
1/9

Author: G. Rascona’

December 2000

AN1328
APPLICATION NOTE

I2C COMMUNICATION PROTOCOL WRITTEN IN
FUZZYSTUDIO™4.0 FOR ST52X430

1. INTRODUCTION
In this application note we implement two routines to read/write one single byte of data at a time from/into
an EEPROM memory (in this case the ST24x04) using ST52x430 microcontroller. The protocol used to
set up this communication link is the well-known I2C (Inter Integrated Circuit), in which the master is al-
ways the micro, while the memory is always the slave.
The procedures can be used with all the ST52 micros and with all the memories compatible with the one
we used for this application. Eventually, some changes have to be done on the software to match different
device characteristics, but due to the program structure flexibility, these are very easy to perform.
The routines were created with FUZZYSTUDIOTM4.0 and are easy to be read and structured for future
extensions and improvements. Moreover, with some care, they can be imported directly in any user pro-
gram written with FUZZYSTUDIOTM4.0 and ready to be used to build up the communication link.

2. THE ST24X04 EEPROM MEMORY
2.1 Functional Description
The ST24x04 is a 4Kbit Electrically Erasable Programmable Memory (EEPROM), organized as 2 blocks
of 256 x8 bits. These devices are compatible with the I2C standard two-wire serial interface, which uses
a bi-directional data bus and serial clock. The memories carry a built-in 4 bit, unique device configuration
identification code (1010) corresponding to the I2C bus definition. This is used together with 2 chip enable
inputs (E1, E2) so that up to 4 x4K devices may be attached to the I2C bus and selected individually. The
memories behave as a slave device in the I2C protocol with all memory operations synchronized by the
serial clock. Read and write operations are initiated by a START condition generated by the bus master.
The START condition is followed by a stream of 7 bits (identification code 1010) plus one read/write bit
and terminated by an acknowledge bit. When writing data to the memory it responds to the 8 bits received
by asserting an acknowledge bit during the 9th bit time. When the data is read by the bus master, it ac-
knowledges the receipt of the data bytes in the same way. Data transfers are terminated with a STOP con-
dition.
In Figure 1 the memory logic diagram is shown. Note that in our application note some functionalities of
the memory are not implemented and, then, some pins are of not concern. For major details refer to the
memory datasheet.

Figure 1. Logic Diagram

Note:WC signal is only available for ST24/25W04 products

ST24x04
ST25x04

SDA

VCC

E1-E2

PRE

SCL

MODE/WCMODE/WC

VSS

AN1328 - APPLICATION NOTE

2/9

2.2 Signal Description
As it was said previously, this application note implements the more simple way to set up a communication
between the micro and an EEPROM, letting to the final user an eventual extension of all other functional-
ities this type of memories allow. Below, you will find a brief description of all the signals used in our im-
plementation with no reference to the different modes to write and protect the memory.

Serial Clock (SCL). The SCL input pin is used to synchronize all data in and out of the memory. A resis-
tor can be connected from the SCL line to Vcc acting as a pull up (see Figure 2).

Figure 2. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus

Serial Data (SDA). The SDA pin is bi-directional and is used to transfer data in or out of memory. It is an
open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A
resistor must be connected from the SDA bus line to Vcc to act as pull up (see Figure 2).

Chip Enable (E1 - E2). This chip enable inputs are used to set the 2 least significant bits (b2,b3) of the
7-bit device select code. These inputs may be driven dynamically or tied to Vcc or Vss to establish the
device select code. With these two pins, up to 4 memory chips, sharing the same bus, can be addressed.

3. I2C BUS BACKGROUND
ST24x04 supports the I2C protocol. This protocol defines any device that sends data onto the bus as a
transmitter and any device that reads the data as a receiver. The device that controls the data transfer is
known as the master and the other as the slave. In our case the master will be the microcontroller and it
will always initiate a data transfer and will provide the serial clock for synchronization. The memories are
always slave devices in all communications.

Start condition
START is identified by a high to low transition of the SDA line while the clock SCL is stable in the high
state. A START condition must precede any command for data transfer.

Stop condition
STOP is identified by a low to high transition of the SDA line while the clock SCL is stable in the high state.
A STOP condition terminates communication between the memory and the bus master. A STOP condition
at the end of a READ command, after and only after a NO ACKNOWLEDGE, forces the standby state. A
STOP condition at the end of a WRITE command triggers the internal EEPROM write cycle. Figure 3
shows the bus and clock sequences for START and STOP commands.

3/9

AN1328 - APPLICATION NOTE

Figure 3. Bus Timing START/STOP

Acknowledge bit (ACK)
An acknowledge signal is used to indicate a successful data transfer. The bus transmitter, either master
or slave, will release the SDA bus after sending 8 bits of data. During the 9th clock pulse period the re-
ceiver pulls the SDA bus low to acknowledge the receipt of the 8 bits of data.

Data Input
During data input the memory samples the SDA bus signal on the rising edge of the clock SCL. Note
that, for correct device operation, the SDA signal must be stable during the clock low to high transition and
the data must change only when the SCL line is low.

Memory Addressing
To start communication between the bus master and the slave ST24x04, the master ST52x430 must ini-
tiate a START condition. Following this, the master sends onto the SDA bus line 8 bits (MSB first) corre-
sponding to the device select code (7 bits) and a R/W bit. The figure 4 below shows the bit format of this
byte called "device selector".
If a match is found, the corresponding memory will acknowledge the identification on the SDA bus during
the 9th bit time.

Figure 4. Device select byte

In figure 5 the fundamentals of I2C protocol is drawn. For the AC timing please refer to the relative
datasheet.

AN1328 - APPLICATION NOTE

4/9

Figure 5. I2C Bus Protocol

Byte Write
Although there are different modes for writing more than one byte into the memory with a single command,
in this example we implemented the Single Byte Write operation. With a few modifications it is then pos-
sible to get the Multybyte and Page Write operations allowed by the I2C protocol (see the ST24C04
datasheet for further information).
Following a START condition, the master sends a device select code with the R/W bit reset to ’0’. The
memory acknowledges this and waits for a byte address. The byte address of 8 bits provides access to
one block of 256 bytes of the memory. After receipt of the byte address, the device again responds with
an acknowledge.
After that, the master sends one data byte, which is acknowledged by the memory. The master then ter-
minates the transfer by generating a STOP condition. At this point the internal memory program cycle
starts: all inputs are disabled until the completion of this cycle and the memory will not respond to any re-
quest.

Byte Read
Also in this case we have different ways to read the memory content. Here, what has been implemented
is the Random Address Read, that allows to read a byte from a specified memory address. To this aim, a
dummy write is sent to the memory to load the address into the address counter. This is followed by an-
other START condition from the master and the device selector is repeated with the R/W bit set to ’1’. The
memory acknowledges this and outputs the byte addressed. The master has to NOT acknowledge the
byte output, but terminates the transfer with a STOP condition.
The two sequences for Byte Write and Random Byte Read are reported in Figure 6.

5/9

AN1328 - APPLICATION NOTE

Figure 6. Byte Write and Read sequences

4. HARDWARE DESCRIPTION
In Figure 7 there is a scheme that shows the simple connections between the micro ST52x430 and
ST24C04 memory. To reduce consumption, the two pull-up resistances suggest to configure the two pins
of port A as input when the memory is not in use.
Using these procedures, the user has to reserve the two pins PA0 and PA6 to allow the communication
link. Since the procedures are generalized, the user program can configure the other pins of port A ac-
cording to its preferences. The configuration will be maintained at the end of execution of each routine.
The resistance values are strictly connected with the bus capacitance, according to the graphic shown in
Figure 2. This influences also the maximum speed reachable in the serial communication. For further in-
formation about this, consult the memory datasheet.
The two chip enables are statically connected to ground. This means that, for addressing this memory
chip, we have to put the value ’0’ in bits b3 and b2 of device selector.

Figure 7. Logic Diagram

AN1328 - APPLICATION NOTE

6/9

5. SOFTWARE DESCRIPTION
We analyze each procedure for reading and writing a byte, separately, although they use some subrou-
tines that are commons. In fact, as every operation in the memory begins with a write command (to specify
the device selector byte and the address), the Read Procedure must contain also the code that allows writ-
ing into the memory.
Another important point to discuss is that the two routines are done in such a way that any user program
can import them directly with few modifications. The price to pay for this end is to reserve a user-variable
to keep track of the configuration register relative to the I/O PORT_A (Configuration Register #4) of the
micro (this is an hardware register that is only writable from the user but not readable). Acting in this man-
ner we will be able to modify the I/O configuration only for the involved pins (PA0 and PA6) without chang-
ing the configuration of other six pins. Because inside the routine the direction of the PA6 is continually
changed (input or output), what the user has to do is to initialize the reserved variable (named
REG_CONF4_IM) with the wanted configuration of the PORT_A. At the end of each routine execution, the
PORT_A will restore its original configuration.
Finally, as the procedures were conceived to work inside a host program, it would be better that these
routines could be interrupted during their execution when an interrupt signal (internal or external) is gen-
erated by the micro. At this end, the FUZZYSTUDIOTM4.0 provides different ways to do this. See the doc-
umentation for major details about this.

5.1 Program WRITE
The main program sets the value for the auxiliary register REG_CONF4_IM (in our case we suppose that
the PORT_A is all configured as input) and, then, what has just to do is to provide the value for the variable
Address (from 0 to 255) and the value for the Data.
Then it calls the subroutine Write (Figure 8).

Figure 8. Data specification and call to “Write” subroutine

From the user point of view, the operation for writing into the memory is over.
Now, let us have a look as the Write subroutine is organized (Figure 9). First of all, the subroutine Start1
is called to begin the communication between the two devices. After that, the “device selector” is loaded
into the variable Byte (acting like a data source for the following subroutine) and then the subroutine
Write_Byte is called. To this part of code is demanded the actual transmission of each bit constituting the
data, generating the appropriate clock (SCL) and data bus (SDA) signals.

7/9

AN1328 - APPLICATION NOTE

Figure 9. The “Write” subroutine

Now, the program waits for an acknowledge from the memory. In this phase of communication (that is,
following a Start command), the memory could be busy, as it could be completing a previous operation of
write (recall that during an internal write cycle the memory is unusable). As the memory datasheet speci-
fies, if there is no acknowledge, the master has to restart and re-transmit the device selector. If acknowl-
edged, then the master sends the address specified by Address and, then, the Data. For the two
successive Write subroutines, the program doesn’t check for an acknowledge although the 9th clock cycle
has to be generated in any case. At the end, the Stop subroutine ends the communication process.
The Write_Byte, Start1 and Stop subroutines are described and commented in the in the FuzzyStu-
dio™4.0 project called "ByteWrite.fs4" you can download from the web.

5.2 Program READ
The main program sets the value for the auxiliary register REG_CONF4_IM (in our case we suppose that
the PORT_A is configured as input) and, then, what the user has to do is just provide the value for the
variable Address (from 0 to 255) whose content has to be read and loaded in the variable Data.
As only the Random Read mode was implemented, the Read procedure is very similar to that of Write.
Hence, as shown in Figure 10, we note that the first part of the program is like the one analyzed above. In
fact, after the device selector byte (with the bit R/W set to 0) has been acknowledged, we have to send to
the memory a dummy byte specifying the address to be read. After that, we send a device selector with
the R/W set to 1 and then the micro configures PA6 in input to read the content of the selected address.

AN1328 - APPLICATION NOTE

8/9

Figure 10. The “Read” subroutine

The Read_Byte subroutine is described and commented in the FUZZYSTUDIO™4.0 project "By-
teRead.fs4" you can download from our web site.

6. TIMES

Here are reported the times need to perform a write and read cycle.

T_write = 2.24 ms

and

T_read = 3.02 ms

These times are intended from the START to STOP commands. They has been measured using a logic
data analyzer with the micro working at 4.91MHz frequency (oscillator frequency).
Note that the write cycle time does not include the tw (internal write cycle) time needed to the memory
for doing its internal operation after receiving a STOP command. This time depends only by the memory
device and it can be 10 ms in the worst case.

7. CONCLUSION
In this application note the basics to realize an I2C communication protocol are provided.
The structure of the two routines to write and read the byte to/from the memory was planned to be recalled
easily in a user program without doing significant changes on it. As the procedures have been written in
FUZZYSTUDIOTM4.0, they result very easy to be understood and any extension implementing the other
features of the I2C protocol is easy to be developed starting from the described code.

9/9

AN1328 - APPLICATION NOTE

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may
result from its use. No license is granted by implication or otherwise under any patent or patent rights of
STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication
supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as
critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics - All Rights Reserved

FUZZYSTUDIOTM is a registered trademark of STMicroelectronics

STMicroelectronics GROUP OF COMPANIES

http://www.st.com

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco-
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

