iT2009

2 - 26.5 GHz High-Gain, High-Power Amplifier

Description

Features
> Frequency range: $2 \mathrm{GHz}-26.5 \mathrm{GHz}$
> Psat ($2 \mathrm{GHz}-7 \mathrm{GHz}$): 30 dBm
> Psat ($7 \mathrm{GHz}-15 \mathrm{GHz}$): 29 dBm
> Psat ($15 \mathrm{GHz}-26.5 \mathrm{GHz}$): 25 dBm
$>$ Gain with +/-1dB flatness: 20 dB
> DC power consumption: 5.4 W
> DC bias conditions: 9 V at 600 mA
> Full chip passivation for high reliability

Absolute
Ratings

Symbol	Parameters/conditions	Min.	Max.	Units
V_{DD}	Positive supply voltage		11	V
$\mathrm{~V}_{\text {GG1,2 }}$	Negative supply voltage	-2	0	V
I_{DQ}	DC positive supply current		1300	mA
$\mathrm{I}_{\mathrm{GG} 1,2}$	Negative supply current		1.6	mA
Pin	RF input power		17	dBm
Pdiss_DC	DC power dissipation (no RF)		10	W
Tch	Operating channel temperature		150	${ }^{\circ} \mathrm{C}$
Tm	Mounting temperature $(30 \mathrm{~s})$		320	${ }^{\circ} \mathrm{C}$
Tst	Storage temperature	-65	150	${ }^{\circ} \mathrm{C}$

Recommended

Operating Conditions

The iT2009 is a broadband GaAs MMIC traveling wave amplifier designed for high output power applications where high gain performance is also required. The iT2009 provides saturated output power of 1 W up to 7 GHz and greater than 29 dBm up to 15 GHz . High gain of 20 dB with flatness of $+/-1 \mathrm{~dB}$ is provided up to 26.5 GHz . DC power consumption as low as 5.4 W is obtained by biasing for best output power and good linear performance. Input-output DC block capacitors are integrated on-chip.

iT2009

2 - 26.5 GHz High-Gain, High-Power Amplifier

Electrical Characteristics

(at $25^{\circ} \mathrm{C}$)
50 ohm system
$V_{D D}=+9 \mathrm{~V}$ Quiescent current $I_{D Q}=600 \mathrm{~mA}$

Symbol	Parameters/conditions	Min.	Typ.	Max.	Units
BW	Frequency range	2		26.5	GHz
S21	Small signal ain	17	20		dB
	Gain flatness			$+/-1$	dB
S11	Input return loss	12	16		dB
S22	Output return loss	9	12		dB
S12	Isolation	50			dB
Psat	Saturated output power (3 dB gain comp.)				
	$2-10 \mathrm{GHz}$	27.5	29.5		dBm
	$2-20 \mathrm{GHz}$	26.5	28.5		dBm
	$2-26.5 \mathrm{GHz}$	24	25		dBm
P1dB	Output power at 1 dB gain compression point				
	$2-10 \mathrm{GHz}$	27	29		dBm
	$2-20 \mathrm{GHz}$	26	28		dBm
	$2-26.5 \mathrm{GHz}$	22.5	24.5		dBm

Thermal Characteristics

Chip Layout and Bond Pad Locations

(Back of chip is RF and DC ground)

Pinout and Pad Dimensions:
P1: RF input ($100 \times 150 \mathrm{~mm}^{2}$)
P2: VGG1, negative voltage ($150 \times 100 \mathrm{~mm}^{2}$)

P3: VGG2, negative voltage ($150 \times 100 \mathrm{~mm}^{2}$)

P4: VDD positive voltage (250 x $100 \mathrm{~mm}^{2}$)

P5: RF output (100 $\times 150 \mathrm{~mm}^{2}$)

Chip size tolerance: $\pm 20 \mu \mathrm{~m}$
Note: All dimensions are in millimeters

Recommended Assembly Diagram
 Bypass capacitor must be large enough to isolate bias supply ($=>10 \mu \mathrm{~F}$)

 iT2009

2 - 26.5 GHz High-Gain, High-Power Amplifier

Performance
Data
$T=25^{\circ} \mathrm{C}$

Measured data includes effect of two parallel RF input/output bond wires

Gain vs. Temperature, $\mathrm{V}_{\mathrm{DD}}=9 \mathrm{~V}$

2 - 26.5 GHz High-Gain, High-Power Amplifier

Performance Data $\mathrm{T}=25^{\circ} \mathrm{C}$

* Measured data includes effect of two parallel RF input/output bond wires

2 - 26.5 GHz High-Gain, High-Power Amplifier

Recommended Procedure for Biasing and Operation

Bias
 Procedure

Application

Information

CAUTION: LOSS OF GATE VOLTAGE ($\mathrm{V}_{\mathrm{GG} 1,2}$) WHILE CORRESPONDING DRAIN VOLTAGE (Vdd) IS PRESENT CAN DAMAGE THE AMPLIFIER.
 The following procedure must be considered to properly test the amplifier.
 The iT2009 amplifier is biased with a positive drain supply ($\mathrm{V}_{D D}$) and two negative gate supply $\left(V_{G G 1}\right.$ and $\left.V_{G G 2}\right)$. The recommended bias conditions for the iT2009 is $V_{D D}=9.0 \mathrm{~V}, I_{D Q}=600 \mathrm{~mA}$. To achieve this drain current level, $\mathrm{V}_{\mathrm{GG} 1}$ and $\mathrm{V}_{\mathrm{GG} 2}$ are typically biased between -0.6 V and -0.9 V . The gate voltages ($\mathrm{V}_{G G 1}$ and $\mathrm{V}_{G G 2}$) MUST be applied prior to the drain voltage (V_{DD}) during power up and removed after the drain voltage is removed during the power down.

1. Apply -1.1 V to $\mathrm{V}_{\mathrm{GG} 1}$
2. Apply -1.1 V to $\mathrm{V}_{\mathrm{GG} 2}$
3. Apply +9 V to V_{DD}
4. Adjust $\mathrm{V}_{\mathrm{GG} 1}$ and $\mathrm{V}_{\mathrm{GG} 2}$ to attain $\mathrm{I}_{\mathrm{DQ}}=600 \mathrm{~mA}$ total current $\left(\mathrm{V}_{\mathrm{GG} 1}=\mathrm{V}_{\mathrm{GG} 2}\right.$, typically biased between -0.6 V and -0.9 V)

CAUTION: THIS IS AN ESD SENSITIVE DEVICE

Chip carrier material should be selected to have GaAs compatible thermal coefficient of expansion and high thermal conductivity such as copper molybdenum or copper tungsten. The chip carrier should be machined, finished flat, plated with gold over nickel and should be capable of withstanding $325^{\circ} \mathrm{C}$ for 15 min .
Die attachment for power devices should utilize gold/tin (80/20) eutectic alloy solder and should avoid hydrogen environment for PHEMT devices. Note that the backside of the chip is gold plated and is used as RF and DC ground.
These GaAs devices should be handled with care and stored in dry nitrogen environment to prevent contamination of bonding surfaces. These are ESD sensitive devices and should be handled with appropriate precaution including the use of wrist-grounding straps. All die attach and wire/ribbon bond equipment must be well grounded to prevent static discharges through the device.
Recommended wire bonding uses 3 mil wide and 0.5 mil thick gold ribbon with lengths as short as practical allowing for appropriate stress relief. The RF input and output bonds should be typically 12 mil long corresponding to a typical 2 mil gap between the chip and the substrate material.

