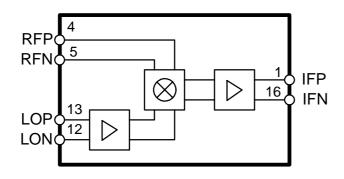
Features

- Active mixer with conversion gain
- No external LO driver necessary
- Low LO drive level required
- RF and LO ports may be driven single-ended
- Single 5 V supply voltage
- High LO-RF isolation
- Broadband resistive 50 Ω impedances on all three ports

Applications

- Infrastructure digital communication systems
- 1700-2000 MHz transceivers for base stations

Electrostatic sensitive device. Observe precautions for handling.


Description

The T0781 is a high linearity active mixer which is manufactured using Atmels advanced Silicon-Germanium technology. This mixer features a frequency range of 1700 - 2000 MHz. It operates from a single 5 V supply and provides 11 dB of conversion gain while requiring only 0 dBm input to the integrated LO driver. An IF amplifier is also included.

The T0781 incorporates internal matching on each RF, IF and LO port to enhance ease of use and to reduce the external components required. The RF and LO inputs can be driven differentially or single ended.

Block Diagram

Figure 1.

1700 - 2000 MHz High Linearity SiGe Active Receiver Mixer

T0781

Rev. A2, 04-Dec-01

Ordering Information

Extended Type Number	Package	Remarks
T0781	TSSOP16	

Pin Configuration

Figure 2.

IFP		1 ()	16	
VCC		2	15	
GND		3	14	
RFP		4	13	LOP
RFN	С	5	12	LON
GND	С	6	11	GND
VCC	Ц	7	10	b vcc
L1	Ц	8	9	L2

Pin Description

Pin	Symbol	Function
1	IFP	IF positive output
2	VCC	5 V power supply
3	GND	Ground
4	RFP	RF positive input
5	RFN	RF negative input
6	GND	Ground
7	VCC	5 V power supply
8	L1	External inductor terminal
9	L2	External inductor terminal
10	VCC	5 V power supply
11	GND	Ground
12	LON	Local osc., negative input
13	LOP	Local osc., positive input
14	GND	Ground
15	VCC	5 V power supply
16	IFN	IF negative output

Absolute Maximum Ratings

All voltages are referred to GND.

Parameter	Symbol	Value	Unit
Supply voltage	V _{CC}	5.5	V
LO input	LOP, LON	10	dBm
IF input	RFP, RFN	15	V
Operating temperature	T _{OP}	-40 to +85	°C
Storage temperature	T _{stg}	-65 to +150	°C

Note: The part may not survive all maximums applied simultaneously

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction ambient	R _{thJA}	tbd	K/W

Electrical Characteristics

Test conditions: V_{CC} = 5 V, T_{amb} = 25°C, RF input: -40 dB @1880 MHz, LO input: 0 dBm @ 1680 MHz

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
1	AC Performance								
1.1	Frequency range		4, 5	f	1700		2000	MHz	В
1.2	IF frequency range		1, 16	FIF	10	200	300	MHz	В
1.3	Input IP3	RF1 = RF2 = -17 dBm/tone	4, 5	IIP3		17		dBm	D
1.4	Input P1dB		4, 5	P1dB		4		dBm	D
1.5	Conversion gain		1, 16	G		11		dB	Α
1.6	SSB noise figure		1, 16	NF _{SSB}		14		dB	D
1.7	RF return loss		4, 5	RL _{RF}		14		dB	D
1.8	LO return loss		12, 13	RL _{LO}		14		dB	D
1.9	IF return loss		1, 16	RL _{IF}		14		dB	D
1.10	LO drive		12, 13	PLO	-3	0	3	dBm	D
2	Isolation performan	ce					l	1	1
1.12	Leakage (LO-RF)		12, 13	A _{LO-RF}		-60		dBm	D
1.13	Leakage (LO-IF)		12, 13	A _{LO-IF}		-30		dBm	D
3	Miscellaneous								r.
3.1	Supply voltage		2, 7, 10, 15	V _{CC}	4.75	5	5.25	V	A
3.2	Supply current		2, 7, 10, 15	Icc		150		mA	A

Preliminary Information

Figure 3. Return loss at LO input, $V_{CC} = 5.0 V$

Typical Device Performance

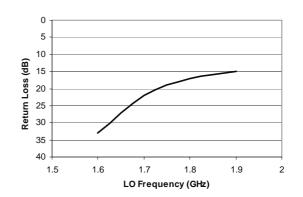
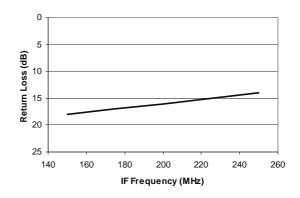
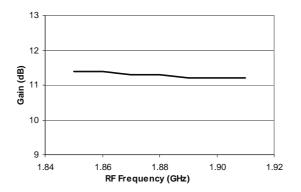
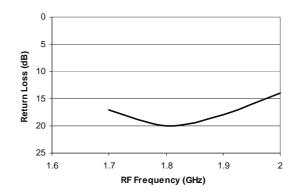


Figure 4. Return loss at IF ouput, $V_{CC} = 5.0 V$

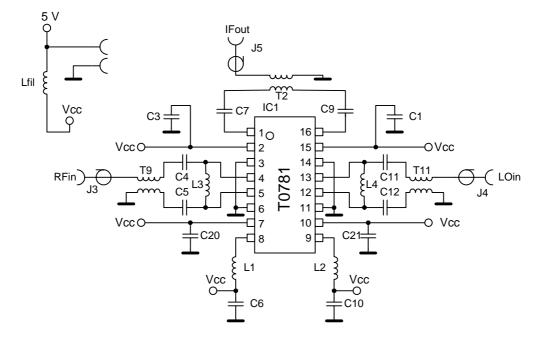




Figure 5. Conversion gain, V_{CC} = 5.0 V, LO = 0 dBm, RF_{IN} = -20 dBm, IF = 200 MHz

4 (10) **T0781**

T0781

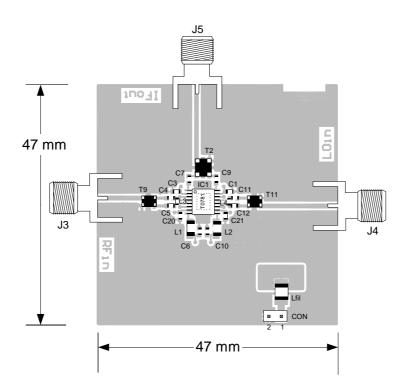
Figure 6. Return loss at RF input, V_{CC} = 5.0 V)


ļ

Preliminary Information

Demo Test Board Schematic

Figure 7.


Bill of Materials

Component Designator	Value	Vendor	Part Number	Description
IC1		Atmel	T0781	SiGe receiver mixer
J3, J4, J5		Johnson Components	142-0701-851	SMA connector, end launch with tab, for .062 inch thick board
T9, T11	1:1	Panansonic	EHF-FD1619	RF transformer
T2	1:1	Mini-Circuits	TC1-1	IF transformer
Lfil	1 µH			Inductor, 1210 footprint, min. 200 mA rating
L1, L2	100 nH	токо	LL1608-FSR10J	Inductor, 0603 footprint, high Q series
L3	18 nH	ТОКО	LL1608-FS18NJ	Inductor, 0603 footprint, high Q series
C1, C3, C20, C21	6.8 pF			Capacitor, 0603 footprint
C6, C10	100 pF			Capacitor, 0603 footprint
C7, C9	120 pF			Capacitor, 0603 footprint
C4, C5	2.2 pF			Capacitor, 0603 footprint
C11, C12	3.3 pF			Capacitor, 0603 footprint

6 (10) **T0781**

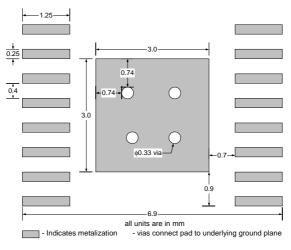
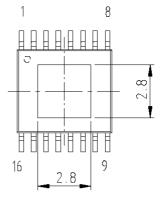

Demo Test Board (Fully Asembled PCB)

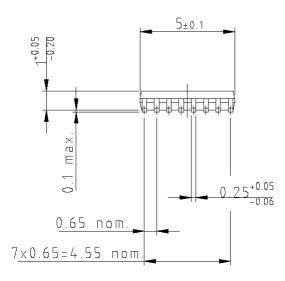
Figure 8.

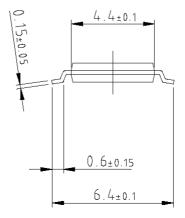
Recommended Package Footprint

Figure 9.



Remark: Heatslug must be soldered to GND


Package Information



Package: SSOP16 (acc. JEDEC SMALL OUTLINE No. MO-153) Dimensions in mm

8 (10) **T0781**

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

Atmel Sales Offices

France

3, Avenue du Centre 78054 St.-Quentin-en-Yvelines Cedex Tel: +33 1 30 60 70 00 Fax: +33 1 30 60 71 11

Germany

Erfurter Strasse 31 85386 Eching Tel: +49 89 319 70 0 Fax: +49 89 319 46 21

Kruppstrasse 6 45128 Essen Tel: +49 201 247 30 0 Fax: +49 201 247 30 47

Theresienstrasse 2 74072 Heilbronn Tel: +49 7131 67 36 36 Fax: +49 7131 67 31 63

Italy

Via Grosio, 10/8 20151 Milano Tel: +39 02 38 03 71 Fax: +39 02 38 03 72 34

Spain

Principe de Vergara, 112 28002 Madrid Tel: +34 91 564 51 81 Fax: +34 91 562 75 14

Sweden

Kavallerivaegen 24, Rissne 17402 Sundbyberg Tel: +46 8 587 48 800 Fax: +46 8 587 48 850

United Kingdom

Easthampstead Road Bracknell Berkshire RG12 1LX Tel: +44 1344 707 300 Fax: +44 1344 427 371

USA Western

2325 Orchard Parkway San Jose, California 95131 Tel: +1 408 441 0311 Fax: +1 408 436 4200

USA Eastern

1465 Route 31, Fifth floor Annandale New Jersey 08801 Tel: +1 908 848 5208 Fax: +1 908 848 5232

Hong Kong

Room #1219, Chinachem Golden Plaza 77 Mody Road, Tsimhatsui East East Kowloon, Hong Kong Tel: +852 23 789 789 Fax: +852 23 755 733

Korea

25-4, Yoido-Dong, Suite 605, Singsong Bldg. Youngdeungpo-Ku 150-010 Seoul Tel: +822 785 1136 Fax: +822 785 1137

Rep. of Singapore

Keppel Building #03-00 25 Tampines Street 92, Singapore 528877 Tel: +65 260 8223 Fax: +65 787 9819

Taiwan, R.O.C.

8F-2, 266 Sec.1 Wen Hwa 2 Rd. Lin Kou Hsiang, 244 Taipei Hsien Tel: +886 2 2609 5581 Fax: +886 2 2600 2735

Japan

Tonetsushinkawa Bldg. 1-24-8 Shinkawa Chuo Ku Tokyo 104-0033 Tel: +81 3 3523 3551 Fax: +81 3 3523 7581

Web Site

http://www.atmel-wm.com

© Atmel Germany GmbH 2001.

Atmel Germany GmbH makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel Germany GmbH's Terms and Conditions. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel Germany GmbH are granted by the Company in connection with the sale of Atmel Germany GmbH products, expressly or by implication. Atmel Germany GmbH's products are not authorized for use as critical components in life support devices or systems.

Data sheets can also be retrieved fron the Internet: http://www.atmel-wm.com