PRELIMINARY

High Current Synchronous Buck Controller

GENERAL DESCRIPTION

The M L4901 high current synchronous buck controller has been designed to provide high efficiency DC/DC conversion for next generation processors such as the Pentium ${ }^{\circledR}$ Pro from Intel ${ }^{\circledR}$.

The ML4901 controller, when combined with 2 external M O SFETs, generates output voltages between 2.1 V and 3.5 V from a 12 V supply. The output voltage is selected via an internal 4-bit DAC. O utput currents in excess of 14A can be attained at efficiencies greater than 90%.

The ML4901 can be enabled/disabled via the SHDN pin. While disabled, the output of the regulator is completely isolated from the circuit's input supply. The M L4901 employs fixed-frequency PW M control combined with a dual mode control loop to provide excellent load transient response.

FEATURES

- Designed to meet Pentium ${ }^{\circledR}$ Pro power supply requirements
- DC regulation to $\pm 1 \%$ maximum
- Proprietary circuitry provides transient response of $\pm 5 \%$ maximum over 300 mA to 14 A load range
- Programmable output voltage (2.1V to 3.5 V) is set by an onboard 4-bit DAC
- Synchronous buck topology for maximum power conversion efficiency
- Fixed frequency operation for easier system integration
- Integrated antishoot-through logic, short circuit protection, and UV lockout

■ Shutdown control provides load isolation

BLOCK DIAGRAM (Pin Configuration Shown for 16-Pin SO IC Version)

PIN CONFIGURATION

ML4901
16-Pin Narrow SOIC (S16N)

ML4901
20-Pin TSSOP (T20)

PIN DESCRIPTION (Pin Number in Parentheses is for TSSO P Version)

PIN\#	NAME	FUNCTION
1 (1)	D 0	LSB input to the DAC which sets the output voltage
2 (2)	D1	Input to the DAC which sets the output voltage
3 (3)	D2	Input to the DAC which sets the output voltage
4 (4)	D3	MSB input to the DAC which sets the output voltage
5 (6)	$\overline{\text { SHDN }}$	Grounding this pin shuts down the regulator
6 (8)	PWR GOOD	This open drain output goes low whenever SHDN goes low or when the output is not within $\pm 10 \%$ of its nominal value
7 (9)	$V_{\text {REF }}$	Bypass connection for the internal 3.5 V reference

PIN\#	NAME	FUNCTION
8 (10)	GND	Analog signal ground
9 (11)	$V_{F B}$	O utput voltage feedback pin
10 (12)	$I_{\text {SENSE }}$	Current sense input
11 (13)	COMP	Connection for the compensation network
12 (15)	PWR GND	Power ground
13 (16)	N DRV	Synchronous rectifier driver output
14 (17)	P DRV	Buck switch driver output
15 (19)	$V_{\text {DD }}$	12 V power supply input
16 (20)	PROTECT	Connection for the integrating current limit network and the UVLO monitor for the 5V supply

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
$V_{D D}$ 13.5 V

Peak Driver O utput Current $\pm 2 \mathrm{~A}$
$V_{\text {FB }}$ Voltage
$I_{\text {SEN SE }}$ Voltage
All O ther Analog Inputs \quad GND
SHDN Input Current... $100 \mu \mathrm{~A}$
Junction Temperature .. 150º C
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{J})
16-Pin Narrow SO IC
$100^{\circ} \mathrm{C} / \mathrm{W}$
20-PinTSSO P $143^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range....................................... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$V_{D D}$ Range ..11.4V to 12.6V
PROTECT (5V Supply) Range4.75V to 5.25 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{PROTECT}=\overline{\mathrm{SHDN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ perating Temperature Range (N ote 1)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
REFERENCE						
$V_{\text {REF }}$	O utput VoItage		3.51	3.535	3.56	V
	Line Regulation	$11 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<13 \mathrm{~V}$		0.5		mVN

UV LOCKOUT

	V $_{\text {DD }}$ Start-up Threshold		10.0	10.4	10.8	V
	V $_{\text {DD }}$ Hysteresis		300	450	600	mV
	PROTECT (5V) Start-up Threshold		4.25	4.4	4.55	V
	PROTECT (5V) Hysteresis		400	450	500	mV

SHUTDOWN

	Input Low Voltage				0.8
	Input High Voltage		2.0		V
	Delay to O utput			50	V

POWER GOOD COMPARATOR

	O utput Voltage in Regulation	$5 \mathrm{k} \Omega$ pull-up to 5 V	4.8			V
	O utput Voltage out of Regulation	$\mathrm{V}_{\mathrm{FB}}<90 \% \mathrm{~V}_{\mathrm{DAC}}$ or $>110 \% \mathrm{~V}_{\mathrm{DAC}}$			0.4	V
	O utput Voltage in Shutdown	$\overline{\mathrm{SHDN}}=0 \mathrm{~V}, 5 \mathrm{k} \Omega$ pull-up to 5 V			0.4	V

BUCK REGULATOR

	O scillator Frequency		160	200	230	kHz
	Duty Cycle Ratio	$\mathrm{DAC}(\mathrm{D} 3-\mathrm{DO})$ Code $=0100$, $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	80		90	$\%$
	$\mathrm{DAC}(\mathrm{D} 3-\mathrm{DO})$ Code $=0100$, $\mathrm{V}_{\mathrm{FB}}>3.193 \mathrm{~V}$			0	$\%$	
					0.8	V
	DAC (D3-D0) Input Low Voltage		2.0		V	

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

BUCK REGULATOR (continued)

	V_{FB} Threshold Voltage	DAC (D3-D0) Code $=0000$	3.500	3.535	3.570	V
		DAC (D3-D 0) Code $=0001$	3.400	3.434	3.468	V
		DAC (D3-D 0) Code $=0010$	3.300	3.333	3.366	V
		DAC (D3-D 0) Code = 0011	3.200	3.232	3.264	V
		DAC (D3-D 0) Code $=0100$	3.100	3.131	3.162	V
		DAC (D3-D0) Code $=0101$	3.000	3.03	3.060	V
		DAC (D3-D0) Code $=0110$	2.900	2.929	2.958	V
		DAC (D3-D 0) Code $=0111$	2.800	2.828	2.856	V
		DAC (D3-D0) Code $=1000$	2.700	2.727	2.754	V
		DAC (D3-D 0) Code = 1001	2.600	2.626	2.652	V
		DAC (D3-D 0) Code = 1010	2.500	2.525	2.550	V
		DAC (D3-D 0) Code = 1011	2.400	2.424	2.448	V
		DAC (D3-D 0) Code = 1100	2.299	2.323	2.347	V
		DAC (D3-D0) Code = 1101	2.198	2.222	2.246	V
		DAC (D3-D0) Code = 1110	2.097	2.121	2.145	V
		DAC (D3-D0) Code = 1111			0.8	V
	$I_{\text {SENSE }}$ Threshold Voltage		-85	-95	-105	mV
	ISENSE H ysteresis			3		mV
	PROTECT D ischarge Current	$V\left(I_{\text {SENSE }}\right)=-120 \mathrm{mV}$		35		$\mu \mathrm{A}$
	PROTECT Leakage Current			± 100		nA
	Transition Time, N DRV and P DRV	$C_{L}=5000 \mathrm{pF}, 10-90 \%$		40		ns
SUPPLY						
	$V_{\text {DD }}$ Current	$\begin{aligned} & \hline \overline{S H D N}=0 V \\ & \text { DAC (D3-D0) Code }=0000 \end{aligned}$		300	450	$\mu \mathrm{A}$
		$\overline{\mathrm{SHDN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=5 \mathrm{~V}$		1	2	mA
		$\overline{\mathrm{SHDN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$		30		mA

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions.

FUNCTIONAL DESCRIPTION

The M L4901 PW M controller permits the construction of a simple yet sophisticated power supply for Intel's Pentium ${ }^{\circledR}$ Pro microprocessor which meets the guidelines of Intel's Application Note AP-523. This can be built either as a Voltage Regulator M odule (VRM) or as dedicated motherboard circuitry. The M L4901 controls a P-channel and an N -channel M O SFET in a synchronous buck regulator circuit, to convert a 12 V input to the voltage required by the microprocessor. The output voltage can be any set to any one of 15 output voltages from 2.1 V to 3.5 V , in steps of 100 mV , as selected by an onboard DAC. O ther features which facilitate the design of DC-DC converters for any type of processor include a trimmed 1\% reference, special transient-response optimization in the feedback paths, a shutdown input, input and output power good monitors, and overcurrent protection.

4-BIT DAC

The inputs of the internal 4-bit DAC come from open collector signals provided by the Pentium Pro. These signals specify what supply voltage the microprocessor requires. The output voltage of the buck converter is compared directly with the DAC voltage to maintain regulation. D3 is the M SB input and D 0 is the LSB input of the DAC. The output voltage set by the DAC is 1% above the Pentium Pro's nominal operating voltage to counteract the effects of connector and PC trace resistance, and of the instantaneous output voltage droop which occurs when a transient load is applied. The output of the DAC therefore ranges from 2.121 V to 3.535 V in 100 mV steps. For code 1111, the P DRV output is disabled, and the output voltage is zero.

VOLTAGE FEEDBACK LOOP

The ML4901 contains two control loops to improve the load transient response. The output voltage is directly monitored via the V_{FB} pin and compared to the desired output voltage set by the internal 4-bit DAC. W hen the output voltage is within $\pm 3 \%$ of the DAC voltage, the proportional control loop (closed by the voltage error amplifier) keeps the output voltage at the correct value. If the output falls below the DAC voltage by more than 3\%, one side of the transient loop is activated, forcing the output of the ML4901 to maximum duty cycle until the output comes back within the $\pm 3 \%$ limit. If the output voltage rises above the DAC voltage by more than 3%, the other side of the transient loop is activated, and the upper M O SFET drive is disabled until the output comes back within the $\pm 3 \%$ limit. During start-up, the transient loop is disabled until the output voltage is within -3\% of the DAC voltage.

POWER GOOD (PWR GOOD)

An open drain signal is provided by the ML4901 which tells the microprocessor when the entire power system is
functioning within the expected limits. PWR GOOD will be false (low) if either the 5 V or 12 V supply is not in regulation, when the $\overline{\mathrm{SHDN}}$ pin is pulled low, or when the output is not within $\pm 10 \%$ of the nominal output voltage selected by the internal DAC.

When PWR GOOD is false, the PWR GOOD voltage window is held to $\pm 3 \%$; when PW R GOOD is true (high), the window is expanded to $\pm 10 \%$. U sing different windows for coming into and going out of regulation makes sure that PWR GOOD does not oscillate during the start-up of the microprocessor.

INTERNAL REFERENCE

The ML4901 contains a 3.535 V , temperature compensated, precision band-gap reference. The $V_{\text {REF }}$ pin is connected to the output of this reference, and should be bypassed with a 100 nF to 220 nF ceramic capacitor for proper operation.

OVERCURRENT PROTECTION

W hen the output of the buck converter sees an overcurrent condition (lout exceeds the current limit set point $I_{\text {SET }}$), the ML4901 will operate in a "hiccup" mode until the overcurrent condition has been removed.

During an overcurrent condition, a current sink within the M L4901 draws a small current ($35 \mu \mathrm{~A}$) out of the PROTECT pin for the time during which $I_{O U T}>I_{\text {SET }}$. If this current sink is activated over a number of cycles, the voltage on the PROTECT pin will drop below 4 V , signalling a sustained overcurrent or short circuit at the load. This will cause the P DRV output to turn off. The converter will remain in an off state until the capacitor attached to the PROTECT pin has charged back to 4.4 V , at which time the converter is re-enabled and tries to resume normal operation. If the fault causing the overcurrent condition has not been cleared, the overcurrent protection cycle will repeat.

UNDERVOLTAGE LOCKOUT

The M L4901 has undervoltage lockout protection circuits for both the $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}\right)$ and 5V (PROTECT) supplies. The hysteresis voltage is typically 450 mV for each supply. During an input undervoltage condition, the internal reference and voltage monitor circuits remain in operation, but P DRV and N DRV are disabled and the PWR GOOD output will be false (low).

COMPENSATION

This pin connects to the output of the transconductance amplifier which forms the gain block for the M L4901's proportional control loop. An RC network from this pin to GND is used to compensate the amplifier.

DESIGN CONSIDERATIONS

This section is a quick-check guide for getting M L4901 circuits up and running, with a special emphasis on Pentium Pro applications. All component designators refer to the circuit shown in Figure 1.

COMPENSATION

The R and C values connected to the COMP pin for loop compensation are $330 \mathrm{k} \Omega$ and 33 pF , respectively. These values yield stable operation and rapid transient response for a most values of L and $\mathrm{C}_{\text {OUT }}(1 \mu \mathrm{H}$ to $5 \mu \mathrm{H}, 1200 \mu \mathrm{~F}$ to $10,000 \mu \mathrm{~F}$), and will generally not need to be altered. If changes do need to be made, note that the drive capability of the transconductance error amplifier is typically $10 \mu \mathrm{~A}$, its $Z_{O U T}$ is $10 \mathrm{M} \Omega$, and its unity-gain frequency is approximately 10 MHz .

INPUT AND OUTPUT CAPACITORS

The input and output capacitors used in conjunction with the M L4901, especially in Pentium Pro VRM applications, must be able to meet several criteria:

1. The input capacitors must be able to handle a relatively high ripple current
2. The output capacitors must have a low Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL)
3. The output capacitors must be able to hold up the output during the time that the current through the buck inductor is slewing to meet a transient load step.

The circuit's input bypass capacitance should be able to handle a ripple current equal to $0.5 \times \mathrm{l}_{\text {LOAD }}$. If the converter sees load peaks only occasionally, and for less than 30 seconds at a time during those intervals, then aluminum electrolytic or OS -CON ${ }^{\circledR}$ input capacitors need only be sized to accommodate the average output load. N ote that tantalum input capacitors have much less thermal mass than aluminum electrolytics, so this relaxation of ripple current requirements may not apply to them.

During a 30A/ μ s load transient, it is not practical for a buck converter to slew its output current fast enough to regulate the instantaneous output voltage required by this application. During the first few microseconds following such a load step, the output capacitance of the converter must act as passive energy storage. In delivering its energy to the load, the output capacitance must not introduce any considerable impedance, or its purpose will be defeated. A total voltage aberration during load transients of $\pm 5 \%$ is allowed (see Intel AP-523). The voltage transient due to ESL and ESR is:

$$
\begin{equation*}
\Delta \mathrm{V}=\left[\left(\mathrm{ESR} \times \Delta \mathrm{l}_{\mathrm{OUT}}\right)+\left(\mathrm{ESL} \times \frac{\mathrm{di}}{\mathrm{dt}}\right)\right] \tag{1}
\end{equation*}
$$

For example, assume that a 3.3 V output has 3% of the output's $\Delta \mathrm{V}$ contributed by ESR (100 mV) and 2% by the

ESL (66 mV). To meet this requirement, the output ESR should not exceed:

$$
\begin{equation*}
\operatorname{ESR}(\mathrm{MAX})=\frac{100 \mathrm{mV}}{13.7 \mathrm{~A}}=7.3 \mathrm{~m} \Omega \tag{2}
\end{equation*}
$$

W ith the effects of ESL limited to 2% of 3.3 V , the maximum ESL is:

$$
\begin{equation*}
E S L(M A X)=\frac{1 \mu \mathrm{~s}}{30 \mathrm{~A}} \times 66 \mathrm{mV}=2.2 \mathrm{nH} \tag{3}
\end{equation*}
$$

Achieving these low a values of ESL and ESR is not trivial; doing so typically requires using several high-quality capacitors in parallel. Dedicated power and ground planes are helpful as well.

The output capacitance should have a value of $>2200 \mu \mathrm{~F}$ to hold the output voltage relatively constant ($<50 \mathrm{mV}$ of sag) until the current in the buck inductor can catch up with the change in output current. To meet the ESR and ESL requirements, the actual output capacitance will usually be significantly greater than this theoretical minimum. These capacitors can be of all one type, or a combination of aluminum electrolytic, O S-CON , and tantalum devices.

OVERCURRENT PROTECTION

Current sense resistor R1 is used to monitor the inductor current during the off period, i.e., while current is flowing through the synchronous rectifier (or Schottky diode, if no synchronous rectifier M O SFET is used). The internal current sense comparator has been designed to provide in excess of 14A of output current when used with a $6 \mathrm{~m} \Omega$ resistor. R1 must be a low inductance part such as Dale/ Vishay's type W SL-2512-.006 $\pm 1 \%$. This is a $6 \mathrm{~m} \Omega$ surface mount part rated at 1 W att. U sing a PCB trace as a current sense element is not recommended due to the high temperature coefficient of copper, and due to etching and plating tolerances which can occur from board to board.

The R and C values connected to the PROTECT pin for setting the current limit delay and the off-time of the hiccup mode are $100 \mathrm{k} \Omega$ and $1 \mu \mathrm{~F}$, respectively. These values will protect most M O SFETs from overheating during a short circuit condition. If it is necessary to change the ratio of ON and OFF times during overcurrent conditions, this can be done by selecting a different value for C13. Larger values of C13 will increase the delay between retry attempts (the length of the "hiccup").

The voltage across current sense resistor R1 must be Kelvin-sensed. This ensures that the M L4901 monitors only the voltage across this resistor and not the voltage drops or inductive transients in the PCB traces which carry current into and out of this resistor. The two pins of the ML4901 which must be Kelvin-connected to the sense resistor are $I_{\text {SEN SE }}$ and GND. There is no connection inside the ML4901 between GND and PWR GND. This is to facilitate the requisite Kelvin-sensing of the voltage across R1.

Figure 1. Pentium Pro VRM Circuit

Because of this, there must be a good electrical connection between the ML4901 PWR GND and GND pins. At the same time, PW R GND must have a low impedance connection to the ground plane used on the board, as high instantaneous currents will flow in PWR GND when N DRV L and N DRV H switch the capacitive loads of the output M O SFET gates. A layout technique which satisfies these requirements is to return PW R GND to the grounded end of R1 using a high current Kelvin connection. Figure 2 shows one successful implementation of these PCB layout requirements.
$I_{\text {SENSE }}$ is an input to a medium-speed, high-sensitivity comparator. It is often helpful to shield the trace running from R1 to I IENSE with a "guard trace" to circuit ground.

The compensation components R3 and C9 are highimpedance nodes connected to the output of the voltage loop error amplifier. These components should be kept in close proximity to the ML4901. C9 should be returned to GND, not to PWR GND or the ground plane of the PC board. It may be helpful to shield the trace running from R3 to COMP with a "guard trace" to circuit ground.

Keep the $\mathrm{V}_{\text {REF }}$ bypass capacitor C 8 close to the ML4901. Ensure that its ground connection is to GND, not PWR GND or the ground plane of the PCB.

The $V_{\text {DD }}$ bypass capacitors C 10 and C 11 should be returned to PWR GND or to the PC board ground plane. They should not be returned to GND due to high transient currents which could interfere with the current sensing function.

If a given design uses power MO SFETs in an SO-8 package style, keep in mind that their thermal dissipation capability is largely dictated by the copper area available to their drains. A good layout will maximize this area.

Figure 2. Kelvin Sense Connections

PHYSICAL DIMENSIONS inches (millimeters)

Package: T20
20-Pin TSSOP

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4901CS	$0^{\circ}{ }^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16-Pin Narrow SO IC (S16N)
ML4901CT	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$20-\mathrm{Pin}$ TSSO P (T20)

© Micro Linear 1997. ALMicro Linear is a registered trademark of Micro Linear Corporation. Pentium is a registered trademark of Intel Corporation. OS-CON is a registered trademark of Sanyo Electric Co., Ltd.

Products described herein may be covered by one or more of the following U.S. patents: $4,897,611 ; 4,964,026 ; 5,027,116 ; 5,281,862 ; 5,283,483 ; 5,418,502 ;$ $5,508,570 ; 5,510,727 ; 5,523,940 ; 5,546,017 ; 5,559,470 ; 5,565761 ; 5,592,128 ; 5,594,376$. Japan: $2,598,946 ; 2,619,299$. Other patents are pending.

Micro Linear reserves the right to make changes to any product herein to improve reliability, function or design. Micro Linear does not assume any liability arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others. The circuits contained in this data sheet are offered as possible applications only. Micro Linear makes no warranties or representations as to whether the illustrated circuits infringe any intellectual property rights of others, and will accept no responsibility or liability for use of any application herein. The customer is urged to consult San Jose, CA 95131

