
HP 64739

H8/536 Emulator
PC Interface

User’s Guide

HP Part No. 64739-97004
Printed in U.S.A.
February 1994

Edition 2

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
P.O.Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64739-97001, February 1990

Edition 2 64739-97004, February 1994

Using This Manual

This manual introduces you to the following emulators as used with the
PC Interface.

HP 64739A H8/536 emulator

HP 64739B H8/536S emulator

Throughout this documentation, the following names are used to
denote the microprocessors listed in the following table of supported
microprocessors.

Model Supported Microprocessors Reffered to as

HP 64739A(H8/536 emulator) HD6475368CP
HD6435368CP
HD6475348CP
HD6435348CP

H8/536
H8/536
H8/534
H8/534

HP 64739B(H8/536S emulator) HD6475368CP
HD6435368CP
HD6475348CP
HD6435348CP
HD6475368SCP
HD6435368SCP
HD6475348SCP
HD6435348SCP

H8/536
H8/536
H8/534
H8/534

H8/536S
H8/536S
H8/534S
H8/534S

For the most part, the H8/536 and H8/536S emulators all operate the
same way. Differences of between the emulators are described where
they exist. Both the H8/536 and H8/536S emulators will be referred to
as the "H8/536 emulator". In the specific instances where H8/536S
emulator differs from H8/536 emulator, it will be described as
"H8/536S emulator".

This manual will:

Show you how to use emulation commands by executing them
on a sample program and describing their results.
Show you how to configure the emulator for your
development needs. Topics include: restricting the emulator
to real-time execution, and selecting a target system clock
source.
Show you how to use the emulator in-circuit (connected to a
target system).
Describe the command syntax which is specific to the H8/536
emulator.

This manual does not:

Show you how to use every PC Interface command and
option; the PC Interface is described in the HP 64700
Emulators PC Interface: User’s Reference.

Organization

Chapter 1 Introduction to the H8/536 Emulator. This chapter lists the H8/536
emulator features and describes how they can help you in developing
new hardware and software.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to use basic emulation
commands.

Chapter 3 In-Circuit Emulation. This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit" emulation
features.

Chapter 4 Configuring the Emulator. You can configure the emulator to adapt
it to your specific development needs. This chapter describes the
options available when configuring the emulator and how to save and
restore particular configurations.

Chapter 5 Using the Emulator. This chapter describes emulation topics which
are not covered in the "Getting Started" chapter (for example,
coordinated measurements and storing memory).

Appendix A File Format Readers. This appendix describes how to use the
HP 64869 Format Reader from MS-DOS, load absolute files into the
emulator, use global and local symbols with the PC Interface.

Notes

Contents

1 Introduction to the H8/536 Emulator

Introduction . 1-1
Purpose of the H8/536 Emulator 1-1
Features of the H8/536 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-4
Analysis . 1-5
Registers . 1-5
Single-Step . 1-5
Target System Interface . 1-5
Breakpoints . 1-5
Reset Support . 1-6
Real-Time Operation . 1-6

Limitations,
Restrictions . 1-6

DMA Support . 1-6
Sleep and Software Stand-by Mode 1-6
Watch Dog Timer in Background 1-6
RAM Enable Bit . 1-6

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2
Sample Program Assembly . 2-6
Linking the Sample Program 2-6

Starting Up the PC Interface . 2-7
Selecting PC Interface Commands 2-8
Emulator Status . 2-8

Modifying Configuration . 2-8
Defining the Reset Value for the Stack Pointer 2-8
Selecting your Processor . 2-8

Contents-11

Saving the Configuration . 2-9
Mapping Memory . 2-9

Which Memory Locations Should Be Mapped? 2-9
Loading Programs into Memory 2-12

File Format . 2-12
Memory Type . 2-13
Force Absolute File Read . 2-13
Absolute File Name . 2-13

Using Symbols . 2-14
Displaying Global Symbols 2-14
Displaying Local Symbols 2-15
Transfer Symbols to the Emulator 2-17

Displaying Memory in Mnemonic Format 2-18
Stepping Through the Program 2-19

Specifying a Step Count . 2-20
Modifying Memory . 2-21
Running the Program . 2-22
Searching Memory for Data . 2-23
Breaking into the Monitor . 2-23
Using Software Breakpoints . 2-24

Defining a Software Breakpoint 2-25
Displaying Software Breakpoints 2-26
Setting a Software Breakpoint 2-26
Clearing a Software Breakpoint 2-26

Using the Analyzer . 2-27
Resetting the Analysis Specification 2-27
Specifying a Simple Trigger 2-27
Starting the Trace . 2-31
Displaying the Trace . 2-31
For a Complete Description 2-33

Using a Command File . 2-33
Resetting the Emulator . 2-34
Exiting the PC Interface . 2-35

3 In-Circuit Emulation

Prerequisites . 3-1
Installing the Target System Probe 3-2
Installing into a PLCC Type Socket 3-3
Running the Emulator from Target Reset 3-4

4 Configuring the Emulator

12-Contents

Introduction . 4-1
Accessing the Emulator Configuration Options 4-2
Internal Emulator Clock? . 4-3
Enable Real-Time Mode? . 4-3
Enable Breaks on Writes to ROM? 4-5
Enable Software Breakpoints? . 4-6
Enable CMB Interaction? . 4-7
Enable Bus Arbitration? . 4-8
Drive Background Cycles to Target? 4-9
Enable NMI Input from Target? 4-10
Enable /RES Input from Target? 4-11
Drive Emulation Reset to Target? 4-12
Trace Bus Release Cycles? . 4-12
Processor type . 4-13
Processor Operation Mode . 4-13
Monitor Type . 4-14
Foreground Monitor Address . 4-15
Reset Value for Stack Pointer? 4-16
Storing an Emulator Configuration 4-17
Loading an Emulator Configuration 4-17

5 Using the Emulator

Introduction . 5-1
Making Coordinated Measurements 5-2

Running the Emulator at /EXECUTE 5-3
Breaking on the Analyzer Trigger 5-3

Storing Memory Contents to an Absolute File 5-5
Accessing Target System with E clock synchronous instruction . . 5-5
Register Names and Classes . 5-6

Summary . 5-6
* (Basic) Class . 5-6
sys Class . 5-7
intc Class . 5-7
dtc Class . 5-7
port Class . 5-8
frt1 Class . 5-8
frt2 Class . 5-9
frt3 Class . 5-9
tmr Class . 5-9
pwm1 Class . 5-9
pwm2 Class . 5-10

Contents-13

pwm3 Class . 5-10
wdt Class . 5-10
sci1 Class . 5-10
sci2 Class . 5-11
adc Class . 5-11

A File Format Readers

Using the HP 64000 Reader . A-1
What the Reader Accomplishes A-1
Location of the HP 64000 Reader Program A-3
Using the Reader from MS-DOS A-3
Using the Reader from the PC Interface A-4
If the Reader Won’t Run . A-5
Including RHP64000 in a Make File A-5

Using the HP 64869 Reader . A-6
What the Reader Accomplishes A-6
Location of the HP 64869 Reader Program A-8
Using the HP 64869 Reader from MS-DOS A-8
Using the HP 64869 Reader from the PC Interface A-8
If the Reader Won’t Run . A-10
Including RD64869 in a Make File A-10

Illustrations

Figure 1-1. HP 64739 Emulator for the H8/536 Processor 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linkage Editor Subcommand File 2-6
Figure 2-3. PC Interface Display 2-7
Figure 2-4. Sample Program Load Map Listing 2-10
Figure 2-5. Memory Configuration Display 2-11
Figure 2-6. Modifying the Trace Specification 2-30
Figure 2-7. Modifying the Pattern Specification 2-30
Figure 3-1. Installing into a PLCC type socket 3-3
Figure 4-1. H8/536 General Emulator Configuration 4-2
Figure 5-1. Cross Trigger Configuration 5-4

14-Contents

Tables

Table 1-1. Supported Microprocessors 1-3
Table 1-2. Clock Speeds . 1-4

Contents-15

Notes

16-Contents

1

Introduction to the H8/536 Emulator

Introduction The topics in this chapter include:

Purpose of the H8/536 emulator.

Features of the H8/536 emulator.

Purpose of the
H8/536 Emulator

The H8/536 emulator is designed to replace the H8/536 microprocessor
in your target system to help you debug/integrate target system
software and hardware. The emulator performs just like the processor
which it replaces, but at the same time, it gives you information about
the bus cycle operation of the processor. The emulator gives you
control over target system execution and allows you to view or modify
the contents of processor registers, target system memory.

Introduction 1-17

Figure 1-1. HP 64739 Emulator for the H8/536 Processor

1-18 Introduction

Features of the
H8/536 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The H8/536 emulator supports the microprocessors listed in Table 1-1.

Table 1-1. Supported Microprocessors

Model Supported Microprocessors Reffered to as

HP 64739A(H8/536 emulator) HD6475368CP
HD6435368CP
HD6475348CP
HD6435348CP

H8/536
H8/536
H8/534
H8/534

HP 64739B(H8/536S emulator) HD6475368CP
HD6435368CP
HD6475348CP
HD6435348CP
HD6475368SCP
HD6435368SCP
HD6475348SCP
HD6435348SCP

H8/536
H8/536
H8/534
H8/534

H8/536S
H8/536S
H8/534S
H8/534S

Clock Speeds You can select whether the emulator will be clocked by the internal
clock source or by the external clock source on your target system. You
must use a clock input conforming to the specification of Table 1-2.

When you use an external crystal, you need to input conforming to the
specification of microprocessor.

Introduction 1-19

Table 1-2. Clock Speeds

Clock source Model Microprocessor Clock Speed

Internal HP 64739A
(H8/536 emulator)

H8/536
H8/534

10MHz
(System clock)

HP 64739B
(H8/536S emulator)

H8/536
H8/534

H8/536S
H8/534S

10MHz
(System clock)

External HP 64739A
(H8/536 emulator)

H8/536
H8/534

From 0.5 up to 10MHz
(System clock)

HP 64739B
(H8/536S emulator)

H8/536
H8/534

From 0.5 up to 10MHz
(System clock)

H8/536S
H8/534S

From 0.5 up to 16MHz
(System clock)

Emulation memory The H8/536 emulator is used with one of the following Emulation
Memory Cards.

HP 64726A 128K byte Emulation Memory Card
HP 64727A 512K byte Emulation Memory Card
HP 64728A 1M byte Emulation Memory Card

You can define up to 16 memory ranges (at 256 byte boundaries and
least 256 byte in length.) The emulator occupies 2K byte, which is
used for monitor program, leaving 126K, 510K, 1022K byte of
emulation memory which you may use. You can characterize memory
range as emulation RAM (eram), emulation ROM (erom), target
system RAM (tram), target system ROM (trom), or guarded memory
(grd). The emulator generates an error message when accesses are
made to guarded memory locations. You can also configure the
emulator so that writes to memory defined as ROM cause emulator
execution to break out of target program execution.

1-20 Introduction

Analysis The H8/536 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64704A 80-channel Emulation Bus Analyzer
HP 64703A 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer.
HP 64794x 80-channel 8K/64K/256K Emulation Bus
Analyzer.

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703A 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the H8/536 internal register contents. This
includes the ability to modify the program counter (PC) and code page
register (CP) so you can control where the emulator begins executing a
target system program.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Target System
Interface

You can set the interface to the target system to be active or passive
during background monitor operation. (See the "Configuring the
Emulator" chapter for further details.)

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
background monitor.

You can also define software breakpoints in your program. The
emulator uses one of H8/536 undefined opcode (1B hex) as software
breakpoint interrupt instruction. When you define a software
breakpoint, the emulator places the breakpoint interrupt instruction (1B
hex) at the specified address; after the breakpoint interrupt instruction
causes emulator execution to break out of your program, the emulator
replaces the original opcode. Refer to the "Using Software
Breakpoints" section of "Getting Started" chapter for more information.

Introduction 1-21

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Real-Time Operation Real-time signifies continuous execution of your program without
interference from the emulator. (Such interference occurs when the
emulator temporarily breaks into the monitor so that it can access
register contents or target system memory.)

Emulator features performed in real time include: running and analyzer
tracing.

Emulator features not performed in real time include: display or modify
of target system memory; load/dump of any memory, display or
modification of registers, and single step.

 Limitations,
Restrictions

DMA Support Direct memory access to H8/536 emulation memory is not permitted.

Sleep and Software
Stand-by Mode

When the emulator breaks into the emulation monitor, H8/536
microprocessor sleep or software stand-by mode is released and comes
to normal processor mode.

Watch Dog Timer in
Background

Watch dog timer suspends count up while the emulator is running in
background monitor.

RAM Enable Bit The internal RAM of H8/536 processor can be enabled/disabled by
RAME (RAM enable bit). However, once you map the internal RAM
area to emulation RAM, the emulator accesses emulation RAM even if
the internal RAM is disabled by RAME.

1-22 Introduction

2

Getting Started

Introduction This chapter leads you through a basic, step by step tutorial that shows
how to use the HP 64739 emulator with the PC Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s examples.

Briefly describe how PC Interface commands are entered and
how emulator status is displayed.

This chapter will show you how to:

Start up the PC Interface from the MS-DOS prompt.

Define (map) emulation and target system memory.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Getting Started 2-23

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Emulators: Hardware Installation and Configuration manual
shows you how to do this.

2. Installed the PC Interface software on your computer.
Software installation instructions are shipped with the media
containing the PC Interface software. The HP 64700
Emulators PC Interface: User’s Reference manual contains
additional information on the installation and setup of the PC
Interface.

3. In addition, it is recommended, although not required, that you
read and understand the concepts of emulation presented in
the HP 64700 Emulators: System Overview manual. The
System Overview also covers HP 64700 Series system
architecture. A brief understanding of these concepts may
help avoid questions later.

You should read the HP 64700 Emulators PC Interface:
User’s Reference manual to learn how to use the PC Interface
in general. For the most part, this manual contains
information specific to the H8/536 emulator.

A Look at the Sample
Program

The sample program used in this chapter is listed in Figure 2-1. The
program is a primitive command interpreter.

Using the various features of the emulator, we will show you how to
load this program into emulation memory, execute it, monitor the
program’s operation with the analyzer, and simulate entry of different
commands by using the "Memory Modify" emulation command.

2-24 Getting Started

 .GLOBAL Init,Msgs,Cmd_Input
 .GLOBAL Msg_Dest

 .SECTION Table,DATA
Msgs
Msg_A .SDATA "Command A entered "
Msg_B .SDATA "Entered B command "
Msg_I .SDATA "Invalid Command "
End_Msgs

 .SECTION Prog,CODE
;***
;* Sets up the stack pointer.
;***
Init MOV:G.W #Stack,R7
;***
;* Clear previous command.
;***
Read_Cmd MOV:G.B #0,@Cmd_Input
;***
;* Read command input byte. If no command has
;* been entered, continue to scan for input.
;***
Scan MOV:G.B @Cmd_Input,R0
 BEQ Scan
;***
;* A command has been entered. Check if it is
;* command A, command B, or invalid.
;***
Exe_Cmd CMP:E.B #H’41,R0
 BEQ Cmd_A
 CMP:E.B #H’42,R0
 BEQ Cmd_B
 BRA Cmd_I
;***
;* Command A is entered. R1 = the number of
;* bytes in message A. R4 = location of the
;* message. Jump to the routine which writes
;* the messages.
;***
Cmd_A MOV:I.W #Msg_B-Msg_A-1,R1
 MOV:I.W #Msg_A,R4
 BRA Write_Msg
;***
;* Command B is entered.
;***
Cmd_B MOV:I.W #Msg_I-Msg_B-1,R1
 MOV:I.W #Msg_B,R4
 BRA Write_Msg

Figure 2-2. Sample Program Listing

Getting Started 2-25

Data Declarations

The "Table" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

;***
;* An invalid command is entered.
;***
Cmd_I MOV:I.W #End_Msgs-Msg_I-1,R1
 MOV:I.W #Msg_I,R4
;***
;* Message is written to the destination.
;***
Write_Msg MOV:I.W #Msg_Dest,R5
Again MOV:G.B @R4+,R3
 MOV:G.B R3,@R5+
 SCB/EQ R1,Again
;***
;* The rest of the destination area is filled
;* with zeros.
;***
Fill_Dest MOV:G.B #0,@R5+
 CMP:I.W #Msg_Dest+H’20,R5
 BNE Fill_Dest
;***
;* Go back and scan for next command.
;***
 BRA Read_Cmd

 .SECTION Data,COMMON
;***
;* Command input byte.
;***
Cmd_Input .RES.B 1
 .RES.B 1
;***
;* Destination of the command messages.
;***
Msg_Dest .RES.W H’3E
Stack .RES.W 1 ; Stack area.

Figure 2-1. Sample Program Listing (Cont’d)

2-26 Getting Started

Initialization

The program instruction at the Init label initializes the stack pointer.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to see if a command is entered
(a value other than 0 hex).

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution is
transferred to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution is
transferred to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid command
has been entered, and execution is transferred to the instructions at
Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register R1
with the length of the message to be displayed and register R4 with the
starting location of the appropriate message. Then, execution transfers
to Write_Msg which writes the appropriate message to the destination
location, Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination area
is 20 hex bytes long.) Then, the program branches back to read the
next command.

Getting Started 2-27

Sample Program
Assembly

The sample program is written for and assembled with the HP 64869
H8/500 Assembler/Linkage Editor. For example, the following
command was used to assemble the sample program.

C>h8asm cmd_rds.src /DEBUG <RETURN>
In addition to the assembler listing (cmd_rds.lis), the "cmd_rds.obj"
relocatable file is created.

Linking the Sample
Program

The sample program can be linked with following command and
generates an absolute file. The contents of "cmd_rds.k" linkage editor
subcommand file is shown in Figure 2-2.

C>h8lnk /SUBCOMMAND=cmd_rds.k <RETURN>
In addition to the linker load map listing (cmd_rds.map), the
"cmd_rds.abs" absolute file is created.

Note You need to specify DEBUG command line option to both assembler
and linker command to generate local symbol information. The
DEBUG option for the assembler and linker direct to include local
symbol information to the object file.

 debug
 input cmd_rds
 start Prog(1000),Table(1100),Data(0FC00)
 print cmd_rds
 output cmd_rds
 exit

Figure 2-2. Linkage Editor Subcommand File

2-28 Getting Started

Starting Up the PC
Interface

If you have set up the emulator device table and the HPTABLES shell
environment variable as shown in the HP 64700 Emulators PC
Interface: User’s Reference, you can start up the H8/536 PC Interface
by entering the following command from the MS-DOS prompt:

pch8536 <emulname>

In the command above, pch8536 is the command to start the PC
Interface; "<emulname>" is the logical emulator name given in the
emulator device table. (To start version of the PC Interface that
supports external timing analysys, substitute pth8536 for pch8536 in
this command.) If this command is successful, you will see the display
shown in figure 2-3. If this command is not successful, you will be
given an error message and returned to the MS-DOS prompt.

Figure 2-3. PC Interface Display

Getting Started 2-29

Selecting PC
Interface Commands

This manual will tell you to "select" commands. You can select
commands or command options by either using the left and right arrow
keys to highlight the option and press the Enter key, or you can simply
type the first letter of that option. If you select the wrong option, you
can press the ESC key to move back up the command tree.

When a command or command option is highlighted, a short message
describing that option is shown on the bottom line of the display.

Emulator Status The status of the emulator is shown on the line above the command
options. The PC Interface periodically checks the status of the
emulator and updates the status line.

Modifying
Configuration

You need to set up the emulation configuration before using the sample
program. To access the emulation configuration display, enter:

Config, General

Defining the Reset
Value for the Stack

Pointer

Even though the H8/536 emulator has a background monitor, it
requires you to define a stack pointer.

Use the arrow keys to move the cursorto the "Reset value for Stack
Pointer" field, type 0fc80 and press Enter.

The stack pointer value will be set to the stack pointer (SP) on entrance
to the emulation monitor initiated RESET state (the "Emulation reset"
status).

Selecting your
Processor

You need to select the processor you are going to emulate. Use the
arrow keys to move the cursor to the "Processor type?" field. Use the
TAB key to select the processor you are going to emulate.

2-30 Getting Started

Saving the
Configuration

To save the configuration, use the Enter key to exit the field in the last
field. (The End key on Vectra keyboards moves the cursor directly to
the last field.)

Mapping Memory The H8/536 emulator contains 126 kilobytes of high-speed emulation
memory (no wait states required) that can be mapped at a resolution of
256 bytes.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM. You can include function code information
with address ranges to further characterize the memory block.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Configuring the Emulator" chapter).

The memory mapper allows you to define up to 16 different map terms.

Note When you use the H8/536 internal ROM and RAM, you must map
memory space where internal ROM and RAM are located as each
emulation ROM and RAM.

Which Memory
Locations Should Be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what locations your program will occupy in memory. A part
of linker load map listing for the sample program (cmd_rds.map) is
shown in Figure 2-4.

Getting Started 2-31

From the load map listing, you can see that the sample program
occupies locations in three address ranges. The code area, which
contains the opcodes and operands which make up the sample program,
occupies locations 1000 hex through 1042 hex. The data area, which
contains the ASCII values of the messages the program displays, is
occupies locations 1100 hex through 1133 hex. The destination area,
which contains the command input byte and the locations of the
message destination and the stack, occupies locations FC00 hex
through FC7F hex.

Two mapper terms will be specified for the example program. Since
the program writes to the destination locations, the mapper block
containing the destination locations should not be characterized as
ROM memory.

To map memory for the sample program, select:

Config, Map, Modify

 *** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH
 UNIT NAME MODULE NAME

ATTRIBUTE : CODE NOSHR
Prog H’0000:1000 - H’0000:1042 H’00000043
 cmd_rds cmd_rds
* TOTAL ADDRESS * H’0000:1000 - H’0000:1042 H’00000043

ATTRIBUTE : DATA NOSHR
Table H’0000:1100 - H’0000:1133 H’00000034
 cmd_rds cmd_rds
* TOTAL ADDRESS * H’0000:1100 - H’0000:1133 H’00000034

ATTRIBUTE : DATA SHR
Data H’0000:FC00 - H’0000:FC7F H’00000080
 cmd_rds cmd_rds
* TOTAL ADDRESS * H’0000:FC00 - H’0000:FC7F H’00000080

Figure 2-4. Sample Program Load Map Listing

2-32 Getting Started

Using the arrow keys, move the cursor to the "address range" field of
term 1. Enter:

1000..1fff

Move the cursor to the "memory type" field of term 1, and press the
TAB key to select the erom (emulation ROM) type. Move the cursor
to the "address range" field of term 2 and enter:

0fc00..0fcff

Move the cursor to the "memory type" field of term 2, and press the
TAB key to select the eram (emulation RAM) type. To save your
memory map, use the Enter key to exit the field in the lower right
corner. (The End key on Vectra keyboards moves the cursor directly
to the last field.) The memory configuration display is shown in Figure
2-5.

Figure 2-5. Memory Configuration Display

Getting Started 2-33

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing programs
and constants (locations which should not be written to) as ROM. This
will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions attempt to do so.

Note The memory mapper re-assigns blocks of emulation memory after the
insertion or deletion of mapper terms. For example, if you modified
the contents of FC00 hex through FCFF hex above, deleted term 1, and
displayed locations FC00 hex through FCFF hex, you would notice the
contents of those locations are not the same as they were before
deleting the mapper term.

Loading Programs
into Memory

If you have already assembled and linked the sample program, you can
load the absolute file by selecting:

Memory, Load

File Format Enter the format of your absolute file. The emulator will accept
absolute files in the following formats:

HP 64869 absolute.
HP absolute.
Raw HP64000 absolute.
Intel hexadecimal.
Tektronix hexadecimal.
Motorola S-records.

The HP 64869 absolute file is generated with HP 64869 H8/300
Assembler/Linkage Editor. For this tutorial, choose the HP 64869
format.

2-34 Getting Started

HP 64869 Format: When you load HP 64869 format files, the PC
Interface creates files (whose base names are the same as the absolute
file) with the extensions ".HPA" and ".HPS". The ".HPA" file is in a
binary format that is compatible with the HP 64736 firmware. The
".HPS" file is an ASCII source file which contains the symbols to
address mappings used by the PC Interface. Refer to "Using HP 64869
Format Reader" section in Appendix A for more information.

HP64000 Format: Your language tool may generate Raw HP64000
format absolute files (with extension .X, .L, .A). You can load these
files by selecting "HP64000" or "Raw HP64000" as file format. When
you select "HP64000", the PC Interface creates .HPA absolute file and
.HPS symbol database. When you select "Raw HP64000", the PC
Interface doesn’t create these files.

Memory Type The second field allows you to selectively load the portions of the
absolute file which reside in emulation memory, target system
memory, or both.

Since emulation memory is mapped for sample program locations, you
can enter either "emulation" or "both".

Force Absolute File
Read

This option is only available for HP 64869 and HP64000 formats. It
forces the file format readers to regenarate the emulator absolute file
(.hpa) and symbol data base (.hps) before loading the code. Normally,
these files are only regenarated whenever the file you specify (the
output of your language tools) is newer than the emulator absolute file
and symbol data base.

For more information, refer to the "Using the HP 64869 Format
Reader" section in Appendix A.

Absolute File Name For most formats, you enter the name of your absolute file in the last
field. Type cmd_rds.abs, and press Enter to start the memory load.

Getting Started 2-35

Using Symbols The following pages show you how to display global and local symbols
for the sample program. For more information on symbol display,
refer to the PC Interface Refernce.

Displaying Global
Symbols

When you load HP 64869 or HP64000 format absolute files into the
emulator, the corresponding symbol database is also loaded.

The symbols database can also be loaded with the "System Symbols
Global Load" command. This command is provided for situations
where multiple absolute files are loaded into the emulator; it allows
you to load the various sets of global symbols corresponding to the
various absolute files. When global symbols are loaded into the
emulator, information about previous global symbols is lost (that is,
only one set of global symbols can be loaded at a time).

After global symbols are loaded, both global and local symbols can be
used when entering expressions. Global symbols are entered as they
appear in the source file or in the global symbols display.

To display global symbols, select:

System, Symbols, Global, Display

The symbols window automatically becomes the active window as a
result of this command. You can press <CTRL>z to zoom the
window. The resulting display follows.

2-36 Getting Started

The global symbols display has two parts. The first parts lists all the
modules that were linked to produce this object file. These module
names are used by you when you want to refer to a local symbol, and
are case-sensitive. The second part of the display lists all global
symbols in this module. These names can be used in measurement
specifications, and are case-snesitive. For example, if you wish to
make a measurement using the symbol Cmd_Input , you must specify
Cmd_Input . The strings cmd_input or CMD_INPUT are not valid
symbol names here.

Displaying Local
Symbols

To display local symbols, select:

System, Symbols, Local, Display

Enter the name of the module you want to specify (from the first part of
the global symbols display; in this case, cmd_rds) and press Enter.
The resulting display follows.

Getting Started 2-37

After you display local symbols with the “System Symbols Local
Display” command, you can enter local symbols as they appear in the
source file or local symbol display. When you display local symbols
for a given module, that module becomes the default local symbol
module.

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:symbol

Remember that the only valid module names are those listed in the first
part of the global symbols display, and are case-sensitive for
compatibility with other systems (such as HP-UX).

When you include the name of an source file with a local symbol, that
module becomes the default local symbol module, as with the “System
Symbols Local Display” command.

Local symbols must be from assembly modules that form the absolute
whose symbol database is currently loaded. Otherwise, no symbols will
be found (even if the named assembler symbol file exists and contains
information).

2-38 Getting Started

One thing to note: It is possible for a symbol to be local in one module
and global in another, which may result in some confusion. For
example, suppose symbol “XYZ” is a global in module A and a local
in module B and that these modules link to form the absolute file. After
you load the absolute file (and the corresponding symbol database),
entering “XYZ” in an expression refers to the symbol from module A.
Then, if you display local symbols from module B, entering “XYZ” in
an expression refers to the symbol from module B, not the global
symbol. Now, if you again want to enter “XYZ” to refer to the global
symbol from module A, you must display the local symbols from
module A (since the global symbol is also local to that module).
Loading local symbols from a third module, if it was linked with
modules A and B and did not contain an“XYZ” local symbol, would
also cause “XYZ” to refer to the global symbol from module A.

Transfer Symbols to
the Emulator

You can use the emulator’s symbol-handling capability to improve
measurement displays. You do this by transferring the symbol database
information to the emulator. To transfer the global symbol information
to the emulator, use the command:

System, Symbols, Global, Transfer

Transfer the local symbol information for all modules by entering:

System, Symbols, Local, Transfer, All

You can find more information on emulator symbol handling
commands in the Emulator PC Interface Reference.

Getting Started 2-39

Displaying
Memory in
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program has indeed been loaded by displaying memory in
mnemonic format. To do this, select:

Memory, Display, Mnemonic

Enter the address range "1000..1029". (You could also specify this
address range using symbols, for example, "Init..Cmd_I" or
"Init..Init+29" .) The emulation window automatically becomes the
active window as a result of this command. You can press <CTRL>z
to zoom the emulation window. The resulting display follows.

If you wish to view the rest of the sample program memory
locations,you can select "Memory Display Mnemonic" command
again and enter the range from "102a..1042".

2-40 Getting Started

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with step command. To begin stepping through the sample
program, select:

Processor, Step, Address

Enter a step count of 1, enter the symbol Init (defined as a global in the
source file), and press Enter to step from program’s first address, 1000
hex. The executed instruction, the program counter address, and the
resulting register contents are displayed as shown in the following
listing.

Getting Started 2-41

Note You cannot display registers if the processor is reset. Use the
"Processor Break" command to cause the emulator to start executing in
the monitor.

You can display registers while the emulator is executing a user
program (if execution is not restricted to real-time); emulator execution
will temporarily break to the monitor.

To continue stepping through the program, you can select:

Processor, Step, Pc
After selecting the command above, you have an opportunity to change
the previous step count. If you wish to step the same number of times,
you can press Enter to start the step.

To save time when single-stepping, you can use the function key macro
<F1>, which executes the command,

Processor, Step, Pc, 1
For more information, see the Emulator PC Interface Reference
manual.

To repeat the previous command, you can press <CTRL>r .

Specifying a Step
Count

If you wish to continue to step a number of times from the current
program counter, select:

Processor, Step, Pc
The previous step count is displayed in the "number of instructions"
field. You can enter a number from 1 through 99 to specify the number
of times to step. Type 5 into the field, and press Enter. The resulting
display follows.

2-42 Getting Started

When you specify step counts greater than 1, only the last register
contents are displayed.

Modifying Memory The preceding step commands show the sample program is executing
in the Scan loop, where it continually reads the command input byte to
check if a command has been entered. To simulate the entry of a
sample program command, you can modify the command input byte by
selecting:

Memory, Modify, Byte
Now enter the address of the memory location to be modified, an equal
sign, and new value of that location, for example, "Cmd_Input=41".
(The Cmd_Input label was defined as a global symbol in the source
file.)

To verify that 41 hex was indeed written to Cmd_Input (FC00 hex),
select:

Memory, Display, Byte

Getting Started 2-43

Type the symbol Cmd_Input , and press Enter. The resulting display
is shown below.

You can continue to step through the program as shown earlier in this
chapter to view the instructions which are executed when an "A" (41
hex) command is entered.

Running the
Program

To start the emulator executing the sample program, select:

Processor, Go, Pc
The status line will show that the emulator is "Running user program".

2-44 Getting Started

Searching
Memory for Data

You can search the message destination locations to verify that the
sample program writes the appropriate messages for the allowed
commands. The command "A" (41 hex) was entered above, so the
"Command A entered" message should have been written to the
Msg_Dest locations. Because you must search for hexadecimal values,
you will want to search for a sequence of characters which uniquely
identify the message, for example, " A " or 20 hex, 41 hex, and 20 hex.
To search the destination memory location for this sequence of
characters, select:

Memory, Find
Enter the range of the memory locations to be searched, FC02 hex
through FC21 hex, and enter the data 20 hex, 41 hex, and 20 hex. The
resulting information in the memory window shows you that the
message was indeed written as it was supposed to have been.

To verify that the sample program works for the other allowed
commands, you can modify the command input byte to "B" and search
for " B " (20 hex, 42 hex, and 20 hex), or you can modify the
command input byte to "C" and search for "d C" (64 hex, 20 hex, and
43 hex).

Breaking into the
Monitor

To break emulator execution from the sample program to the monitor
program, select:

Processor, Break
The status line shows that the emulator is "Running in monitor".

While the break will occur as soon as possible, the actual stopping
point may be many cycles after the break request (dependent on the
type of instruction being executed and whether the processor is in a
hold state).

Getting Started 2-45

Using Software
Breakpoints

Software breakpoints are provided with one of H8/536 undefined
opcode (1B hex) as breakpoint interrupt instruction.
When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with the
breakpoint interrupt instruction.

When software breakpoints are enabled and emulator detects the
breakpoint interrupt instruction (1B hex), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (1B hex) is a software breakpoint or opcode in your target
program.

If it is a software breakpoint, execution breaks to the monitor, and the
breakpoint interrupt instruction is replaced by the original opcode. A
subsequent run or step command will execute from this address.

If it is an opcode of your target program, execution still breaks to the
monitor, and an "Undefined software breakpoint" status message is
displayed.

When software breakpoints are disabled, the emulator replaces the
breakpoint interrupt instruction with the original opcode. Up to 32
software breakpoints may be defined.

Note You must set software breakpoints only at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

2-46 Getting Started

Note Because software breakpoints are implemented by replacing opcodes
with the undefined opcode (1B hex), you cannot define software
breakpoints in target ROM. You can, however, use the Terminal
Interface cim command to copy target ROM into emulation memory
(see the Terminal Interface: User’s Reference manual for information
on the cim command).

Note Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Defining a Software
Breakpoint

To define a breakpoint at the address of the Cmd_I label of the sample
program (1029 hex), select:

Breakpoints, Add
Enter the local symbol "Cmd_I". After the breakpoint is added, the
breakpoint window becomes active and shows that the breakpoint is set.

You can add multiple breakpoints in a single command by separating
each one with a semicolon. For example, you could type
"1019;1021;1029" to set three breakpoints.

Getting Started 2-47

Run the program by selecting:

Processor, Go, Pc
The status line shows that the emulator is running the user program.
Modify the command input byte to an invalid command by selecting:

Memory, Modify, Bytes
Enter an invalid command, such as "Cmd_Input=75". The following
messages result:

ALERT: Software breakpoint: 001029
STATUS: H8/536--Running in monitor

To continue program execution, select:

Processor, Go, Pc

Displaying Software
Breakpoints

To view the status of the breakpoint, select:

Breakpoints, Display
The resulting display will show that the breakpoint has been cleared.

Setting a Software
Breakpoint

When a breakpoint is hit, it becomes disabled. To re-enable the
software breakpoint, you can select:

Breakpoints, Set, Single
The address of the breakpoint you just added is still in the address
field; to set this breakpoint again, press Enter. As with the
"Breakpoints Add"command, the breakpoint window becomes active
and shows that the breakpoint is set.

Clearing a Software
Breakpoint

If you wish to clear a software breakpoint that does not get hit during
program execution, you can select:

Breakpoints, Clear, Single
The address of the breakpoint set in the previous section is still in the
address field; to clear this breakpoint again, press Enter.

2-48 Getting Started

Using the Analyzer The H8/536 emulation analyzer has 48 trace signals which monitor
internal emulation lines (address, data, and status lines). Optionally,
you may have an additional 16 trace signals which monitor external
input lines. The analyzer collects data at each pulse of a clock signal,
and saves the data (a trace state) if it meets a "storage qualification"
condition.

Note Emulators which have the optional external analyzer will display the
Interna/External options after the commands in the following
examples. Enter Internal to execute the examples.

Resetting the
Analysis

Specification

To be sure that the analyzer is in its default or power-up state, select:

Analysis, Trace, Reset

Specifying a Simple
Trigger

Suppose you wish to trace the states of the sample program which
follow the read of a "B" (42 hex) command from the command input
byte. To do this, you must modify the default analysis specification by
selecting:

Analysis, Trace, Modify
The emulation analysis specification is shown. Use the right arrow key
to move the cursor to the "Trigger on" field. Type "a" and press Enter.

You’ll enter the pattern expression menu. Press the up arrow key until
the addr field directly opposite the pattern a= is highlighted. Type the
address of the command input byte, using either the global symbol
Cmd_Input or address 0fc00, and press Enter.

The "Data" field is now highlighted. Type 42xx and press Enter. 42 is
the value of the "B" command and the "x"s specify "don’t care" values.

Getting Started 2-49

Triggering the Analyzer by Data

You may want to trigger the emulation analyzer when specific data
appears on the data bus. You can accomplish this by specifying "Data"
in the "Find State" field of analysis specification display.

There are some points to be noticed when you trigger the analyzer in
this way. You always need to specify the "Data" with 16 bits value
even when access to the data is performed by byte access. This is
because the analyzer is designed so that it can capture data on internal
data bus (which has 16 bits width). The following table shows the
way to specify the trigger condition by data.

 (DATA READ/WRITE)
 ===
 | | Available
 Location of data | Accesses | <DATA> Specification
 ===
 Internal ROM,RAM | Word | HHLL *1
 +----------+---------------------
 | Byte | DDxx *2
 -------------------+----------+---------------------
 Others | DDxx
 ===

 (INSTRUCTION FETCH)
 ===
 | | Available
 Location of data | Address | <DATA> Specification
 ===
 Internal ROM,RAM | EVEN | HHLL *1
 +----------+---------------------
 | ODD | xxDD *2
 --------------------+----------+---------------------
 Others | DDxx *2
 ===
 *1 HHLL means 16 bits data
 *2 DD means 8 bits data

For example, to trigger the analyzer when the processor performs word
access to data 1234 hex in internal ROM, you can use 1234h as the
"Data" specification.

To trigger the analyzer when the processor accesses data 12 hex in
external ROM, you can use 12xxh as "Data" specification.

2-50 Getting Started

H8/536 Analysis Status Qualifiers

Now the "Status" field is highlighted. Use the Tab key to view the
status qualifiers which may be entered. The status qualifiers are
defined as follows.

 Qualifier Status Bits (36..47) Description

 backgrnd 0xxx xxxx xxxxB Background cycle
 brelease x111 xxxx xxxxB Bus release cycle
 byte x110 xxxx xx1xB Byte access
 cpu x110 xx1x xxxxB CPU cycle
 data x110 xxxx x1xxB Data access
 dtc x110 xx0x xxxxB Data transfer controller cycle
 exec x101 xxxx xxxxB Instruction execution cycle
 fetch x110 xx1x x001B Program fetch cycle
 foregrnd 1xxx xxxx xxxxB Foreground cycle
 grd x110 0xx1 xxxxB Guarded memory access
 intack x011 xxxx xxxxB Interrupt acknowledge cycle
 io x110 xxx0 xxxxB Internal I/O access
 memory x110 xxx1 xxxxB Memory access
 read x110 xxxx xxx1B Read cycle
 word x110 xxxx xx0xB Word access
 write x110 xxxx xxx0B Write cycle
 wrrom x110 x0x1 xxx0B Write to ROM cycle

Select the read status and press Enter. Figure 2-6 and 2-7 show the
resulting analysis specification. To save the new specification, use
End Enter to exit the field in the lower right corner. You’ll return to
the trace specification. Press End to move to the trriger spec field.
Press Enter to exit the trace specification.

Getting Started 2-51

Figure 2-6. Modifying the Trace Specification

Figure 2-7. Modifying the Pattern Specification

2-52 Getting Started

Starting the Trace To start the trace, select:

Analysis, Begin
A message on the status line will show you that the trace is running.
You do not expect the trigger to be found because no commands have
been entered. Modify the command input byte to "B" by selecting:

Memory, Modify, Byte
Enter "Cmd_Input=42". The status line now shows that the trace is
complete.

Displaying the Trace To display the trace, select:

Analysis, Display
You are now given two fields in which to specify the states to display.
Use the right arrow key to move the cursor to the "Ending state to
display" field. Type "60" into the ending state field, press Enter, and
use <CTRL>z to zoom the trace window.

Note If you choose to dump a complete trace into the trace buffer, it will
take a few minutes to display the trace.

Use the Home key to get the top of the trace. The resulting trace is
similar to the trace shown in the following display.

Getting Started 2-53

Line 0 in the trace list above shows the state which triggered the
analyzer. The trigger state is always on line 0. The other states show
the exit from the Scan loop and the Exe_Cmd instructions.

To list the next lines of the trace, press the PgDn or Next key.

2-54 Getting Started

The resulting display shows the Cmd_B instructions and the branch to
Write_Msg and the beginning of the instructions which move the
"THIS IS MESSAGE B" message to the destination locations.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the PC Interface, refer to the HP 64700 Emulators PC Interface:
Analyzer User’s Guide.

Using a Command
File

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that modifies configuration, maps
memory and loads program into memory for the sample program. To
create such a command file:

System, Log, I nput, Enable
Enter command file name "cmd_rds.cmd", and press Enter. This sets
up a file to record all commands you execute. The commands will be
logged to the file cmd_rds.cmd in the current directory. You can then
use this file as a command file to execute these commands
automatically.

First, to set up the reset value for the stack pointer:

Config, General
Use the arrow keys to move the cursor to the "Reset value for Stack
Pointer" field, type 0fc80, and press End and Enter.

To map the memory:

Config, Map, Memory
Map 1000 hex through 1fff hex to erom and fc00 hex through fcff hex
to eram. (As shown in Figure 2-5.)

To load the program into memory:

Memory, Load
Enter file format, memory type, and absolute file name, and press
Enter.

Now we’re finished logging commands to the file. To disable logging:

Getting Started 2-55

System, Log, I nput, Disable
The command file cmd_rds.cmd will no longer accept command input.

Let’s execute the command file "cmd_rds.cmd".

System, Command_file
Enter "cmd_rds.cmd", press Enter. As you can see, the sequence of
commands you entered is automatically executed.

Resetting the
Emulator

To reset the emulator, select:

Processor, Reset, Hold
The emulator is held in a reset state (suspended) until a "Processor
Break", "Processor Go", or "Processor Step" command is entered. A
CMB execute signal will also cause the emulator to run if reset.

You can also specify that the emulator begin executing in the monitor
after reset instead of remaining in the suspended state. To do this,
select:

Processor, Reset, Monitor

2-56 Getting Started

Exiting the PC
Interface

There are two different ways to exit the PC Interface. You can exit the
PC Interface using the "locked" option which specifies that the current
configuration will be present next time you start up the PC Interface.
You can select this option as follows.

System, Exit, Locked
Symbols are lost when you use the "System Exit Locked" command;
however, you can reload them (after you reenter the PC Interface) with
the "System Symbols Global Load" command.

The other way to execute the PC Interface is with the "unlocked"
option which specifies that the default configuration will be present the
next time you start up the PC Interface. You can select this option with
the following command.

System, Exit, Unlocked

Getting Started 2-57

Notes

2-58 Getting Started

3

In-Circuit Emulation

Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

We will cover the first topic in this chapter. For complete details on
in-circuit emulation configuration, refer to the "Configuring the
Emulator" chapter.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the HP
64700 Emulators: System Overview manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation 3-59

Installing the
Target System
Probe

The emulator probe has a PLCC connector. The emulator is shipped
with a pin guard over the target system probe. This guard is designed
to prevent impact damage to the pins and should be left in place while
you are not using the emulator.

Caution DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT
IF THESE PRECAUTIONS ARE NOT OBSERVED. The
following precautions should be taken while using the H8/536 emulator.

Power Down Target System. Turn off power to the user target
system and to the H8/536 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The H8/536 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the H8/536 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

3-60 In-Circuit Emulation

Installing into a
PLCC Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

1. Remove the H8/536 microprocessor from the target system
socket (PLCC socket). Note the location of pin 1 on the
processor and on the target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic foam).

3. Install the target system probe into the target system
microprocessor socket.

Figure 3-8. Installing into a PLCC type socket

In-Circuit Emulation 3-61

Note To make sure the contact between emulator probe and target system
microprocessor socket, we recommend that you use

ITT CANNON "LCS-84" series 84 pin PLCC socket.

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system /RES line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to /RES signal by the
target system (see the "Enable /RES input from Target" configuration
in Chapter 4 of this manual).

To specify a run from reset state, select:

Processor, Go, Reset
The status now shows that the emulator is "Awaiting target reset".

After the target system is reset, the status line message will change to
show the appropriate emulator status.

3-62 In-Circuit Emulation

4

Configuring the Emulator

Introduction The H8/536 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used in place of, or along with, target
system memory. You can use the emulator’s internal clock or the
target system clock. You can execute target programs in real-time or
allow emulator execution to be diverted into the monitor when
commands request access of target system resources (target system
memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the H8/536 emulator.

This chapter will:

Show you how to access the emulator configuration options.

Describe the emulator configuration options.

Show you how to save a particular emulator configuration,
and load it again at a later time.

Configuring the Emulator 4-1

Accessing the
Emulator
Configuration
Options

To enter the general configuration menu, Select:

Config, General
The general configuration menu appers as follows:

When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Note It is possible to use the System Terminal window to modify the
emulator configuration. However, if you do this, some PC Interface
features may no longer work properly. We recommend that you only
modify the emulator configuration by using the options presented in
the PC Interface.

Figure 4-9. H8/536 General Emulator Configuration

4-2 Configuring the Emulator

Internal Emulator
Clock?

This configuration question allows you to select the emulator’s clock
source; you can choose either the internal clock source or the target
system clock source. The default emulator configuration selects the
internal clock.

yes Selects the internal clock oscillator as the emulator
clock source. The emulators’ internal clock speed
is 10 MHz (system clock).

no Selects the clock input to the emulator probe from
the target system. You must use a clock input
conforming to the specifications for the H8/536
microprocessor.

You should always select the external clock option when using the
emulator in-circuit to ensure that the emulator is properly synchronized
with your target system.

Note Changing the clock source drives the emulator into the reset state.

Enable Real-Time
Mode?

If it is important that the emulator execute target system programs in
real-time, you can enable the real-time emulator mode. In other words,
when you execute target programs (with the "Processor, Go"
command), the emulator will execute in real-time.

Configuring the Emulator 4-3

No The default emulator configuration disables the
real-time mode. When the emulator is executing
the target program, you are allowed to enter
emulation commands that require access to target
system resources (display/modify: registers or
target system memory). If one of these commands
is entered, the system controller will temporarily
break emulator execution into the monitor.

Yes If your target system program requires real-time
execution, you should enable the real-time mode in
order to prevent temporary breaks that might cause
target system problems.

Commands Not Allowed when Real-Time Mode is Enabled

When emulator execution is restricted to real-time and the emulator is
running user code, the system refuses all commands that require access
to processor registers or target system memory. The following
commands are not allowed when runs are restricted to real-time:

Register display/modification.

Target system memory display/modification.

Internal I/O registers display/modification.

If the real-time mode is enabled, these resources can only be displayed
or modified while running in the monitor.

Breaking out of Real-Time Execution

The only commands which are allowed to break real-time execution
are:

Processor, Reset
Processor, Go
Processor, Break
Processor, Step

4-4 Configuring the Emulator

Enable Breaks on
Writes to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Note The wrrom analysis specification status option allows you to use
"write to ROM" cycles as trigger and storage qualifiers.

Configuring the Emulator 4-5

Enable Software
Breakpoints?

When you define or enable a software breakpoint to a specified
address, the emulator will replace the opcode with one of H8/536
undefined opcode (1B hex) as breakpoint interrupt instruction. When
the emulator detects the breakpoint interrupt instruction (1B hex), user
program breaks to the monitor, and the original opcode will be
replaced at the software breakpoint address. A subsequent run or step
command will execute from this address.

Refer to the "Getting Started" for information on using software
breakpoints.

No The software breakpoints feature is disabled. This
is specified by the default emulator configuration,
so you must change this configuration item before
you can use software breakpoints.

Yes The software breakpoints feature is enabled. The
emulator detects the breakpoint interrupt instruction
(1B hex), it generates a break to background
request which as with the "processor break"
command. Since the system controller knows the
locations of defined software breakpoints, it can
determine whether the breakpoint interrupt
instruction (1B hex) is a software breakpoint or
opcode in your target program.

When you define (add) a breakpoint, software breakpoints are
automatically enabled.

4-6 Configuring the Emulator

Enable CMB
Interaction?

Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators which communicate over
the Coordinated Measurement Bus (CMB).

Multiple emulator start/stop is one type of coordinated measurement.
The CMB signals READY and /EXECUTE are used to perform
multiple emulator start/stop.

This configuration item allows you to enable/disable interaction over
the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

No The emulator ignores the /EXECUTE and READY
lines, and the READY line is not driven.

Yes Multiple emulator start/stop is enabled. If the

 P rocessor, CMB, Go, ...
command is entered, the emulator will start
executing code when a pulse on the /EXECUTE
line is received. The READY line is driven false
while the emulator is running in the monitor; it goes
true whenever execution switches to the user
program.

Note CMB interaction will also be enabled when the

 Processor, CMB, Execute

command is entered.

Configuring the Emulator 4-7

Enable Bus
Arbitration?

The bus arbitration configuration question defines how your emulator
responds to bus request signals from the target system during
foreground operation. The /BREQ signal from the target system is
always ignored when the emulator is running the background monitor.

yes When bus arbitration is enabled, the /BREQ (bus
request) signal from the target system is responded
to exactly as it would be if only the emulation
processor was present without an emulator. In
other words, if the emulation processor receives a
/BREQ from the target system, it will respond by
asserting /BACK and will set the various processor
lines to tri-state. /BREQ is then released by the
target; /BACK is negated by the processor, and the
emulation processor restarts execution.

Note DMA (direct memory access) devices is prohibited from accessing to
emulation memory.

no When you disable bus arbitration, the emulator
ignores the /BREQ signal from the target system.
The emulation processor will never drive the
/BACK line true; nor will it place the address, data
and control signals into the tri-state mode.

Enabling and disabling bus master arbitration can be useful to you in
isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code. You
can disable bus arbitration to check and see if faulty arbitration
circuitry in your target system is contributing to the problem.

4-8 Configuring the Emulator

Drive Background
Cycles to Target?

This question allows you specify whether or not the emulator will drive
the target system bus on background cycles.
If you have selected to use a foreground monitor, emulator foreground
monitor cycles will appear at the target interface exactly as if they were
bus cycles caused by any target system program.

yes Specifies that background cycles are driven to the
target system. Emulation processor’s address and
control strobes (except /WR) are driven during
background cycles. Background write cycles won’t
appear to the target system.

no Background monitor cycles are not driven to the
target system. When you select this option, the
emulator will appear to the target system as if it is
between bus cycles while it is operating in the
background monitor.

Note Changing this configuration drives the emulator into the reset state.

Configuring the Emulator 4-9

Enable NMI Input
from Target?

This configuration allows you to specify whether or not the emulator
responds to NMI(non-maskable interrupt request) signal from the target
system during foreground operation.

yes The emulator will respond to the NMI request from
the target system.

no The emulator will not respond to the NMI request
from the target system.

If you are using the background monitor, the emulator does not accept
any interrupt during background execution. All edge-sensed interrupts
(include NMI) are latched last one during in background, and such
interrupts will occur when context is changed to foreground. All
level-sensed interrupts and internal interrupts are ignored during in
background operation.

Note Changing this configuration drives the emulator into the reset state.

4-10 Configuring the Emulator

Enable /RES Input
from Target?

This configuration allows you to specify whether or not the emulator
responds to /RES and /STBY signals by the target system during
foreground operation.

While running the background monitor, the emulator ignores /RES and
/STBY signals except that the emulator’s status is "Awaiting target
reset".

yes The emulator will respond to /RES and /STBY
input during foreground operation.

no The emulator will not respond to /RES and /STBY
input from the target system.

Note Changing this configuration drives the emulator into the reset state.

Note If you specify that the emulator will drive the /RES signal to the target
system during emulation reset or by the overflow of Watch Dog Timer,
the emulator should be configured to respond to the /RES input to the
target system.

Configuring the Emulator 4-11

Drive Emulation
Reset to Target?

This configuration allows you to select whether or not the emulator
will drive the /RES signal to the target system during emulation reset.

 no Specifies that the emulator will not drive the /RES
signal during emulation reset.

yes The emulator will drive an active level on the /RES
signal to the target system during emulation reset.

This configuration option is meaningful only when the emulator is
configured to respond to the /RES input to the target system
Refer to the "Enable /RES Input from Target?" configuration in this
chapter.

Trace Bus
Release Cycles?

You can direct the emulator to send bus release cycle data to emulation
analyzer or not to send it.

yes When you enable tracing bus release cycles, bus
release cycles will appear as one analysis trace line.

no Bus release cycles will not appear on analysis trace
list (display).

4-12 Configuring the Emulator

Processor type The configuration allows you to select processor to be emulated.

536 When you are going to emulate H8/536
microprocessor, select this item.

534 When you are going to emulate H8/534
microprocessor, select this item.

Note Changing this configuration drives the emulator into the reset state.

Processor
Operation Mode

This configuration defines operation mode in which the emulator
works.

ext The emulator will work using the mode setting by
the target system. The target system must supply
appropriate input to MD0, MD1 and MD2. If you
are using the emulator out of circuit when
"external" is selected, the emulator will operate in
mode 7.

<mode_num> When <mode_num> is selected, the emulator will
operate in selected mode regardless of the mode
setting by the target system.

Valid <mode_num> are following:

<mode_num> Description

1 The emulator will operate in mode 1.
(expanded minimum mode)

Configuring the Emulator 4-13

2 The emulator will operate in mode 2.
(expanded minimum mode with internal ROM)

3 The emulator will operate in mode 3.
(expanded maximum mode)

4 The emulator will operate in mode 4.
(expanded maximum mode with internal ROM)

7 The emulator will operate in mode 7.
(single chip mode)

Note Changing this configuration drives the emulator into the reset state.

Monitor Type

bg Specify monitor type as background monitor.
When you select background monitor,
configuration question of foreground monitor
address have no effect to emulator’s operation.

fg Specify monitor type as foreground monitor.
When you select foreground monitor, you must
specify correct foreground monitor start address
with next configuration question (foreground
monitor address). After you completed the
configuration setting, you need to load foreground
monitor program to the emulator with "Memory
Load" feature. The foreground monitor program
must already assembled and linked with appropriate
monitor start address specification.

4-14 Configuring the Emulator

To use the foreground monitor, follow below steps.

1. Decide which location the foreground monitor should be
loaded.

2. Assemble and link the foreground monitor program along with
the location you decided.

3. Configure the emulator as described in this chapter. (monitor
type selection and monitor location).

4. Load the foreground monitor program into memory by
"Memory Load" feature.

Note Changing this configuration drives the emulator into the reset state.

Foreground
Monitor Address

You must specify foreground monitor start address when you select
"fg" by above configuration question "Monitor type". This address
specification must be same with the address specification when you
assemble the foreground monitor program.

The address must be specified in a 20-bit hexadecimal address, and
must be located on a 2K byte boundary other than 0 hex.

Configuring the Emulator 4-15

Reset Value for
Stack Pointer?

This question allows you to specify the value to which the stack pointer
(SP) and the stack page register (TP) will be set on entrance to the
emulation monitor initiated RESET state (the "Emulation reset" status).

The address specified in response to this question must be a 20-bit
hexadecimal even address.

You cannot set this address at the following location.

Odd address
Internal I/O register address

When you are using the foreground monitor, this address should be
defined in an emulation or target system RAM area which is not used
by user program.

Note We recommend that you use this method of configuring the stack
pointer and the stack page register. Without a stack pointer and a stack
page register, the emulator is unable to make the transition to the run
state, step, or perform many other emulation functions. However,
using this option does not preclude you from changing the stack
pointer value or location within your program; it just sets the initial
conditions to allow a run to begin.

4-16 Configuring the Emulator

Storing an
Emulator
Configuration

The PC Interface lets you store a particular emulator configuration so
that it may be re-loaded later. The following information is saved in
the emulator configuration.

Emulator configuration items.
Memory map.
Break conditions.
Trigger configuration.
Window specifications.

To store the current emulator configuration, select:

Config, Store
Enter the name of file to which the emulator configuration will be
saved.

Loading an
Emulator
Configuration

If you have previously stored an emulator configuration and wish to
re-load it into the emulator, select:

Config, Load
Enter the configuration file name and press Enter. The emulator will
be re-configured with the values specified in the configuration file.

Configuring the Emulator 4-17

Notes

4-18 Configuring the Emulator

5

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to load code into the
emulator, how to modify memory and view a register, and how to
perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter shows you how to:

Making Coordinated Measurements.

Store the contents of memory into absolute files.

This chapter also discusses:

Display or Modify registers.

Using the Emulator 5-1

Making
Coordinated
Measurements

Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators which communicate over
the Coordinated Measurement Bus (CMB). Coordinated
measurements can also be made between an emulator and some other
instrument connected to the BNC connector.

This section will describe coordinated measurements made from the
PC Interface which involve the emulator. These types of coordinated
measurements are:

Running the emulator on reception of the CMB /EXECUTE
signal.

Using the analyzer trigger to break emulator execution into
the monitor.

Note You must use the background emulation monitor to perform
coordinated measurements.

Three signal lines on the CMB are active and serve the following
functions when enabled:

/TRIGGER Active low. The analyzer trigger line on the CMB
and on the BNC serve the same logical purpose.
They provide a means for the analyzer to drive its
trigger signal out of the system or for external
trigger signals to arm the analyzer or break the
emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When CMB run
control interaction is enabled, all emulators are
required to break to background upon reception of a
false READY signal and will not return to
foreground until this line is known to be in a true
state.

5-2 Using the Emulator

/EXECUTE Active low. This line serves as a global interrupt
signal. Upon reception of an enabled /EXECUTE
signal, each emulator is to interrupt whatever it is
doing and execute a previously defined process,
typically, run the emulator or start a trace
measurement.

Running the
Emulator at
/EXECUTE

Before you can specify that the emulator run upon receipt of the
/EXECUTE signal, you must enable CMB interaction. To do this,
select:

Config, General

Use the arrow keys to move the cursor to the "Enable CMB
Interaction? [n]" question, and type "y". Use the Enter key to exit out
of the lower right-hand field in the configuration display.

To specify that the emulator begin executing a program upon reception
of the /EXECUTE signal, select:

Processor, CMB, Go

At this point you may either select the current program counter, or you
may select a specific address.

The command you enter is saved and is executed when the /EXECUTE
signal becomes active. Also, you will see the message "ALERT: CMB
execute; run started".

Breaking on the
Analyzer Trigger

To cause emulator execution to break into the monitor when the
analyzer trigger condition is found, you must modify the trigger
configuration. To access the trigger configuration, select:

Config, Trigger

The trigger configuration display contains two diagrams, one for each
of the internal TRIG1 and TRIG2 signals.

Using the Emulator 5-3

To use the internal TRIG1 signal to connect the analyzer trigger to the
emulator break line, move the cursor to the highlighted "Analyzer"
field in the TRIG1 portion of the display, and use the Tab key to select
the "----->>" arrow which shows that the analyzer is driving TRIG1.
Next, move the cursor to the highlighted "Emulator" field and use the
Tab key to select the arrow pointing towards the emulator (<<-----);
this specifies that emulator execution will break into the monitor when
the TRIG1 signal is driven. The trigger configuration display is shown
in figure 5-1.

Note If your emulator is configured with external analyzer, "Timing" cross
trigger options are displayed.

Figure 5-1. Cross Trigger Configuration

5-4 Using the Emulator

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

Memory, Store

Note The first character of the absolute file name must be a letter. You can
name the absolute file with a total of 8 alphanumeric characters, and
optionally, you can include an extension of up to 3 alphanumeric
characters.

Caution The "Memory Store" command writes over an existing file if it has the
same name that is specified with the command. You may wish to
verify beforehand that the specified filename does not already exist.

Accessing Target
System with E
clock synchronous
instruction

You can access target system devices in synchronization with the E
clock. To do this, use the following commands:

Processor, I O, Display
Processor, I O, Modify

The emulator will access the device using the MOVFPE/MOVTPE
instruction.

Using the Emulator 5-5

Register Names
and Classes

The following register names and classes may be used with "Register
Display/Modify" commands.

Summary H8/536 register designators. All available register class names and
register names are listed below.

* (Basic) Class

Register name Description

pc
cp
sr
dp
ep
tp
br
r0
r1
r2
r3
r4
r5
r6
r7
r7
fp
sp
mdcr

Program counter
Code page register
Status register
Data page register
Extended page register
Stack page register
Base register
Register R0
Register R1
Register R2
Register R3
Register R4
Register R5
Register R6
Register R6
Register R7
Frame pointer
Stack pointer
Mode control register

5-6 Using the Emulator

sys Class System control registers

Register name Description

wcr
ramcr
mdcr
sbycr

Wait control register
RAM control register
Mode control register
Software stand-by control register

intc Class Interrupt control registers

ipra
iprab
iprc
iprd
ipre
iprf

Interrupt priority register A
Interrupt priority register B
Interrupt priority register C
Interrupt priority register D
Interrupt priority register E
Interrupt priority register F

dtc Class Data transfer controller registers

dtea
dteb
dtec
dted
dtee
dtef

DT enable register A
DT enable register B
DT enable register C
DT enable register D
DT enable register E
DT enable register F

Using the Emulator 5-7

port Class I/O port registers

Register name Description

p1ddr
p2ddr
p3ddr
p4ddr
p5ddr
p6ddr
p7ddr
p9ddr
p1dr
p2dr
p3dr
p4dr
p5dr
p6dr
p7dr
p8dr
p9dr
p1cr
p69cr

Port 1 data direction register
Port 2 data direction register
Port 3 data direction register
Port 4 data direction register
Port 5 data direction register
Port 6 data direction register
Port 7 data direction register
Port 9 data direction register
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register
Port 8 data register
Port 9 data register
Port 1 control register
Port 69 control register

frt1 Class Free running timer 1 registers

frtcr1
frtcsr1
frc1
ocra1
ocrb1
icr1

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

5-8 Using the Emulator

frt2 Class Free running timer 2 registers

Register name Description

frtcr2
frtcsr2
frc2
ocra2
ocrb2
icr2

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

frt3 Class Free running timer 3 registers

frtcr3
frtcsr3
frc3
ocra3
ocrb3
icr3

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

tmr Class Timer registers

tcr
tcsr
tcora
tcorb
tcnt

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

pwm1 Class PWM timer1 registers

pwmtcr1
dtr1
pwmtcnt1

Timer control register
Duty register
Timer counter

Using the Emulator 5-9

pwm2 Class PWM timer2 registers

Register name Description

pwmtcr2
dtr2
pwmtcnt2

Timer control register
Duty register
Timer counter

pwm3 Class PWM timer3 registers

pwmtcr3
dtr3
pwmtcnt3

Timer control register
Duty register
Timer counter

wdt Class Watchdog timer registers

wdtcsr
wdtcnt
rstcsr

Timer control/status register
Timer counter
Reset control/status register

sci1 Class Serial communication interface 1 registers.

rdr1
tdr1
smr1
scr1
ssr1
brr1

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

5-10 Using the Emulator

sci2 Class Serial communication interface 2 registers.

Register name Description

rdr2
tdr2
smr2
scr2
ssr2
brr2

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

adc Class A/D converter registers

Register name Description

addra
addrb
addrc
addrd
adcsr
adcr

A/D data register A
A/D data register B
A/D data register D
A/D data register D
A/D control/status register
A/D control register

Using the Emulator 5-11

Notes

5-12 Using the Emulator

A

File Format Readers

Using the HP 64000
Reader

An HP 64000 “reader” is provided with the PC Interface. The
HP 64000 Reader converts the files into two files that are usable with
your emulator. This means that you can use available language tools to
create HP 64000 absolute files, then load those files into the emulator
using the PC Interface.

The HP 64000 Reader can operate from within the PC Interface or as a
separate process. When operating the HP 64000 Reader, it may be
necessary to execute it as a separate process if there is not enough
memory on your personal computer to operate the PC Interface and HP
64000 Reader simultaneously. You can also operate the reader as part
of a “make file.”

What the Reader
Accomplishes

Using the HP 64000 files (<file.X>, <file.L>, <scr1.A>, <scr2.A>, ...)
the HP 64000 Reader will produce two new files, an “absolute” file and
an ASCII symbol file, that will be used by the PC Interface. These new
files are named: “<file>.hpa” and “<file>.hps.”

The Absolute File

During execution of the HP 64000 Reader, an absolute file (<file>.hpa)
is created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the HP 64000 Reader
contains global symbols, module names, local symbols, and, when
using applicable development tools such as a “C” compiler, program

File Format Readers A-1

line numbers. Local symbols evaluate to a fixed (static, not stack
relative) address.

Note You must use the required options for your specific language tools to
include symbolic (“debug”) information in the HP 64000 symbol files.
The HP 64000 Reader will only convert symbol information present in
the HP 64000 symbol files (<file.L>, <src1.A>, <src2.A>, ...).

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 address
global_symbol2 address
...
global_symbolN address
|module_name1|# 1234 address
|module_name1|local_symbol1 address
|module_name1|local_symbol2 address
...
|module_name1|local_symbolN address

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
“local_symbolX” will be replaced by “#NNNNN” where NNNNN is a
five digit decimal line number. The addresses associated with global
and local symbols are specific to the processor for which the HP 64000
files were generated.

Note When the line number symbol is displayed in the emulator, it appears
in brackets. Therefore, the symbol “MODNAME: line 345” will be
displayed as “MODNAME:[345]” in mnemonic memory and trace list
displays.

A-2 File Format Readers

The space preceding module names is required. Although formatted for
readability here, a single tab separates symbol and address.

The local symbols are scoped. This means that to access a variable
named “count” in a source file module named “main.c,” you would
enter “main.c:count” as shown below.

Module Name Variable Name You Enter:

main.c count main.c:count

main.c line number 23 main.c: line 23

You access line number symbols by entering the following on one line
in the order shown:

module name
colon (:)
space
the word “line”
space
the decimal line number

For example:

main.c: line 23

Location of the
HP 64000 Reader

Program

The HP 64000 Reader is located in the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the HP 64000 Reader and PC Interface
to operate properly. The PATH is usually defined in the
“\autoexec.bat” file.

The following examples assume that you have “\hp64000\bin”
included in your PATH variable. If not, you must supply the
directory name when executing the Reader program.

File Format Readers A-3

Using the Reader
from MS-DOS

The command name for the HP 64000 Reader is RHP64000.EXE. To
execute the Reader from the command line, for example, enter:

RHP64000 [-q] <filename>

-q This option specifies the “quiet” mode, and
suppresses the display of messages.

<filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be loaded.

The following command will create the files “TESTPROG.HPA” and
“TESTPROG.HPS”

RHP64000 TESTPROG.L

Using the Reader
from the PC Interface

The PC Interface has a file format option under the “Memory Load”
command. After you select HP64000 as the file format, the HP 64000
Reader will operate on the file you specify. After this completes
successfully, the PC Interface will accept the absolute and symbol files
produced by the Reader.

To use the Reader from the PC Interface:

1. Start up the PC Interface.

2. Select “Memory Load.” The memory load menu will appear.

3. Specify the file format as “HP64000.” This will appear as the
default file format.

4. Specify the name of an HP 64000 linker symbol file
(TESTFILE.L for example).

Using the HP 64000 file that you specify (TESTFILE.L, for example),
the PC Interface performs the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

A-4 File Format Readers

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the HP
64000 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the HP 64000 linker
symbol file creation date/time, the HP 64000 Reader recreates
them. The new absolute file, TESTFILE.HPA, is then loaded
into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date and time for
the HP 64000 linker symbol file, the HP 64000 Reader will
not recreate TESTFILE.HPA. The current absolute file,
TESTFILE.HPA, is then loaded into the emulator.

Note Date/time checking is only done within the PC Interface.

When running the HP 64000 Reader at the MS-DOS command line
prompt, the HP 64000 Reader will always update the absolute and
symbol files.

When the HP 64000 Reader operates on a file, a status message will be
displayed indicating that it is reading an HP 64000 file. When the HP
64000 Reader completes its processing, another message will be
displayed indicating the absolute file is being loaded.

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, you will
need to exit the PC Interface and execute the program at the MS-DOS
command prompt to create the files that are downloaded to the
emulator.

File Format Readers A-5

Including RHP64000
in a Make File

You may wish to incorporate the “RHP64000” process as the last step
in your “make file,” as a step in your construction process, to eliminate
the possibility of having to exit the PC Interface due to space
limitations describe above. If the files with “.HPA” and “.HPS”
extensions are not current, loading an HP 64000 file will automatically
create them.

Using the
HP 64869 Reader

A HP 64869 format "reader" is provided with the PC Interface. The
HP 64869 Reader converts a HP 64869 format file into two files that
are usable with the HP 64739 emulator. This means you can use
available language tools to create HP 64869 format absolute files, then
load those files into the emulator using the H8/536 PC Interface.

The HP 64869 Reader can operate from within the PC Interface or as a
separate process. Operation from within the PC Interface is available if
there is enough memory on your personal computer to run the PC
Interface and HP 64869 Reader simultaneously.

You can also run the reader as part of a "make file."

What the Reader
Accomplishes

Using any HP 64869 format absolute file in the form "<file>.<ext>",
the HP 64869 Reader will produce two new files, an "absolute" file and
an ASCII symbol file, that will be used by the H8/536 PC Interface.

The Absolute File

During execution of the HP 64869 Reader, an absolute file
(<file>.HPA) is created. This absolute file is a binary memory image
which is optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.HPS) produced by the HP 64869 Reader
contains global symbols, module names, local symbols, and, when
using applicable development tools like a "C" compiler, program line

A-6 File Format Readers

numbers. Local symbols evaluate to a fixed (static, not stack relative)
address.

Note You must use the required options for you specific language tools to
include symbolic ("debug") information in the HP 64869 format
absolute file.

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 address
global_symbol2 address
...
global_symbolN address
|module_name|local_symbol1 address
|module_name|local_symbol2 address
...
|module_name|local_symbolN address
|module_name|# 1234 address

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
"local_symbolX" will be replaced by "#NNNNN" where NNNNN is a
five digit decimal line number. Line numbers should appear in
ascending order in both the line number itself and its associated
address.

Note When the line number symbol is displayed in the emulator, it appears
as a bracketed number. Therefore, the symbol "modname:# 345" will
be displayed as "modname:[345]" in mnemonic memory and trace list
displays

File Format Readers A-7

The space preceding module names is required. Although formatted
for readability here, a single tab separates symbol and address.

The local symbols are scoped. When accessing the variable named
"count" in the source file module named "main.c", you would enter
"main:count". Notice that the module name of the source file "main.c"
is "main". see the following table.

Module Name Variable Name You Enter:

main count main:count

main line number 23 main: line 23

Location of the
HP 64869 Reader

Program

The HP 64869 Reader is located in the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the HP 64869 Reader and PC Interface
to operate properly. This is usually defined in "\autoexec.bat" file.

Using the HP 64869
Reader from MS-DOS

The command name for the HP 64869 Reader is RD64869.EXE. You
can execute the HP 64869 Reader from the command line with the
command:

C:\HP64700\BIN\RD64869 [-q] <filename>
<RETURN>

where:

[-q] specifies the "quiet" mode. This option suppresses
the display of messages.

<filename> is the name of the file containing the HP 64869
format absolute program.

The command

C:\HP64700\BIN\RD64869 TESTPROG.ABS

will therefore create the files "TESTPROG.HPA" and
"TESTPROG.HPS".

A-8 File Format Readers

Using the HP 64869
Reader from the PC

Interface

The H8/536 PC Interface has a file format option under the "Memory,
Load" command. After you select this option, the HP 64869 Reader
will operate on the file you specify. After this completes successfully,
the H8/536 PC Interface will accept the absolute and symbol files
produced by the Reader.

To use the Reader from the PC Interface, follow these steps:

1. Start up the H8/536 PC Interface.

2. Select "Memory, Load". The memory load menu will appear.

3. Specify the file format as "HP64869". This will appear as the
default file format.

4. Specify a file in HP 64869 format ("TESTFILE.ABS", for
example,). The file extension can be something other than
".ABS", but cannot be ".HPA", ".HPT", or ".HPS".

Note The "<filename>.HPT" file is a temporary file used by the HP 64869
Reader to process the symbols.

Using the HP 64869 format file that you specify (TESTFILE.ABS, for
example), the PC Interface performs the following:

Checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the HP
64869 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the HP 64869 format
file creation date/time, the HP 64869 Reader recreates them.
The new absolute file, TESTFILE.HPA, is then loaded into
the emulator.

File Format Readers A-9

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date/time for the HP
64869 format file, the current absolute file, TESTFILE.HPA,
is then loaded into the emulator.

Note Date/time checking is only done within the PC Interface. When
running the HP 64869 Reader at the MS-DOS command line prompt,
the HP 64869 Reader will always update the absolute and symbol files.

When the HP 64869 Reader operates on a file, a status message will be
displayed indicating that it is reading a HP 64869 format file. When
the HP 64869 Reader completes its processing, another message will
be displayed indicating the absolute file is being loaded.

If the Reader Won’t
Run

If your program is very large, then the PC Interface may run out of
memory while attempting to create the database file used. If this
condition occurs, you will need to exit the PC Interface and execute the
program at the command prompt to create the files that are downloaded
to the emulator.

Including RD64869 in
a Make File

You may wish to incorporate the "RD64869" process as the last step in
your "make" file, or as a step in your construction process, so as to
eliminate the possibility of having to exit the PC Interface due to space
limitations describe above. If the "-.HPA" and "-.HPS" files are not
current, the process of loading an HP 64869 format file will
automatically create them.

A-10 File Format Readers

Index

! .HPA file 2-13
.HPS file 2-13

A absolute files
.HPA created by HP 64869 Reader A-6
<file>.hpa created by HP 64000 Reader A-1
loading 2-12
storing 5-5

analysis begin 2-31
analysis display 2-31
analysis specification

resetting the 2-27
saving 2-31
trigger condition 2-27
triggering by data 2-28

analyzer
status qualifiers 2-29
triggering by data 2-28
using the 2-27

ASCII symbol file (<file>.hps) A-1
ASCII symbol files

.HPS created by HP 64769 Reader A-6
assemblers 2-9
assembling the getting started sample program 2-6

B BNC connector 5-2
break command 2-20, 2-23, 2-34
break conditions 4-17
breakpoint interrupt instruction

software breakpoints 2-24
breakpoints

software 2-24
breaks 1-5

guarded memory accesses 2-9
on analyzer trigger 5-3
software breakpoints 1-5
write to ROM 4-5

Index-41

writes to ROM 2-9
bus arbitration

using configuration to isolate target problem 4-8

C cautions
filenames in the memory store command 5-5
installing the target system probe 3-2

characterization of memory 2-9
cim, Terminal Interface command 2-25
clock source

external 4-3
internal 4-3

clock source selection, emulator configuration 4-3
CMB (coordinated measurement bus) 5-2

enabling interaction 4-7
execute signal while emulator is reset 2-34
signals 5-2

command file
creating and using 2-33

commands (PC Interface), selecting 2-8
Configuration

for sample program 2-8
reset value for stack pointer 2-8

configuration (emulator)
accessing 4-2
background cycles to target 4-9
break processor on write to ROM 4-5
clock selection 4-3
enable CMB interaction 4-7
enable NMI input 4-10
enable software breakpoints 4-6
enabling real-time runs 4-3
honor target reset 4-11
loading 4-17
monitor type) 4-14
processor mode 4-13
stack pointer 4-16
storing 4-17

configuration(hardware), installing the emulator 2-2
coordinated measurements

break on analyzer trigger 5-3
definition 5-2

42-Index

multiple emulator start/stop 4-7
run at /EXECUTE 5-3

count, step command 2-20

D device table, emulator 2-7
display command

registers 5-6
displaying the trace 2-31

E E clock) 5-5
emulation memory

RAM and ROM 2-9
size of 2-9

emulator
before using 2-2
device table 2-7
DMA support 1-6, 4-8
features of 1-3
limitations 1-6
memory mapper resolution 2-9
prerequisites 2-2
purpose of 1-1
reset 2-34
running from target reset 3-4
sleep mode 1-6
software stand-by mode 1-6
status 2-8
target system 1-5
watch-dog timer 1-6

emulator configuration
bus arbitration 4-8

Emulator features
analyzer 1-5
clock speeds 1-3
emulation memory 1-4
supported microprocessors 1-3

Emulator limitations
RAM enable bit 1-6

enable real-time runs
emulator configuration 4-3

eram, memory characterization 2-9
erom, memory characterization 2-9

Index-43

EXECUTE
CMB signal 5-3
run at 5-3

executing programs 2-22
exiting the PC Interface 2-35
external clock source 4-3

F features of the emulator 1-3
file format

HP 64869 A-6
file formats

HP64000 A-4
find data in memory 2-23
foreground monitor address 4-15
function codes

memory mapping 2-9
function key macro 2-20

G getting started
prerequisites 2-2

global symbols 2-14, 2-19
grd, memory characterization 2-9
guarded memory accesses 2-9

H hardware installation 2-2
HP 64000 Reader A-1

 using with PC Interface A-4
HP 64000 Reader command (RHP64000.EXE) A-3
HP 64869 format 2-13

loading 2-13
HP 64869 Reader A-6

 using with PC Interface A-8
HP 64869 Reader command (RD64869.EXE) A-8
HP64000 file format A-4
HP64000 format 2-13
HPTABLES environment variable 2-7

I in-circuit emulation 3-1, 4-1
installation

hardware 2-2
software 2-2

installing target system probe
Seetarget system probe

44-Index

internal clock source 4-3
internal I/O register display/modify 5-6
interrupt

NMI 4-10

L limitations of the emulator 1-6
line numbers 2-32
link the sample program 2-6
linkers 2-9
load map 2-9
loading absolute files 2-12
local symbols 2-15, 2-25, A-3, A-7
location of foreground monitor 4-15
locked, PC Interface exit option 2-35
logging of commands 2-33

M macro 2-20
make file A-1, A-6
mapping memory 2-9
memory

displaying in mnemonic format 2-18
mapping 2-9
modifying 2-21
re-assignment of emulation memory blocks 2-12
searching for data 2-23

memory characterization 2-9
memory mapping

function codes 2-9
ranges, maximum 2-9

monitor type 4-14
MOVFPE instruction 5-5
MOVTPE instruction 5-5

N non-maskable interrupt 4-10
Notes

"Timing" option only with external analyzer 5-4
absolute file names for stored memory 5-5
changing clock source forces reset 4-3
CMB interaction enabled on execute command 4-7
config. option for reset stack pointer recommended 4-16
date checking only in PC Interface A-5, A-10
displaying complete traces 2-31
DMA to emulation memory not supported 4-8

Index-45

internal memory must be assigned as emulation memory 2-9
re-assignment of emul. mem. blocks by mapper 2-12
register command 2-20
setting software bkpts. while running user code 2-25
software breakpoint locations 2-24
software breakpoints and ROM code 2-25
terminal window to modify emul. config. 4-2
use required options to include symbols A-2, A-7
write to ROM analyzer status 4-5

O out-of-circuit emulation 4-1

P PC Interface
exiting the 2-35
HP 64000 Reader A-4
HP 64869 Reader A-8
selecting commands 2-8
starting the 2-7

Pin guard
target system probe 3-2

PLCC socket
 connect to the target system 3-3

predefining stack pointer 4-16
prerequisites for getting started 2-2
processor operation mode 4-13
purpose of the emulator 1-1

Q qualifiers, analyzer status 2-29

R RAM, mapping emulation or target 2-9
Raw HP64000 format 2-13
reader

RD64869 A-6
READY, CMB signal 5-2
real-time execution

commands not allowed during 4-4
commands which will cause break 4-4

real-time operation 1-6
real-time runs 4-3
register display/modify 2-20
registers 1-5, 5-6
relocatable files 2-9
reset 2-34

46-Index

reset (emulator)
running from target reset 3-4

reset(emulator) 1-6
resetting the analyzer specifications 2-27
ROM

mapping emulation or target 2-9
writes to 2-9

run at /EXECUTE 5-3
run from target reset 3-4
running programs 2-22

S sample program, linking 2-6
sample programs

for getting started 2-2
saving analysis specifications 2-31
searching for data in memory 2-23
selecting PC Interface commands 2-8
simple trigger, specifying 2-27
single-step 1-5
software breakpoint

 H8/536 breakpoint interrupt instruction 4-6
software breakpoints 1-5, 2-24

clearing 2-26
defining (adding) 2-25
displaying 2-26
enabling 4-6
setting 2-26

software installation 2-2
specifications

Seeanalysis specification
stack pointer

reset value 2-8
stack pointer,defining 4-16
starting the trace 2-31
status (analyzer) qualifiers 2-29
status line 2-8
status qualifiers, H8/536/520 2-29
step 2-19

count specification 2-20
supervisor stack pointer

required for proper operation 4-16
symbols 2-14

Index-47

.HPS file format A-2, A-7
global 2-19
local 2-25, A-1, A-6

T target reset
running from 3-4

target system probe
cautions for installation 3-2
installation 3-2
installation procedure 3-3
pin guard 3-2

target system RAM and ROM 2-9
trace

analyzer signals 2-27
description of listing 2-32
displaying the 2-31
starting the 2-31

tram, memory characterization 2-9
TRIG1, TRIG2 internal signals 5-3
trigger 2-27

breaking into monitor on 5-3
specifying a simple 2-27

trigger state 2-32
TRIGGER, CMB signal 5-2
trom, memory characterization 2-9

U undefined software breakpoint 2-24
unlocked, PC Interface exit option 2-35
using the HP 64000 file reader A-1

V visible background cycles 4-9

W write to ROM break 4-5

Z zoom, window 2-14, 2-18

48-Index

