applications, $\Delta f_c > \Delta f/2.$ For $R_D=470~K\Omega,$ the approximate minimum value of C_D can be determined by:

$$C_D (\mu F) \ge 16/capture range in Hz.$$

With values of Cp that are too small, chatter can be observed on the lock-detect output as an incoming signal frequency approaches the capture bandwidth. Excessively-large values of Cp will slow the response time of the lock-detect output.

TONE DETECTION

Figure 5 shows the generalized circuit connection for tone detection. The logic outputs, Q and \overline{Q} at pins 5 and 6 are normally at "high" and "low" logic states, respectively. When a tone is present within the detection band of the PLL, the logic state at these outputs become reversed for the duration of the input tone. Each logic output can sink 5 mA of load current.

Both logic outputs at pins 5 and 6 are open-collector type stages, and require external pull-up resistors R_{L1} and R_{L2} , as shown in Figure 5.

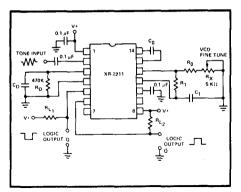


Figure 5. Circuit Connection for Tone Detection

With reference to Figures 2 and 5, the function of the external circuit components can be explained as follows: R_0 and C_0 set VCO center frequency; R_1 sets the detection bandwidth; C_1 sets the lowpass-loop filter time constant and the loop damping factor, R_{L1} and R_{L2} are the respective pull-up resistors for the Q and \overline{Q} logic outputs.

Design Instructions

The circuit of Figure 5 can be optimized for any tone-detection application by the choice of the 5 key circuit components: R₀, R₁, C₀, C₁ and C_D. For a given input tone frequency, f_S, these parameters are calculated as follows:

- 1. Choose R₀ to be in the range of 15 K Ω to 100 K Ω . This choice is arbitrary.
- Calculate C₀ to set center frequency, f₀ equal to f_S: C₀ = 1/R₀f_S.
- 3. Calculate R₁ to set bandwidth $\pm \Delta f$; (see Design Equation No. 5):

$$R_1 = R_0(f_0/\Delta f)$$

Note: The total detection bandwidth covers the frequency range of $f_0 \pm \Delta f$.

4. Calculate value of C₁ for a given loop damping factor:

$$C_1 = C_0/16\xi^2$$

Normally $\zeta \approx 1/2$ is optimum for most tone-detector applications, giving $C_1 = 0.25$ C_0 .

Increasing C₁ improves the out-of-band signal rejection, but increases the PLL capture time.

5. Calculate value of filter capacitor C_D . To avoid chatter at the logic output, with R_D = 470 $K\Omega$, C_D must be:

Cn (µF) ≥ (16/capture range in Hz)

Increasing Cn slows the logic output response time.

Design Examples:

Tone detector with a detection band of 1 kHz ± 20 Hz:

Step 1: Choose R₀ = 20 K Ω (18 K Ω in series with 5 K Ω potentiometer).

Step 2: Choose Co for $f_0 = 1 \text{ kHz}$: $C_0 = 0.05 \,\mu\text{F}$.

Step 3: Calculate R1: R1 = (Rn) $(1000/20) = 1 \text{ M}\Omega$.

Step 4: Calculate C₁: for $\zeta = 1/2$, C₁ = 0.25 μ F, C₀ = 0.013 μ F.

Step 5: Calculate C_D: C_D = $16/38 = 0.42 \,\mu\text{F}$.

Step 6: Fine-tune center frequency with 5 K Ω potentiometer, R χ .

LINEAR FM DETECTION

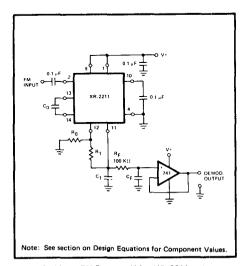


Figure 6. Linear FM Detector Using XR-2211 and an External Op Amp

LINEAR FM DETECTION

The XR-2211 can be used as a linear FM detector for a wide range of analog communications and telemetry applications. The recommended circuit connection for the application is shown in Figure 6. The demodulated output is taken from the loop phase detector output (pin 11), through a post detection filter made up of RF and CF, and an external buffer amplifier. This buffer amplifier is necessary because of the high impedance output at pin 11. Normally, a non-inverting unity gain op amp can be used as a buffer amplifier, as shown in Figure 6.

The FM detector gain, i.e., the output voltage change per unit of FM deviation, can be given as:

where V_R is the internal reference voltage. ($V_R = V^+/2 = 650$ mV). For the choice of external components R_1 , R_0 , C_D , C_1 and C_F , see section on Design Equations.

AVAILABLE TYPES

Part Number	Package	Operating Temperature
XR-2211M	Ceramic	-55°C to +125°C
XR-2211N	Ceramic	-40°C to +85°C
XR-2211P	Plastic	-40°C to +85°C
XR-2211CN	Ceramic	0°C to +75°C
XR-2211CP	Plastic	0°C to +75°C

