

GaAlAs Infrared Emitter

OPE5194WK

The OPE5194WK is GaAlAs infrared emitting diode that is designed for high radiant intensity and low forward voltage. This device is optimized for efficiency at emission wavelength 940nm and has a high radiant efficiency over a wide range of forward current. This device is packaged T1-3/4 plastic package and has narrow beam angle with lensed package and cup frame.

FEATURES

- High-output power
- Narrow beam angle
- Available for pulse operating

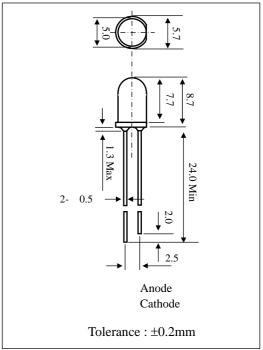
APPLICATIONS

- Optical emitters
- Optical switches
- Smoke sensors
- IR remote control
- IR sound transmission

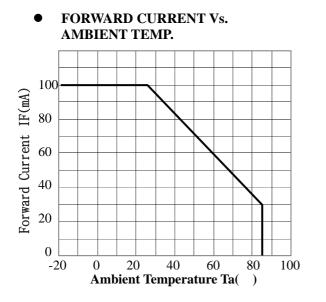
STORAGE

- Condition : 5°C~35°C,R.H.60%
- Terms : within 3 months from production date
- Remark : Once the package is opened, the products should be used within a day.
 - Otherwise, it should be keeping in a damp proof box with desiccants.
- * Please take proper steps in order to secure reliability and safety in required conditions and environments for this device.

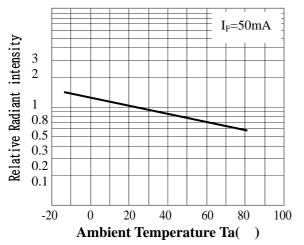
MAXIMUM RATINGS			(Ta=25°C)
Item	Symbol	Rating	Unit
Power Dissipation	P _D	150	mW
Forward current	$I_{\rm F}$	100	mA
Pulse forward current ^{*1}	I _{FP}	1.0	А
Reverse voltage	V _R	5.0	V
Operating temp.	Topr.	-25~ +85	°C
Soldering temp. *2	Tsol.	260.	°C

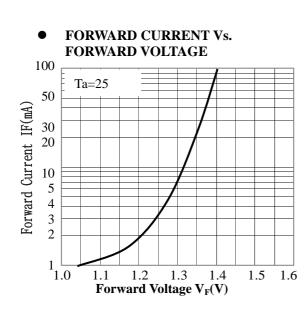

^{*1}.Duty ratio = 1/100, pulse width=0.1ms.

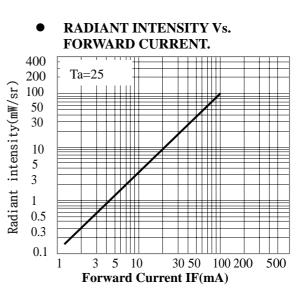
^{*2}.Lead Soldering Temperature (2mm from case for 5sec.).

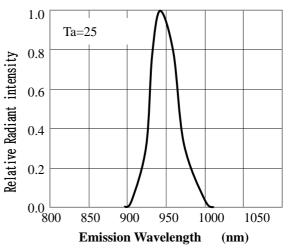

ELECTRO-OPTICALCHARACTERISTICS

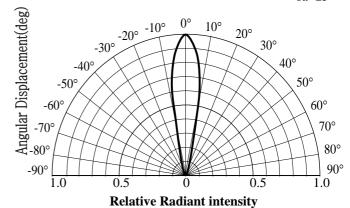
(Ta=25°C) Conditions Item Symbol Min. Typ. Max. Unit Forward voltage V_F $I_F = 100 \text{mA}$ 1.4 1.7 V Reverse current $V_R = 5V$ 10 I_R μΑ Ct f = 1 MHzpF Capacitance 20 mW/sr Ie I_F=100mA 100 Radiant intensity $I_F = 50 \text{mA}$ Peak emission wavelength 940 nm р Spectral bandwidth 50% $I_F = 50 \text{mA}$ 45 nm Half angle I_F=100mA ± 10 deg.


2500






• RELATIVE RADIANT INTENSITY Vs. AMBIENT TEMP.



• RELATIVE RADIANT INTENSITY Vs. EMISSION WAVELENGTH.

• ANGULAR DISPLACEMENT Vs RELATIVE RADIANT INTENSITY

Ta=25

